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0-1 Knapsack Problem 

Given: budget B and items i1,…,in 

Objective: most valuable itemset that can buy 
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0.5MJ, ¥120 

B = ¥300 

0.2MJ, ¥60 

1.3MJ, ¥90 1.9MJ, ¥140 

1.6MJ, ¥150 



Textbook Solution:  
Dynamic Programming 

1.  Recurrence equation (principle of optimality): 
opt(S ] {i}, c) 

= max {opt(S, c), value(i) + opt(S, c – cost(i))} 
 

2.  Table-filling implementation: 
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c = 0  c = 1 … c = cost(i1)+1 … c = B 

{i0} 

{i0, i1} 

… 

S 

+value(i1) 



Textbook Approach to DP 
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Our Contribution 

New method of systematically developing DP 
by combining known methods: 

– Thinning (Bird & de Moor ’96; Morihata ’11) 
to expose a recurrence equation 

– Incrementalization (Liu+ ’03; ’05)  
to develop efficient table-filling computation 

 

This is (to our knowledge) a first study on their 
cooperation 
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Problem Description 
 

knapsack = max·value o feasible o subsets 

 
subsets [] = {[]} 

subsets (i : is) = let r = subsets is in r [ map (i:) r 

feasible = filter (¸is. cost is · B) 

value = sum o map valueOfItem 

cost = sum o map costOfItem 
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enumerator filter maximizer 



Thinning by Shortcut Fusion 

Thinning (Bird & de Moor ’97): avoid exhaustive 
enumeration by fusing maximizer/filter/enumerator 

Theorem. (refinement of Morihata’11) 

max¹ (filter p (gen ([) (¸a. map (a:)) ({[]})))  

    = max¹ (gen (¸x y.  max¹ÅÀ (x [ y)) 

                          (¸a. max¹ÅÀ o filter p o map (a:))  

                          (filter p {[]})) 

if p x = h x ¿ c, 
¹ and À are monotone on (:),  À is increasing on (:), 
and  gen’s type is 8¯. (¯!¯!¯)!(A!¯!¯)!¯!¯.  
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discard useless ones 



Applying Thinning to knapsack 

knapsack = max·value o feasible o subsets 

subsets [] = {[]} 

subsets (i : is) = let r = subsets is in r [ map (i:) r 

 
knapsack = max·value o subsets’ 

subsets’ [] = {[]} 

subsets’ (i : is) 

   = let r = subsets’ is  

      in max·valueÅ¸cost (r [ feasible (map (i:) r)) 
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Thinning 



Note: Recurrence Equation Exposed 

max·valueÅ¸cost removes an element if a more 
valuable and cheaper one exists, namely,† 

max·valueÅ¸cost S 

   = {max·value {is’ | is’2S, is’ ·cost is} | is2S}  
 

This essentially leads to the recurrence equation:  

opt(S] {i}) 

   = {max·value {is | is’ 2 opt(S), is 2 {is’, i : is’}, 

       cost(is) · c} | 0 · c · B}  
†assume no two candidates have the same value 
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Drawback of Thinning 

Obtained program is not very efficient 
 

knapsack = max·value o subsets’ 

subsets’ [] = {[]} 

subsets’ (i : is) 

   = let r = subsets’ is  

      in max·valueÅ¸cost (r [ feasible (map (i:) r)) 

 

10 

O(B) candidates 

O(B2) time? 



Incrementalization 

Incremenalization (Liu+ ’03; ’05):  
improving efficiency by reusing previous results 

 

Theorem. (well-known) 
If s1 µ…µ sm, for associative and commutative ©,  

[©sm, …, ©s1] 

  = foldr f [©s1] [sm n sm–1, …, s2n s1] 

      where f s (r:rs) = (©s) © r : r : rs   
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Incrementalize max 

max·valueÅ¸cost S 

   = {max·value {is’ | is’2S, is’ ·cost is} | is2S}  

 
max·valueÅ¸cost S  

   = {max·value {is1, …, isk} | 1 · k · m}  

 
max·valueÅ¸cost S  = foldr f [is1] [ism , …, is2] 

   where f is (r:rs) = max·value {is, r} : r : rs   
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let S = {is1, …, ism} s.t. is1 ·cost … ·cost ism 
 

Incrementalization O(m) time 



Obtained Program 

knapsack = max·value o subsets’ 

subsets’ [] = {[]} 

subsets’ (i : is) 

   = let r = subsets’ is  

      in max·valueÅ¸cost (r [ feasible (map (i:) r)) 
 

• Time complexity: O(nB) 

• It is essentially  the one presented by de Moor 
(1995) 
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O(B) candidates 
O(B) time 



What Written in the Paper  

• Our approach scales to other examples 
(derivations are more complicated, though) 

– longest common sequence problem 

– association-rule mining on two-dimensional 
numeric data (Fukuda+’99; 01) 

• Discussion on possibility of automation 

–Difficulty:  
bridging the gap between two methods 
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Related Work (1) 

• Thinning (Bird & de Moor’ 97) 

–useful to deriving DP from naive specification 

–drawback: results may be too abstract, far 
from efficient implementation 

• Incrementalization (Liu+ ’03; ’05) 

–useful for deriving efficient table-filling 
implementation from recurrence equations 

Our observation: they are orthogonal 
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Related Work (2) 

• de Moor (1995): 

–proposed a law to derive DP for a class of 
optimization problems 

–Result for the knapsack problem is almost the 
same  

 

–We modularized his law into two components: 
thinning and incrementalization 
 more problems can be solved 
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Conclusion & Future Work 

Combination of thinning and incrementalization 
is useful for developing DP! 

 

Future work: 

• Automation 

–Domain-specific?  Solver-based? 

• Combination of other techniques 

17 


