
Generic Programming with Multiple Parameters

José Pedro Magalhães

Functional and Logic Programming 2014

5 June 2014

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 1 / 19

Introduction

I Generic programming: an abstraction technique to reduce code
duplication

I Generic programs operate on “representation types”; a small set of
types used to encode all other user-defined datatypes

I Conversion functions mediate the isomorphism between a datatype
and its generic representation

I There are several generic programming libraries, with different
functionality, ease of use, etc.

I This talk is about generalising one particular popular generic
programming library in Haskell

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 2 / 19

Algebraic datatypes

What is the shape of algebraic datatypes?

data List α = Nil | Cons α (List α)
data [α] = [] | α : [α]

data Maybe α = Nothing | Just α

data (α, β) = (α, β)

data RTree α = RTree α [RTree α]

A value of an algebraic datatype is a choice between a tuple of
arguments.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 3 / 19

Algebraic datatypes

What is the shape of algebraic datatypes?

data List α = Nil | Cons α (List α)
data [α] = [] | α : [α]

data Maybe α = Nothing | Just α

data (α, β) = (α, β)

data RTree α = RTree α [RTree α]

A value of an algebraic datatype is a choice between a tuple of
arguments.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 3 / 19

Algebraic datatypes

What is the shape of algebraic datatypes?

data List α = Nil | Cons α (List α)
data [α] = [] | α : [α]

data Maybe α = Nothing | Just α

data (α, β) = (α, β)

data RTree α = RTree α [RTree α]

A value of an algebraic datatype is a choice between a tuple of
arguments.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 3 / 19

Algebraic datatypes

What is the shape of algebraic datatypes?

data List α = Nil | Cons α (List α)
data [α] = [] | α : [α]

data Maybe α = Nothing | Just α

data (α, β) = (α, β)

data RTree α = RTree α [RTree α]

A value of an algebraic datatype is a choice between a tuple of
arguments.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 3 / 19

Algebraic datatypes

What is the shape of algebraic datatypes?

data List α = Nil | Cons α (List α)
data [α] = [] | α : [α]

data Maybe α = Nothing | Just α

data (α, β) = (α, β)

data RTree α = RTree α [RTree α]

A value of an algebraic datatype is a choice between a tuple of
arguments.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 3 / 19

Algebraic datatypes

What is the shape of algebraic datatypes?

data List α = Nil | Cons α (List α)
data [α] = [] | α : [α]

data Maybe α = Nothing | Just α

data (α, β) = (α, β)

data RTree α = RTree α [RTree α]

A value of an algebraic datatype is a choice between a tuple of
arguments.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 3 / 19

GHC Generics I

With generic programming, we model the shape of algebraic datatypes in
a single representation:

kind Univ =
U
| P
| K ?
| R (?→ ?)
| Univ :+: Univ

| Univ :×: Univ
| ?→ ? :@: Univ

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 4 / 19

GHC Generics I

With generic programming, we model the shape of algebraic datatypes in
a single representation:

kind Univ =
U -- constructor with no arguments
| P -- parameter
| K ? -- base type (constant)
| R (?→ ?) -- recursion
| Univ :+: Univ -- choice

| Univ :×: Univ -- tuples
| ?→ ? :@: Univ -- application

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 4 / 19

GHC Generics I

With generic programming, we model the shape of algebraic datatypes in
a single representation:

kind Univ =
U
| P
| K ?
| R (?→ ?)
| Univ :+: Univ

| Univ :×: Univ
| ?→ ? :@: Univ

data In (υ :: Univ) (ρ :: ?) :: ? where
U1 :: In U ρ
Par1 :: ρ → In P ρ
K1 :: α → In (K α) ρ
Rec1 :: φ ρ → In (R φ) ρ
L1 :: In φ ρ → In (φ :+: ψ) ρ
R1 :: In ψ ρ → In (φ :+: ψ) ρ
(:×:) :: In φ ρ→ In ψ ρ→ In (φ :×: ψ) ρ
App1 :: φ (In ψ ρ) → In (φ :@: ψ) ρ

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 4 / 19

GHC Generics II

The class Generic groups the types that can be handled generically:

class Generic (α :: ?) where
Rep α :: Univ
Par α :: ?

from :: α→ In (Rep α) (Par α)
to :: In (Rep α) (Par α)→ α

As an example, we show the encoding of lists:

instance Generic [α] where
Rep [α] = U :+: P :×: R []
Par [α] = α

from [] = L1 U1

from (h : t) = R1 (Par1 h :×: Rec1 t)

to (L1 U1) = []
to (R1 (Par1 h :×: Rec1 t)) = h : t

This code is derived automatically by the compiler.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 5 / 19

GHC Generics II

The class Generic groups the types that can be handled generically:

class Generic (α :: ?) where
Rep α :: Univ
Par α :: ?

