N -

A New Formalization of Subtyping

to Match Subclasses to Subtypes

Hyunik Na and Sukyoung Ryu

Programming Language Research Group
KAIST

June 6, 2014

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 1/28

N -

This Paper

A New Formalization of Subtyping
to Match Subclasses to Subtypes

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 2/28

N -

Goal

A New Formalization of Subtyping
to Match Subclasses to Subtypes

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 3/28

N -

Goal

A New Formalization of Subtyping
to Match Subclasses to Subtypes

m Subclassing

m class ColorPoint extends Point
m explicit by “declarations”
m easy for programmers

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 3/28

N -

Goal

A New Formalization of Subtyping
to Match Subclasses to Subtypes

m Subclassing

m class ColorPoint extends Point

m explicit by “declarations”

m easy for programmers

m Subtyping

m ColorPoint <: Point
m implicit by “inference”
m easy for type checkers

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 3/28

N -

Solution

A New Formalization of Subtyping
to Match Subclasses to Subtypes

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 4/28

N -

Motivation

The self-type idiom in Fortress:

trait Equality[Self extends Equality[Self]]
abstract opr =(self, other : Self) : Boolean
end

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 5/28

N -

Motivation

The self-type idiom in Fortress:

trait Equality[Self extends Equality[Self]]
abstract opr =(self, other : Self) : Boolean
end

This type

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 5/28

N -

This Type in Practice

m Abstract domains for analyzing JavaScript programs

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 6/28

N -

This Type in Practice

m Abstract domains for analyzing JavaScript programs

SAFE: Scalable Analysis Framework for ECMAScript

HTML Parser
STTTTTTT \ ST \ SOOI \
| JavaSeript | | DOMTree | Heap Builder | IntHeap |
\ ’ \ ; \ /
___l___/ e . 1___,
L ! AST | CFGBuider >/ CFG | Analyzer { Analysis
Parser L i 'y 4 \ Result
N s (SR o 1_ v

Bug Detector

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 7/28

N -

This Type in Practice

m Abstract domains for analyzing JavaScript programs

Ve Value = PVaIue>< p(Loc)
pv € PValue = Undef x Null x Bool x Number x String

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 8/28

N -

This Type in Practice

m Abstract domains for analyzing JavaScript programs

~ —
Ve Value = PVaIue X p(Loc)

. P o o
pv € PValue = Undef x Null x Bool x Number x String
undefined null TBool absent

— — — - / \ ~ —
Undef = Null = Bool = true false Absent =
N 7/
Lunder Lun LBool L Absent
TNumber

|
Inf//Jlnt NUint
Number = /| // NN

mf\wo 1///b

LNumber
Tstring
~ - N ~
NumStr OtherStr
Sing = NaN»«1 “f“/’ \bar
NANPTT? S 46607
String

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 9/28

N -

This Type in Practice
m Abstract domains for analyzing JavaScript programs

abstract class AbsBase {
def isTop(): Boolean
def isBottom(): Boolean
def isConcrete(): Boolean
def toAbsString(): AbsString

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 10/28

N -

This Type in Practice
m Abstract domains for analyzing JavaScript programs

sealed abstract class AbsNull extends AbsBase {
/* partial order */
def <= (that: AbsNull) ={ ... }

/* join */
def + (that: AbsNull) = { ... }

/* meet */
def <> (that: AbsNull) = { ... }

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 11/28

N -

This Type in Practice
m Abstract domains for analyzing JavaScript programs

sealed abstract class AbsString extends AbsBase {
/* partial order */
def <= (that: AbsString) = { ... }

/* join */
def + (that: AbsString) = { ... }

/* meet */
def <> (that: AbsString) = { ... }

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 12/28

N -

This Type in Practice
m Abstract domains for analyzing JavaScript programs

abstract class AbsBase {
/* partial order */
def <= (that: ThisType): Boolean

/* join */
def + (that: ThisType): ThisType

/* meet */
def <> (that: ThisType): ThisType

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 13/28

N -

This Type in Practice
m Abstract domains for analyzing JavaScript programs

m Signatures of required methods in AbsBase
m Exact class matches at run time

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 14/28

N -

This Type in Practice

m Abstract domains for analyzing JavaScript programs
m Signatures of required methods in AbsBase
m Exact class matches at run time

m Bruno Oliveira’s solution

abstract class AbsBase {
type ThisType <: AbsBase
def + (that: ThisType): ThisType

