
A New Formalization of Subtyping

to Match Subclasses to Subtypes

Hyunik Na and Sukyoung Ryu

Programming Language Research Group

KAIST

June 6, 2014

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 1/28

This Paper

A New Formalization of Subtyping

to Match Subclasses to Subtypes

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 2/28

Goal

A New Formalization of Subtyping

to Match Subclasses to Subtypes

Subclassing

class ColorPoint extends Point

explicit by “declarations”
easy for programmers

Subtyping

ColorPoint <: Point
implicit by “inference”
easy for type checkers

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 3/28

Goal

A New Formalization of Subtyping

to Match Subclasses to Subtypes

Subclassing

class ColorPoint extends Point

explicit by “declarations”
easy for programmers

Subtyping

ColorPoint <: Point
implicit by “inference”
easy for type checkers

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 3/28

Goal

A New Formalization of Subtyping

to Match Subclasses to Subtypes

Subclassing

class ColorPoint extends Point

explicit by “declarations”
easy for programmers

Subtyping

ColorPoint <: Point
implicit by “inference”
easy for type checkers

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 3/28

Solution

A New Formalization of Subtyping

to Match Subclasses to Subtypes

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 4/28

Motivation

The self-type idiom in Fortress:

trait EqualityJSelf extends EqualityJSelfKK
abstract opr =(self, other : Self) : Boolean

end

This type

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 5/28

Motivation

The self-type idiom in Fortress:

trait EqualityJSelf extends EqualityJSelfKK
abstract opr =(self, other : Self) : Boolean

end

This type

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 5/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 6/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

SAFE: Scalable Analysis Framework for ECMAScript

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 7/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

v̂ ∈ V̂alue = P̂Value× ℘(L̂oc)

p̂v ∈ P̂Value = Ûndef × N̂ull× B̂ool× N̂umber × Ŝtring

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 8/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

v̂ ∈ V̂alue = P̂Value× ℘(L̂oc)

p̂v ∈ P̂Value = Ûndef × N̂ull× B̂ool× N̂umber × Ŝtring

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 9/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

abstract class AbsBase {

def isTop(): Boolean

def isBottom(): Boolean

def isConcrete(): Boolean

def toAbsString(): AbsString

}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 10/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

sealed abstract class AbsNull extends AbsBase {

/* partial order */

def <= (that: AbsNull) = { ... }

/* join */

def + (that: AbsNull) = { ... }

/* meet */

def <> (that: AbsNull) = { ... }

...

}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 11/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

sealed abstract class AbsString extends AbsBase {

/* partial order */

def <= (that: AbsString) = { ... }

/* join */

def + (that: AbsString) = { ... }

/* meet */

def <> (that: AbsString) = { ... }

...

}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 12/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

abstract class AbsBase {

/* partial order */

def <= (that: ThisType): Boolean

/* join */

def + (that: ThisType): ThisType

/* meet */

def <> (that: ThisType): ThisType

...

}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 13/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

Signatures of required methods in AbsBase

Exact class matches at run time

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 14/28

This Type in Practice

Abstract domains for analyzing JavaScript programs
Signatures of required methods in AbsBase

Exact class matches at run time

Bruno Oliveira’s solution

abstract class AbsBase {

type ThisType <: AbsBase

def + (that: ThisType): ThisType

...

}

case class AbsString extends AbsBase {

type ThisType = AbsString

override def + (that : ThisType): ThisType =

... new AbsString() ...