from :: α→ In (Rep α) (Par α)
to :: In (Rep α) (Par α)→ α

As an example, we show the encoding of lists:

instance Generic [α] where
Rep [α] = U :+: P :×: R []
Par [α] = α

from [] = L1 U1

from (h : t) = R1 (Par1 h :×: Rec1 t)

to (L1 U1) = []
to (R1 (Par1 h :×: Rec1 t)) = h : t

This code is derived automatically by the compiler.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 5 / 19

GHC Generics III

A slightly more complicated encoding is that of rose (or multiway) trees:

data RTree α = RTree α [RTree α]

instance Generic (RTree α) where
Rep (RTree α) = P :×: ([] :@: R RTree)
Par (RTree α) = α

from (RTree x xs) = Par1 x :×: App1 (fmap Rec1 xs)
to . . .

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 6 / 19

Generic map (one parameter) I

The class Functor implements mapping over container types in Haskell:

class Functor (φ :: ?→ ?) where
fmap :: (α→ β)→ φ α→ φ β

We could now define an instance for lists:

instance Functor [] where
fmap f [] = []
fmap f (h : t) = f h : fmap f t

And another one for RTree. . .

instance Functor RTree where
fmap f (RTree a ts) = RTree (f a) (fmap (fmap f) ts)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 7 / 19

Generic map (one parameter) I

The class Functor implements mapping over container types in Haskell:

class Functor (φ :: ?→ ?) where
fmap :: (α→ β)→ φ α→ φ β

We could now define an instance for lists:

instance Functor [] where
fmap f [] = []
fmap f (h : t) = f h : fmap f t

And another one for RTree. . .

instance Functor RTree where
fmap f (RTree a ts) = RTree (f a) (fmap (fmap f) ts)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 7 / 19

Generic map (one parameter) I

The class Functor implements mapping over container types in Haskell:

class Functor (φ :: ?→ ?) where
fmap :: (α→ β)→ φ α→ φ β

We could now define an instance for lists:

instance Functor [] where
fmap f [] = []
fmap f (h : t) = f h : fmap f t

And another one for RTree. . .

instance Functor RTree where
fmap f (RTree a ts) = RTree (f a) (fmap (fmap f) ts)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 7 / 19

Generic map (one parameter) II

. . . but fortunately we don’t have to. Map is a generic function, so we
can give a single definition that will operate on all Generic types.

For that we need to define how to map over the representation types. We
use a type class for this:

class FunctorR (υ :: Univ) where
fmapR :: (α→ β)→ In υ α→ In υ β

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 8 / 19

Generic map (one parameter) III

And now we give instances for each of the representation types:

instance FunctorR U where
fmapR U1 = U1

instance FunctorR (K α) where
fmapR (K1 x) = K1 x

instance (FunctorR φ,FunctorR ψ)⇒ FunctorR (φ :+: ψ) where
fmapR f (L1 x) = L1 (fmapR f x)
fmapR f (R1 x) = R1 (fmapR f x)

instance (FunctorR φ,FunctorR ψ)⇒ FunctorR (φ :×: ψ) where
fmapR f (x :×: y) = fmapR f x :×: fmapR f y

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 9 / 19

Generic map (one parameter) IV

These are the most interesting cases:

instance FunctorR P where
fmapR f (Par1 x) = Par1 (f x)

instance (Functor φ)⇒ FunctorR (R φ) where
fmapR f (Rec1 x) = Rec1 (fmap f x)

instance (Functor φ,FunctorR υ)⇒ FunctorR (φ :@: υ) where
fmapR f (App1 x) = App1 (fmap (fmapR f) x)

Defining instances for Generic types is now very easy:

instance Functor [] where fmap f = to ◦ fmapR f ◦ from
instance Functor RTree where fmap f = to ◦ fmapR f ◦ from

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 10 / 19

Generic map (one parameter) IV

These are the most interesting cases:

instance FunctorR P where
fmapR f (Par1 x) = Par1 (f x)

instance (Functor φ)⇒ FunctorR (R φ) where
fmapR f (Rec1 x) = Rec1 (fmap f x)

instance (Functor φ,FunctorR υ)⇒ FunctorR (φ :@: υ) where
fmapR f (App1 x) = App1 (fmap (fmapR f) x)

Defining instances for Generic types is now very easy:

instance Functor [] where fmap f = to ◦ fmapR f ◦ from
instance Functor RTree where fmap f = to ◦ fmapR f ◦ from

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 10 / 19

Generic map (one parameter) IV

These are the most interesting cases:

instance FunctorR P where
fmapR f (Par1 x) = Par1 (f x)

instance (Functor φ)⇒ FunctorR (R φ) where
fmapR f (Rec1 x) = Rec1 (fmap f x)

instance (Functor φ,FunctorR υ)⇒ FunctorR (φ :@: υ) where
fmapR f (App1 x) = App1 (fmap (fmapR f) x)

