
ApplyingTerm Rewriting to Speech Recognition
of Numbers

R. Shostak - November, 2012

Term rewriting is an important area of the branch of
artificial intelligence dealing with automated theorem
proving. In this talk, we discuss its application to speech
recognition grammar generation in Vocera.

The Human Speech Machine

Phonemes – the Atoms of
Speech

 a sunny day

 a rainy day

/r/ /eI/ /n/ /I:/

/s/ /u/ /n/ /I:/

Number of Phonemes in Different Languages

 !Xóõ 112

 English 44

 Mandarin 28

 French 24

 German 24

 Japanese 22

 Hawaiian 13

 Rotokas 11

Rotokas - World’s Simplest Language

Osireitoarei avukava iava ururupavira toupasiveira.

"The old woman's eyes are shut."

• 12 Letters

• 11 Phonemes

• 4000 Speakers

Speech Recognition System

Input Waveform

Recognition Grammar
 SRGS XML- Format:

<rule id=weather>

 a

 <one-of>

 <item> sunny </item>

 <item> rainy </item>

 </one-of>

 day

</rule>

Modified BNF Format:

Weather ::= a Condition day

Condition ::= sunny | rainy

a /L/

day /d/

rainy /r/ /eI/ /n/ /I:/

sunny /s/ /u/ /n/ /I:/

this / / /I / /s/

is /I /

Lexicon (Dictionary)

A Three-State Hidden Markov Model

aij - probability of transition from state i to state j

bi(k) - probability that observed symbol k is emitted from state i

HMM’s for “A Sunny/Rainy Day”

Vocera Command Grammar Fragment

Command ::= CallCommand | MessageCommand

CallCommand ::= Call [Name | PhoneNumber]

Call ::= call | get me

Name ::= doctor smith

 | nurse betty

 | home

 | captain james kirk

 | a cardiologist

 | room 2007

How do you pronounce “2007” in English?

 two thousand seven
 twenty oh seven
 two oh oh seven
 two double oh seven
 two zero zero seven
 two nought nought seven
 two double nought seven
 two double zero seven

Vocera Command Grammar Fragment

Command ::= CallCommand | MessageCommand

CallCommand ::= Call [Name | PhoneNumber]

Call ::= call | get me

Name ::= doctor smith

 | nurse betty

 | home

 | captain james kirk

 | a cardiologist

 | room [two thousand seven | two double oh seven …]

Pronounciations Depend Strongly on the
Language and the Context

 French
 deux mille sept

 deux zéro zéro sept

 vingt zéro sept (for a phone extension)

 Mandarin
 二千零七

 二零零七

 Japanese
 二千七

 弐阡漆

The Problem

 Find a way to quickly compute the set of all
natural pronunciations for a given string of
digits

 Find a way to compute a context-free
grammar that generates pronunciations for all
digit strings of a given length

The Solution

 Number Generating Term Rewriting Systems
(NGTRS)

 Efficient to compute

 Intutitive, easy to verify by inspection

 Easily adapted to different languages

Example of an NGTRS

S(dw) T(d) S(w)

S(d) T(d)

T(0) zero

T(0) oh

T(1) one

T(2) two

 …

T(9) nine

Variables range over strings of digits, and
come in different “flavors”:

d represents a single digit (0 – 9)

n represents a single non-zero digit

w represents a non-empty string of digits

wn represents a string of n digits

Xd represents a digit other than d

Constants are the members of:

• The set D = {0, …, 9} of digits

• A set P of pronunciation symbols

 such as “nine”, “oh”, “twenty”

Operators consist of:

• A set of uninterpreted function symbols that map D+ P+

S is the start symbol

• Concatenation (represented implicitly by juxtiposition)

Simple NGTRS Example

S(dw) T(d) S(w)

S(d) T(d)

T(0) zero

T(0) oh

T(1) one

T(2) two

 …

T(9) nine

Given a natural number q
represented by a string q1q2 … qk

of digits, we say that a string p
of pronunciation symbols is a
pronunciation of q iff