X
case class AbsString extends AbsBase {
type ThisType = AbsString
override def + (that : ThisType): ThisType =
. new AbsString()

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 15/28

N -

This Type in Practice

m Abstract domains for analyzing JavaScript programs

m Signatures of required methods in AbsBase
m Exact class matches at run time
m Multiple implementations for one abstract domain

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 16/28

N -

This Type in Practice

m Abstract domains for analyzing JavaScript programs

m Signatures of required methods in AbsBase
m Exact class matches at run time
m Multiple implementations for one abstract domain

abstract class AbsDomain { ... }

abstract class AbsBase[A] extends AbsDomain { ... }
class AbsString extends AbsBase[String] { ... }
class AbsStringSet extends AbsString { ... }

class AbsStringAutomata extends AbsString { ... }

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 16/28

N -

This Type in Practice

12/03/2013 12:17 pm Sooncheol Won [AbsDomain] Changed string domain to set domain.
12/02/2013 05:48 pm Sooncheol Won [AbsDomain] 1) Renamed AbsStringSimple to AbsStringSel
Added an AbsStringAutomata prototype class.

12/02/2013 04:45 pm Sooncheol Won [AbsDomain] Separated common domain elements(StrTop
from AbsStringSimple.

12/02/2013 01:48 pm Sooncheol Won [AbsDomain] Removed useless parenthesises.

112/02/2013 12:01 pm Sukyoung Ryu [AbsDomain] Gave up with ThisType to support multiple
implementations for AbsString. Refactored AbsString to Ab:
and AbsStringSimple.

12/02/2013 12:04 am Sora Bae Merge branch 'master' of ssh://plrg.kaist.ac.kr/var/git/safi

12/02/2013 12:03 am Sora Bae [Concolic] Create input objects for integer properties.

11/29/2013 10:13 pm Sukyoung Ryu [Refactoring] Refactored PropValue(Value(_))

11/29/2013 03:41 pm Sooncheol Won [Domain] Fixed the meet operator bug.

11/29/2013 12:51 pm Sukyoung Ryu [AbsNumber] Removed the getSingleValue method.

11/29/2013 09:34 am Sukyoung Ryu [AbsString] Moved one method from the AbsString object t
AbsString class.

) 11/28/2013 11:02 am Sukyoung Ryu [AbsDomain] Removed uses of abstract value constructors

11/21/2013 09:59 am Sukyoung Ryu [AbsDomain] Revised the AbsUndef domain and added the AbsCas
classes for pattern matching of abstract values.

11/20/2013 10:21 am Sukyoung Ryu [AbsNull] Revised the AbsNull domain.

11/20/2013 07:52.am Sukyoung Ryu We AbsBase covariantly parameterized by the
cocrete values.
11/14/2013 07:31 pm Sooncheol Won [Domain] Changed the string domain.

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 17/28

N -

This Type in Theory

This-typed methods:
owner types in their parameter types or return types

abstract class AbsBase {
/* partial order */

def <= (that: ThisType): Boolean

/* join */
def + (that: ThisType): ThisType

/* meet */
def <> (that: ThisType): ThisType

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 18/28

N -

This Type in Theory

This-typed methods:
owner types in their parameter types or return types

m Traditional This type

m “declared” type of a receiver
m inexact compile-time type

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 19/28

N -

This Type in Theory

This-typed methods:
owner types in their parameter types or return types

m Traditional This type
m “declared” type of a receiver
m inexact compile-time type

m Our This type

m ‘run-time” type of a receiver
m exact run-time type
m not available but sayable at compile time

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 19/28

N -

This Type in Calculus (TLDI'12)

CoreThisJava, a formal core calculus to support the This type:

® new typing features
m exact class types of the form #C for a class C
m This type variable
m named wildcards of the form </X/> to describe more
equality relationships between exact types
m exact type inference to lessen the programmers’ burden
of using explicit annotations
® new language constructs
m virtual constructors to describe methods with

ThisTyped results
m classesmatch to compare run-time types

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 20/28

N -

This Type in Java (APLAS’13)

ThisJava, an open-source implementation using JastAddJ:

http://plrg.kaist.ac.kr/research/software

m backward compatible
compilation to Java bytecode

m practical
interactions with existing Java features

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 21/28

http://plrg.kaist.ac.kr/research/software

N -

This Type in Type System (FLOPS’14)

m Traditional subtyping cannot support subtyping by
inheritance.