}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 15/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

Signatures of required methods in AbsBase

Exact class matches at run time
Multiple implementations for one abstract domain

abstract class AbsDomain { ... }

abstract class AbsBase[A] extends AbsDomain { ... }

class AbsString extends AbsBase[String] { ... }

class AbsStringSet extends AbsString { ... }

class AbsStringAutomata extends AbsString { ... }

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 16/28

This Type in Practice

Abstract domains for analyzing JavaScript programs

Signatures of required methods in AbsBase

Exact class matches at run time
Multiple implementations for one abstract domain

abstract class AbsDomain { ... }

abstract class AbsBase[A] extends AbsDomain { ... }

class AbsString extends AbsBase[String] { ... }

class AbsStringSet extends AbsString { ... }

class AbsStringAutomata extends AbsString { ... }

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 16/28

This Type in Practice

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 17/28

This Type in Theory

This-typed methods:
owner types in their parameter types or return types

abstract class AbsBase {

/* partial order */

def <= (that: ThisType): Boolean

/* join */

def + (that: ThisType): ThisType

/* meet */

def <> (that: ThisType): ThisType

...

}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 18/28

This Type in Theory

This-typed methods:
owner types in their parameter types or return types

Traditional This type

“declared” type of a receiver
inexact compile-time type

Our This type

“run-time” type of a receiver
exact run-time type
not available but sayable at compile time

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 19/28

This Type in Theory

This-typed methods:
owner types in their parameter types or return types

Traditional This type

“declared” type of a receiver
inexact compile-time type

Our This type

“run-time” type of a receiver
exact run-time type
not available but sayable at compile time

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 19/28

This Type in Calculus (TLDI’12)

CoreThisJava, a formal core calculus to support the This type:

new typing features

exact class types of the form #C for a class C

This type variable
named wildcards of the form </X/> to describe more
equality relationships between exact types
exact type inference to lessen the programmers’ burden
of using explicit annotations

new language constructs

virtual constructors to describe methods with
ThisTyped results
classesmatch to compare run-time types

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 20/28

This Type in Java (APLAS’13)

ThisJava, an open-source implementation using JastAddJ:

http://plrg.kaist.ac.kr/research/software

backward compatible
compilation to Java bytecode

practical
interactions with existing Java features

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 21/28

http://plrg.kaist.ac.kr/research/software

This Type in Type System (FLOPS’14)

Traditional subtyping cannot support subtyping by
inheritance.

class Point {

int x;

Point(int i) { this.x = i; }

boolean equals(This other) { return this.x == other.x; }

}

class ColorPoint extends Point {

int color;

ColorPoint(int i, int c) { super(i); this.color = c; }

boolean equals(This other) {

return this.x == other.x && this.color == other.color;

}

}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 22/28

This Type in Type System (FLOPS’14)

Traditional subtyping cannot derive the following:

` µt.{x: int, c: int, eq: t→bool } ≤ µt.{x: int, eq: t→bool }

New subtyping can derive the following:

∅ ` ∃s<pµt.{x: int, c: int, eq: t→bool}.s <:
∃s<pµt.{x: int, eq: t→bool}.s

by distinguishing record types µt.{li : τi i ∈1..n}
and some-record types ∃s <pµt.{li : τi i ∈1..n}.s explicitly

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 23/28

This Type in Type System (FLOPS’14)

Traditional subtyping cannot derive the following:

` µt.{x: int, c: int, eq: t→bool } ≤ µt.{x: int, eq: t→bool }

New subtyping can derive the following:

∅ ` ∃s<pµt.{x: int, c: int, eq: t→bool}.s <:
∃s<pµt.{x: int, eq: t→bool}.s

by distinguishing record types µt.{li : τi i ∈1..n}
and some-record types ∃s <pµt.{li : τi i ∈1..n}.s explicitly

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 23/28

This Type in Type System (FLOPS’14)

Traditional subtyping cannot derive the following:

` µt.{x: int, c: int, eq: t→bool } ≤ µt.{x: int, eq: t→bool }

New subtyping can derive the following:

∅ ` ∃s<pµt.{x: int, c: int, eq: t→bool}.s <:
∃s<pµt.{x: int, eq: t→bool}.s

by distinguishing record types µt.{li : τi i ∈1..n}
and some-record types ∃s <pµt.{li : τi i ∈1..n}.s explicitly