 S(q1q2…q,)
+ p

Simple NGTRS Example

S(dw) T(d) S(w)

S(d) T(d)

T(0) zero

T(0) oh

T(1) one

T(2) two

 …

T(9) nine

 S(2007)

T(2) S(007)

 two S(007)

 two T(0) S(07)

 two oh S(07)

 two oh T(0) S(7)

 two oh oh T(7)

 two oh oh seven

Example using “double”

S(dw) S(d) S(w)
S(wd) S(w) S(d)
S(dd) double T(d)
S(d) T(d)
T(0) zero
T(0) oh
T(1) one
T(2) two

 …
T(9) nine

 S(2007)

 S(2) S(007)

 S(2) S(00) S(7)

 S(2) double T(0) S(7)

 S(2) double oh S(7)

 …

 two double oh seven

Constraints:

• Left-hand sides of rules must consist of a single function symbol term

• Every variable on the left-hand side must occur exactly once on the right-hand side.

 ; Room Number Generation Rules for North American English

 ; For numbers with > 10 digits, we demand that they be spoken digit by digit.
 S(y11) => G(y11)
 G(d w) => T(d) G(w)
 G(d) => T(d)

 ; For numbers with <= 10 digits, we support natural pronunciation.
 S(x10) => L(x10)
 L(w) => T(w)
 L(w 0 0 0) => T(w) "thousand"
 L(w 0 0) => T(w) "hundred"

 T(w d1 d2) => T(w) T(d1 d2)
 T(d1 d2 d3 w) => T(d1 d2) T(d3 w)
 T(d1 d2) => T(d1) T(d2)
 T(1 0) => "ten"
 T(1 1) => "eleven"
 T(1 2) => "twelve"
 T(1 3) => "thirteen"
 T(1 4) => "fourteen"
 T(1 5) => "fifteen"
 T(1 6) => "sixteen"
 T(1 7) => "seventeen"
 T(1 8) => "eighteen"
 T(1 9) => "nineteen"
 T(2 0) => "twenty"
 T(2 n) => "twenty" T(n)
 T(3 0) => "thirty"
 T(3 n) => "thirty" T(n)
 T(4 0) => "forty"
 T(4 n) => "forty" T(n)
 T(5 0) => "fifty"
 T(5 n) => "fifty" T(n)
 T(6 0) => "sixty"
 T(6 n) => "sixty" T(n)
 T(7 0) => "seventy"
 T(7 n) => "seventy" T(n)
 T(8 0) => "eighty"
 T(8 n) => "eighty" T(n)
 T(9 0) => "ninety"
 T(9 n) => "ninety" T(n)
 T(0) => "[zero oh]"
 T(1) => "one"
 T(2) => "two"
 T(3) => "three"
 T(4) => "four"
 T(5) => "five"
 T(6) => "six"
 T(7) => "seven"
 T(8) => "eight"
 T(9) => "nine"

NGTRS used for room
numbers in the Vocera
System

NG TRS for Japanese
S(0w) S(w)

S(nw) T(nw)

T(10) 十

T(1n) 十T(n)

T(x1d) T(x1) T(1d)

T(100) 百

T(10n) 百 T(n)

T(1n0) 百 T(n0)

T(1n1n2) 百 T(n1n2)

T(x1d1d2) T(x1) T(1d1d2)

T(1000) 千

T(100n) 千T(n)

T(10n0) 千T(n0)

T(10n1n2) 千T(n1n2)

T(1n00) 千 T(n00)

T(1n10n2) 千 T(n10n2)

T(1n1n20) 千 T(1n1n20)

T(1n1n2n3) 千 T(n1n2n3)

T(x1d1d2d3) T(x1) T(1d1d2d3)

T(0) 零

T(1) 一

T(2) 二

T(3) 三

 …

T(9) 九

 S(2007)

 T(2007)