Defining instances for Generic types is now very easy:

instance Functor []
instance Functor RTree

(And even easier if we use -XDefaultSignatures.)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 10 / 19

Map over multiple parameters

All is good so far, but what if I want to define the following map?

data WTree α ω = Leaf α
| Fork (WTree α ω) (WTree α ω)
| WithWeight (WTree α ω) ω

mapWTree :: (α→ α′)→ (ω → ω′)→WTree α ω →WTree α′ ω′

mapWTree f g (Leaf a) = Leaf (f a)
mapWTree f g (Fork l r) = Fork (mapWTree f g l)

(mapWTree f g r)
mapWTree f g (WithWeight t w) = WithWeight (mapWTree f g t)

(g w)

With GHC generics, all we can get is a map over the ω parameter.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 11 / 19

Map over multiple parameters

All is good so far, but what if I want to define the following map?

data WTree α ω = Leaf α
| Fork (WTree α ω) (WTree α ω)
| WithWeight (WTree α ω) ω

mapWTree :: (α→ α′)→ (ω → ω′)→WTree α ω →WTree α′ ω′

mapWTree f g (Leaf a) = Leaf (f a)
mapWTree f g (Fork l r) = Fork (mapWTree f g l)

(mapWTree f g r)
mapWTree f g (WithWeight t w) = WithWeight (mapWTree f g t)

(g w)

With GHC generics, all we can get is a map over the ω parameter.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 11 / 19

Generic map over multiple parameters I

The focus of this work is to generalise generics in GHC to support generic
functions over multiple parameters.

With this generalisation, we can write a generic map gmap over multiple
parameters:

instance GMap WTree ‘[α→ α′, ω → ω′]

mapWTree f g ' gmap (HCons f (HCons g HNil))

instance GMap (,) ‘[α→ α′, β → β′]

example :: (Int,Float)
example = gmap (HCons (+1) (HCons (+1.1) HNil)) (0, 0.0)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 12 / 19

Generic map over multiple parameters I

The focus of this work is to generalise generics in GHC to support generic
functions over multiple parameters.

With this generalisation, we can write a generic map gmap over multiple
parameters:

instance GMap WTree ‘[α→ α′, ω → ω′]

mapWTree f g ' gmap (HCons f (HCons g HNil))

instance GMap (,) ‘[α→ α′, β → β′]

example :: (Int,Float)
example = gmap (HCons (+1) (HCons (+1.1) HNil)) (0, 0.0)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 12 / 19

Generic map over multiple parameters I

The focus of this work is to generalise generics in GHC to support generic
functions over multiple parameters.

With this generalisation, we can write a generic map gmap over multiple
parameters:

instance GMap WTree ‘[α→ α′, ω → ω′]

mapWTree f g ' gmap (HCons f (HCons g HNil))

instance GMap (,) ‘[α→ α′, β → β′]

example :: (Int,Float)
example = gmap (HCons (+1) (HCons (+1.1) HNil)) (0, 0.0)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 12 / 19

Generalising GHC Generics I

The first step is to generalise the universe to include support for multiple
parameters:

kind Univ =
U
| F Field
| Univ :+: Univ

| Univ :×: Univ

kind Field =
K ?
| P Nat
| ∀κ.κ :@: [Field]

data In (υ :: Univ) (ρ :: [?]) :: ? where
U :: In U ρ
F :: InField υ ρ → In (F υ) ρ
L :: In α ρ → In (α :+: β) ρ
R :: In β ρ → In (α :+: β) ρ
(:×:) :: In α ρ→ In β ρ→ In (α :×: β) ρ

data InField (υ :: Field) (ρ :: [?]) :: ? where
K :: α → InField (K α) ρ
P :: ρ :!: ν → InField (P ν) ρ
A :: AppFields σ χ ρ→ InField (σ :@: χ) ρ

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 13 / 19

Generalising GHC Generics II

Some auxiliary type-level computations:

kind Nat = Ze | Su Nat

(ρ :: [?]) :!: (ν :: Nat) :: ?
(α ‘: ρ) :!: Ze = α
(α ‘: ρ) :!: (Su ν) = ρ :!: ν

AppFields σ χ ρ = σ :$: ExpFld χ ρ

(σ :: κ) :$: (ρ :: [?]) :: ?
σ :$: ‘[] = σ
σ :$: (α ‘: β) = (σ α) :$: β

ExpFld (χ :: [Field]) (ρ :: [?]) :: [?]
ExpFld ‘[] ρ = ‘[]
ExpFld ((K α) ‘: χ) ρ = α ‘: ExpFld χ ρ
ExpFld ((P ν) ‘: χ) ρ = (ρ :!: ν) ‘: ExpFld χ ρ
ExpFld ((σ :@: ω) ‘: χ) ρ = (σ :$: ExpFld ω ρ) ‘: ExpFld χ ρ