class Point {

int x;
Point(int i) { this.x = i; }
boolean equals(This other) { return this.x == other.x; }

3

class ColorPoint extends Point {
int color;
ColorPoint(int i, int c) { super(i); this.color = c; }
boolean equals(This other) {
return this.x == other.x && this.color == other.color;
¥
}

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 22/28

N -

This Type in Type System (FLOPS’14)

m Traditional subtyping cannot derive the following:

F pt.{x:int,c:int,eq:t—bool } < ut.{x:int,eq:t—bool }

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 23/28

N -

This Type in Type System (FLOPS’14)

m Traditional subtyping cannot derive the following:

F pt.{x:int,c:int,eq:t—bool } < ut.{x:int,eq:t—bool }
m New subtyping can derive the following:

)+ 3Is<ipt.{x:int,c:int,eq:t—bool}.s <:
Jds <ipt.{x:int,eq:t —Dbool}.s

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 23/28

N -

This Type in Type System (FLOPS’14)

m Traditional subtyping cannot derive the following:

F pt.{x:int,c:int,eq:t—bool } < ut.{x:int,eq:t—bool }

m New subtyping can derive the following:
)+ 3Is<ipt.{x:int,c:int,eq:t—bool}.s <:
Jds <ipt.{x:int,eq:t —Dbool}.s

by distinguishing record types put.{/;: 7; fel.ny
and some-record types s <i ut.{;:7; "€} .s explicitly

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 23/28

N -

This Type in Type System (FLOPS’14)

m Record types

w pt {7 (€}
m types of “run-time” objects that have exactly those
members I, b, ..., I,

m exact run-time types

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 24/28

N -

This Type in Type System (FLOPS’14)

m Record types

w pt {7 (€}
m types of “run-time” objects that have exactly those
members I, b, ..., I,

m exact run-time types

m Some-record types
m Is<ipt{l:7 '€ })s
m types of “compile-time” expressions that may evaluate
to objects of record types specializing put.{/;: 7; '€}
m inexact compile-time types

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 24/28

N -

This Type in Type System (FLOPS’14)

o =t | p| al|y]| 7=7 type (revised)
o, = pt{l:1; """} record type (revised)
v on= ds<ia.s some-record type

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 25/28

N -

This Type in Type System (FLOPS’14)

o =t | p| al|y]| 7=7 type (revised)
o, = pt{l:1; """} record type (revised)
v on= ds<ia.s some-record type

Specializing: |A - a <13 where A:={t; €1}

[SPECIALIZING]
n>0, m>0 t¢ A Viel.n: AU{t}F 7 < v
A pt o S <t { o TSR

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 25/28

N -

This Type in Type System (FLOPS’14)

o =t | p| al|y]| 7=7 type (revised)
o, = pt{l:1; """} record type (revised)
v on= ds<ia.s some-record type

Revised subtyping: |A 7 <: v where A:={t; '€~}

[RS-PRIM] [RS-Func] [RS-TVAR]
Arv< T AT < teA
AFp<ip AFT—=7 < v=0 AFt<:t
[RS-RTOR] [RS-RroS] [RS-STOS]
AFa<if AFa<if
AFa<a AFa < ds<if.s AF3ds<ias < ds<ifis

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 26/28

N -

This Type in Type System (FLOPS’14)

m Record types pt.{/;:7; '€t}

m Some-record types s <ipt.{f;:7; "1 "}.s
m Revised subtyping

[RS-RroS] [RS-STOS]
AFa<ip AFa<if
AFa < ds<if.s AFds<ia.s <: ds<if.s

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 27/28

N -

Conclusion

m Supporting ThisTyped methods is an important real-world
problem.

m Adding typing features and language constructs can
support more ThisTyped methods.

m An open-source prototype implementation is available:
http://plrg.kaist.ac.kr/research/software

m Inheritance can be subtyping.

0+ ds<ipt.{x:int,c:int,eq:t—bool}l.s <:
ds < pt.{x:int,eq:t —Dbool}.s

Hyunik Na and Sukyoung Ryu — A New Formalization of Subtyping to Match Subclasses to Subtypes 28/28

http://plrg.kaist.ac.kr/research/software