 T(2) T(1007)

 二千T(7)

 二千七

NG TRS for Mandarin
S(0w) S(w)

S(nw) T(nw)

T(10) 十

T(x10) T(x1) 十

T(n1n2) T(n10)T(n2)

T(n00) T(n) 百

T(n10n2) T(n100) 零T(n2)

T(n1n20) T(n100) T(n2) 十

T(n1n2n3) T(n1n20)T(n3)

T(n000) T(n) 千

T(n100n2) T(n1000) 零 T(n2)

T(n10n20) T(n100n2) 十

T(n10n2n3) T(n10n20) T(n3)

T(n1n200) T(n1000) T(n2) 百

T(n1n20n3) T(n1n200) 零 T(n3)

T(n1n2n30) T(n1n200) T(n3) 十

T(n1n2n3n4) T(n1n2n30) T(n4)

T(0) 零

T(1) 一

T(2) 二

T(3) 三

 …

T(9) 九

 S(2007)

 T(2000) 零 T(7)

 T(2) 千零 T(7)

 二千零 T(7)

 二千零七

Constructing a Grammar from an NGTRS

 Speech apps often require grammars for recognizing
all phone numbers, tracking numbers, etc. of a
certain length

 Such grammars are most often constructed by hand,
and are often buggy or incomplete

 Given an NGTRS that generates pronunciations for
such numbers, one can mechanically generate an
equivalent CF grammar

Grammar Construction Algorithm

Construct a grammar GN from NGTRS N:

 Terminal symbols are the pronunciation symbols of N

 Nonterminal symbols are certain terms of N

 The start symbol is S(d1..dk) where

 k is the # of digits in the numbers whose
pronunciations are to be generated

 Additional nonterminal symbols and rules are added
using the following closure operation:

Adding Rules to GN

 For each nonterminal symbol T of GN
and each rule L R of N such that T
and L are unifiable with m.g.u. s :

 Add the functional terms in Rs as new
nonterminal symbols

 Add a new rule T Rs

Example with Two-Digit Numbers

S(dw) T(d) S(w)

S(d) T(d)

T(0) zero

T(1) one

T(2) two

 …

T(9) nine

S(d1d2) T(d1) S(d2)

S(d2) T(d2)

T(d1) zero

T(d1) one

 …

T(d1) nine

T(d2) zero

 …

 T(d2) nine

N Gn

Claim

 The language of GN is the set of
pronunications of k-digit numbers
generated by N

Proof Outline

 Need to show that:

1) Each terminal string in the language of GN is a
pronunciation of some k-digit number q in N

2) Each pronunciation of a k-digit number in N is a
terminal string in the language of GN

3) (Lifting Lemma) Each term of N derivable from
an instance of S(d1d2 … dk) is an instance of a
derivable string in GN

The Language of GN Consists of Pronunications of N

To Show: Each terminal string s of GN is a pronunciation of a k-digit number in N

Lemma 1: Each derivable string s of GN, considered as a term of N, is derivable in N from
 S(d1d2…dk)

Lemma 2: If t * u in N, then for each instance ua of u, there is an
 instance t’ of t such that t’a * ua

(Proofs by induction on the length of the derivations).

From Lemma 1, S(d1…dk) * s in N. Applying Lemma 2, there exists a ground
instance S(q1…qk) of S(d1…dk) with S(q1…qk) * s. Hence s is a

pronunciation of the k-digit number q1…qk.

The Language of GN Contains All Pronuniciations of N

To Show: Each pronunication of N is a terminal string s of GN

In particular, each pronunciation string s for a k-digit number q1…qk in N must be an

instance of a derivable string in GN. But since s consists only of pronunciation
symbols, s must be a terminal string of GN.

Lemma (Lifting): Each term of N derivable from an instance of S(d1… dk) is an
 instance of a derivable string in GN.

(Proof by induction on the length of derivations)

 サンキュー

 谢谢你

 Hey! Thanks, man!