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 14 / 19

Generalising GHC Generics II

Some auxiliary type-level computations:

kind Nat = Ze | Su Nat

(ρ :: [?]) :!: (ν :: Nat) :: ?
(α ‘: ρ) :!: Ze = α
(α ‘: ρ) :!: (Su ν) = ρ :!: ν

AppFields σ χ ρ = σ :$: ExpFld χ ρ

(σ :: κ) :$: (ρ :: [?]) :: ?
σ :$: ‘[] = σ
σ :$: (α ‘: β) = (σ α) :$: β

ExpFld (χ :: [Field]) (ρ :: [?]) :: [?]
ExpFld ‘[] ρ = ‘[]
ExpFld ((K α) ‘: χ) ρ = α ‘: ExpFld χ ρ
ExpFld ((P ν) ‘: χ) ρ = (ρ :!: ν) ‘: ExpFld χ ρ
ExpFld ((σ :@: ω) ‘: χ) ρ = (σ :$: ExpFld ω ρ) ‘: ExpFld χ ρ

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 14 / 19

Generalising GHC Generics III

We adapt the Generic class to encode the parameters as a type-level list:

class Generic (α :: ?) where
Rep α :: Univ
Pars α :: [?]

from :: α→ In (Rep α) (Pars α)
to :: In (Rep α) (Pars α)→ α

Here is the instance for lists:

instance Generic [α] where
Rep [α] = U :+: F (P 0) :×: F ([] :@: ‘[P 0])
Pars [α] = ‘[α]

from [] = L U
from (h : t) = R (F (P h) :×: F (A t))

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 15 / 19

Generalising GHC Generics III

We adapt the Generic class to encode the parameters as a type-level list:

class Generic (α :: ?) where
Rep α :: Univ
Pars α :: [?]

from :: α→ In (Rep α) (Pars α)
to :: In (Rep α) (Pars α)→ α

Here is the instance for lists:

instance Generic [α] where
Rep [α] = U :+: F (P 0) :×: F ([] :@: ‘[P 0])
Pars [α] = ‘[α]

from [] = L U
from (h : t) = R (F (P h) :×: F (A t))

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 15 / 19

Generalising GHC Generics IV

But now we can also encode datatypes with multiple parameters:

instance Generic (α, β) where
Rep (α, β) = F (P 0) :×: F (P 1)
Pars (α, β) = ‘[α, β]

from (a, b) = F (P a) :×: F (P b)

data D α β = D β [(α, Int)]

instance Generic (D α β) where
Rep (D α β) = F (P 1) :×: F ([] :@: ‘[(,) :@: ‘[P 0 ,K Int]])
Pars (D α β) = ‘[α, β]

from (D a b) = F (P a) :×: F (A b)

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 16 / 19

Generic map over multiple parameters II

Since we can now map an arbitrary number of functions, we need
arbitrary-length tuples (heterogenous collections):

data HList (ρ :: [?]) where
HNil :: HList ‘[]
HCons :: α→ HList β → HList (α ‘: β)

We can then express the user-facing class for the generalised map:

class GMap (σ :: κ) (τ :: [?]) | τ → κ where
gmap :: HList τ → σ :$: Doms τ → σ :$: Codoms τ

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 17 / 19

Limitation to kind ? parameters

Consider the following datatype:

data GTree1 φ α = GTree1 α (φ (GTree1 φ α))

We would like to obtain the following map for it:

gmap1 :: (α→ β)→ (∀α β.(α→ β)→ φ α→ ψ β)
→ GTree1 φ α→ GTree1 ψ β

gmap1 f g (GTree1 x y) = GTree1 (f x) (g (gmap1 f g) y)

But this is not yet possible with our approach.

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 18 / 19

Conclusion

I We’ve seen how to encode a generic representation that supports
abstraction over multiple parameters (of kind ?);

I We’ve defined a generalised map;

I Other generalised functions are now possible, e.g. folding, traversing,
and zipping;

I We hope to implement support for multiple parameters in GHC soon.

Thank you for your time!

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 19 / 19

Conclusion

I We’ve seen how to encode a generic representation that supports
abstraction over multiple parameters (of kind ?);

I We’ve defined a generalised map;

I Other generalised functions are now possible, e.g. folding, traversing,
and zipping;

I We hope to implement support for multiple parameters in GHC soon.

Thank you for your time!

José Pedro Magalhães Generic Programming with Multiple Parameters, FLOPS 2014 19 / 19

