Deriving Dynamic Programming via
Thinning and Incrementalization

Akimasa Morihata (Univ. Tokyo)

§

\\ Masato Koishi (Toshiba Solutions Corp.)
IE Atsushi Ohori (RIEC, Tohoku Univ.)

FLOPS 2014, Kanazawa, Japan

@

AJ
Q

0-1 Knapsack Problem

Given: budget B and items I, I,

Objective: most valuable itemset that can buy

B = ¥300 O

0.5MJ, ¥120 0.2MJ, ¥60

s
N *

Textbook Solution:

- cF .

1. Recurrence equation (principle of optimality):

opt(S W {i}, ¢)
= max {opt(S, c), value(i) + opt(S, c — cost(i))}

. Table-filling implementation:

{lo}
{io, i} +vam}\>‘1'

Textbook Approach to DP

[Problem Description]
@ Thinning
[Recurrence Equation]

@ Incrementalization

[Table-filling Implementation]

Our Contribution

New method of systematically developing DP
by combining known methods:

—Thinning (Bird & de Moor '96; Morihata "11)
to expose a recurrence equation

—Incrementalization (Liu+ '03; '05)
to develop efficient table-filling computation

This is (to our knowledge) a first study on their
cooperation

Problem Description

knapsack = max_,,,. 0 feasible o subsets
SsSs—
[maximizer] [fi t‘eﬁ enumerator]

subsets [] = {[]}

subsets (1 : 1S) = let r = subsetsisinruUmap (i:) r
feasible = filter (\is. cost is < B)

value = sum o map valueOfltem

cost = sum o map costOfltem

Thinning by Shortcut Fusion

Thinning (Bird & de Moor '97): avoid exhaustive
enumeration by fusing maximizer/filter/enumerator

Theorem. (refinement of Morihata’11)

max (filter p (gen (U) (Aa. map (a:)) ({[1})))
= max_ (gen (AXy. max_.s (X UY))
B (Aa. max_,,, o filter p o map (a:))

(filter p {[1})) \/ discard useless ones]

ifpx=hx<c,
< and > are monotone on (:), > is increasing on (%),
and gen’s type is V3. (6— 08— 06)—(A—G—06)—F—0.

Applying Thinning to knapsack

knapsack = max_,,, o feasible o subsets

subsets [] = {[]}
subsets (1 : 1S) = let r = subsetsisinruUmap (i:) r

@Thinning

knapsack = max_,,,, 0 subsets’

subsets’ [] = {[]}
subsets’ (i : 1S)
= let r = subsets’ Is
IN MaX_, 5 uen>cost (U feasible (map (i:) r))

Note: Recurrence Equation Exposed

MaX_yauen>cost F€Moves an element if a more
valuable and cheaper one exists, namely,”

maX<va|uer1>cost S
= {max_ e {is’ | iIS’€S, 1S’ <(o IS} | ISES}

This essentially leads to the recurrence equation:

opt(Sw {1})

= {maX_ .. {IS | is’ € opt(S), Is € {is’, I : IS’},
B cost(is) < c}|0 < ¢ < B}

fassume no two candidates have the same value

Drawback of Thinning

Obtained program is not very efficient

knapsack = max_, e 0 Subsets’

subsets’ [] = {[]}

subsets’ (1 : 1S) . J
= let r = subsets’ is O(B) candidates

IN MaX_, 4 uen>cost (F'U feasible (map (i:) r))

[EZ) time? J

10

Incrementalization

Incremenalization (Liu+ '03; '05):
improving efficiency by reusing previous results

Theorem. (well-known)
If s, C---C s, for associative and commutative &,

[Ds, +-e DS,]
= foldr f [Ds,] [S,, \ Si_1s +-s S5\ S4]
where fs (r:irs)=(Bs)®r:r:rs

11

Incrementalize max

maX<va|uer1>cost S
= {max_ e {iS’ | iS’E€S, IS’ < oy IS} | iSES}

@ let S = {ISyy eees IS} St 1) <ioer =" Zeost IS

max<valuem>cost _
- {max<value {ISD °ee ISk} | 1< K < m}

@ Incrementalization @n) timeJ

max<valuen>cost = foldr f [Isl] [ISm 1 oo iSZ]
where T1s (r:irs) = maxX. e {1S, r}: r:rs

12

Obtained Program

knapsack = max_, 4. 0 Subsets’
subsets’ [] = {[]}

V(i O(B) ti }
SUPSG’[S (_I - 15) - (B) time O(B) candidates}
= let r = subsets’ IS

IN MaX_, 4 ,en>cost (I U feasible (map (i:) r))

* Time complexity: O(nB)

* |tis essentially the one presented by de Moor
(1995)

13

What Written in the Paper

* Our approach scales to other examples
(derivations are more complicated, though)

—longest common sequence problem

—association-rule mining on two-dimensional
numeric data (Fukuda+'99; 01)

* Discussion on possibility of automation

— Difficulty:
bridging the gap between two methods

14

Related Work (1)

* Thinning (Bird & de Moor’ 97)
— useful to deriving DP from naive specification

—drawback: results may be too abstract, far
from efficient implementation

* |Incrementalization (Liu+ '03; '05)

— useful for deriving efficient table-filling
implementation from recurrence equations

Our observation: they are orthogonal

15

Related Work (2)

 de Moor (1995):

—proposed a law to derive DP for a class of
optimization problems

— Result for the knapsack problem is almost the
same

—We modularized his law into two components:
thinning and incrementalization
=» more problems can be solved

16

Conclusion & Future Work

Combination of thinning and incrementalization
is useful for developing DP!

Future work:
* Automation

— Domain-specific? Solver-based?
 Combination of other techniques

17