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 23/28

This Type in Type System (FLOPS’14)

Record types

µt.{li : τi i ∈1..n}
types of “run-time” objects that have exactly those
members l1, l2, . . ., ln
exact run-time types

Some-record types

∃s <pµt.{li : τi i ∈1..n}.s
types of “compile-time” expressions that may evaluate
to objects of record types specializing µt.{li : τi i ∈1..n}
inexact compile-time types

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 24/28

This Type in Type System (FLOPS’14)

Record types

µt.{li : τi i ∈1..n}
types of “run-time” objects that have exactly those
members l1, l2, . . ., ln
exact run-time types

Some-record types

∃s <pµt.{li : τi i ∈1..n}.s
types of “compile-time” expressions that may evaluate
to objects of record types specializing µt.{li : τi i ∈1..n}
inexact compile-time types

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 24/28

This Type in Type System (FLOPS’14)

τ, υ ::= t | ρ | α | γ | τ→τ type (revised)
α, β ::= µt.{li : τi i ∈1..n} record type (revised)
γ ::= ∃s <pα.s some-record type

Specializing: ∆ ` α<p β where ∆ ::= {ti i∈1..n}

[Specializing]

n ≥ 0, m ≥ 0 t /∈ ∆ ∀i ∈ 1..n: ∆ ∪ {t} ` τi <: υi
∆ ` µt.{li : τi i ∈1..n+m} <p µt.{li : υi i ∈1..n}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 25/28

This Type in Type System (FLOPS’14)

τ, υ ::= t | ρ | α | γ | τ→τ type (revised)
α, β ::= µt.{li : τi i ∈1..n} record type (revised)
γ ::= ∃s <pα.s some-record type

Specializing: ∆ ` α<p β where ∆ ::= {ti i∈1..n}

[Specializing]

n ≥ 0, m ≥ 0 t /∈ ∆ ∀i ∈ 1..n: ∆ ∪ {t} ` τi <: υi
∆ ` µt.{li : τi i ∈1..n+m} <p µt.{li : υi i ∈1..n}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 25/28

This Type in Type System (FLOPS’14)

τ, υ ::= t | ρ | α | γ | τ→τ type (revised)
α, β ::= µt.{li : τi i ∈1..n} record type (revised)
γ ::= ∃s <pα.s some-record type

Revised subtyping: ∆ ` τ <: υ where ∆ ::= {ti i∈1..n}

[RS-Prim]

∆ ` ρ <: ρ

[RS-Func]

∆ ` υ <: τ ∆ ` τ ′ <: υ′

∆ ` τ→τ ′ <: υ→υ′

[RS-TVar]

t ∈ ∆

∆ ` t <: t

[RS-RtoR]

∆ ` α <: α

[RS-RtoS]

∆ ` α<pβ
∆ ` α <: ∃s <pβ.s

[RS-StoS]

∆ ` α<pβ
∆ ` ∃s <pα.s <: ∃s <pβ.s

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 26/28

This Type in Type System (FLOPS’14)

Record types µt.{li : τi i ∈1..n}
Some-record types ∃s <pµt.{li : τi i ∈1..n}.s
Revised subtyping

[RS-RtoS]

∆ ` α<p β
∆ ` α <: ∃s <p β.s

[RS-StoS]

∆ ` α<p β
∆ ` ∃s <pα.s <: ∃s <p β.s

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 27/28

Conclusion

Supporting ThisTyped methods is an important real-world
problem.

Adding typing features and language constructs can
support more ThisTyped methods.

An open-source prototype implementation is available:

http://plrg.kaist.ac.kr/research/software

Inheritance can be subtyping.

∅ ` ∃s<pµt.{x: int, c: int, eq: t→bool}.s <:
∃s<pµt.{x: int, eq: t→bool}.s

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 28/28

http://plrg.kaist.ac.kr/research/software

