
Deriving Dynamic Programming via
Thinning and Incrementalization

Akimasa Morihata (Univ. Tokyo)

Masato Koishi (Toshiba Solutions Corp.)

Atsushi Ohori (RIEC, Tohoku Univ.)

FLOPS 2014, Kanazawa, Japan

1

0-1 Knapsack Problem

Given: budget B and items i1,…,in

Objective: most valuable itemset that can buy

2

0.5MJ, ¥120

B = ¥300

0.2MJ, ¥60

1.3MJ, ¥90 1.9MJ, ¥140

1.6MJ, ¥150

Textbook Solution:
Dynamic Programming

1. Recurrence equation (principle of optimality):
opt(S] {i}, c)

= max {opt(S, c), value(i) + opt(S, c – cost(i))}

2. Table-filling implementation:

3

c = 0 c = 1 … c = cost(i1)+1 … c = B

{i0}

{i0, i1}

…

S

+value(i1)

Textbook Approach to DP

4

Problem Description

Recurrence Equation

Table-filling Implementation

Thinning

Incrementalization

Our Contribution

New method of systematically developing DP
by combining known methods:

– Thinning (Bird & de Moor ’96; Morihata ’11)
to expose a recurrence equation

– Incrementalization (Liu+ ’03; ’05)
to develop efficient table-filling computation

This is (to our knowledge) a first study on their
cooperation

5

Problem Description

knapsack = max·value o feasible o subsets

subsets [] = {[]}

subsets (i : is) = let r = subsets is in r [map (i:) r

feasible = filter (¸is. cost is · B)

value = sum o map valueOfItem

cost = sum o map costOfItem

6

enumerator filter maximizer

Thinning by Shortcut Fusion

Thinning (Bird & de Moor ’97): avoid exhaustive
enumeration by fusing maximizer/filter/enumerator

Theorem. (refinement of Morihata’11)

max¹ (filter p (gen ([) (¸a. map (a:)) ({[]})))

 = max¹ (gen (¸x y. max¹ÅÀ (x [y))

 (¸a. max¹ÅÀ o filter p o map (a:))

 (filter p {[]}))

if p x = h x ¿ c,
¹ and À are monotone on (:), À is increasing on (:),
and gen’s type is 8¯. (¯!¯!¯)!(A!¯!¯)!¯!¯.

 7

discard useless ones

Applying Thinning to knapsack

knapsack = max·value o feasible o subsets

subsets [] = {[]}

subsets (i : is) = let r = subsets is in r [map (i:) r

knapsack = max·value o subsets’

subsets’ [] = {[]}

subsets’ (i : is)

 = let r = subsets’ is

 in max·valueÅ¸cost (r [feasible (map (i:) r))

8

Thinning

Note: Recurrence Equation Exposed

max·valueÅ¸cost removes an element if a more
valuable and cheaper one exists, namely,†

max·valueÅ¸cost S

 = {max·value {is’ | is’2S, is’ ·cost is} | is2S}

This essentially leads to the recurrence equation:

opt(S] {i})

 = {max·value {is | is’ 2 opt(S), is 2 {is’, i : is’},

 cost(is) · c} | 0 · c · B}
†assume no two candidates have the same value

9

Drawback of Thinning

Obtained program is not very efficient

knapsack = max·value o subsets’

subsets’ [] = {[]}

subsets’ (i : is)

 = let r = subsets’ is

 in max·valueÅ¸cost (r [feasible (map (i:) r))

10

O(B) candidates

O(B2) time?

Incrementalization

Incremenalization (Liu+ ’03; ’05):
improving efficiency by reusing previous results

Theorem. (well-known)
If s1 µ…µ sm, for associative and commutative ©,

[©sm, …, ©s1]

 = foldr f [©s1] [sm n sm–1, …, s2n s1]

 where f s (r:rs) = (©s) © r : r : rs

11

Incrementalize max

max·valueÅ¸cost S

 = {max·value {is’ | is’2S, is’ ·cost is} | is2S}

max·valueÅ¸cost S

 = {max·value {is1, …, isk} | 1 · k · m}

max·valueÅ¸cost S = foldr f [is1] [ism , …, is2]

 where f is (r:rs) = max·value {is, r} : r : rs

 12

let S = {is1, …, ism} s.t. is1 ·cost … ·cost ism

Incrementalization O(m) time

Obtained Program

knapsack = max·value o subsets’

subsets’ [] = {[]}

subsets’ (i : is)

 = let r = subsets’ is

 in max·valueÅ¸cost (r [feasible (map (i:) r))

• Time complexity: O(nB)

• It is essentially the one presented by de Moor
(1995)

13

O(B) candidates
O(B) time

What Written in the Paper

• Our approach scales to other examples
(derivations are more complicated, though)

– longest common sequence problem

– association-rule mining on two-dimensional
numeric data (Fukuda+’99; 01)

• Discussion on possibility of automation

–Difficulty:
bridging the gap between two methods

14

Related Work (1)

• Thinning (Bird & de Moor’ 97)

–useful to deriving DP from naive specification

–drawback: results may be too abstract, far
from efficient implementation

• Incrementalization (Liu+ ’03; ’05)

–useful for deriving efficient table-filling
implementation from recurrence equations

Our observation: they are orthogonal

15

Related Work (2)

• de Moor (1995):

–proposed a law to derive DP for a class of
optimization problems

–Result for the knapsack problem is almost the
same

–We modularized his law into two components:
thinning and incrementalization
 more problems can be solved

16

Conclusion & Future Work

Combination of thinning and incrementalization
is useful for developing DP!

Future work:

• Automation

–Domain-specific? Solver-based?

• Combination of other techniques

17

