
ApplyingTerm Rewriting to Speech Recognition of Numbers

R. Shostak - November, 2012

Term rewriting is an important area of the branch of artificial intelligence dealing with automated theorem proving. In this talk, we discuss its application to speech recognition grammar generation in Vocera.

The Human Speech Machine

Phonemes – the Atoms of Speech

	I. Ead	I		<u>оо</u> к		UI 1000		IƏ 1 <u>ere</u>	ei DAY		John & Sarah Free Materials 1996
	е _{м<u>е</u>м}	ə <u>A</u> meri		31 <u>'or</u> d		DI Ort		JƏ Tour	ЭІ _{воу}		оо
	$æ_{c_{\underline{A}}T}$			II ART		D 10т		2 ə V <u>ear</u>	ai MY		ОD _{нош}
I) ig	b BED	t TIME		1	t <u>CH</u> UR	1		k	_	g
1	f ve	V	HINK	Č TH	5	S SIX		<u>z</u> oo		ſ	3 CASUAL
n	n ILK	n No	n 1 SING		1			<u>1</u> <u>R</u> EAD		V	j <u>y</u> es

a sunny day /s/ /u/ /n/ /I:/

a rainy day /r/ /eI/ /n/ /I:/

Number of Phonemes in Different Languages

- Xóõ
- English
- Mandarin
- French
- German
- Japanese
- Hawaiian
- Rotokas

Rotokas - World's Simplest Language

- 12 Letters
- 11 Phonemes
- 4000 Speakers

Osireitoarei avukava iava ururupavira toupasiveira. "The old woman's eyes are shut."

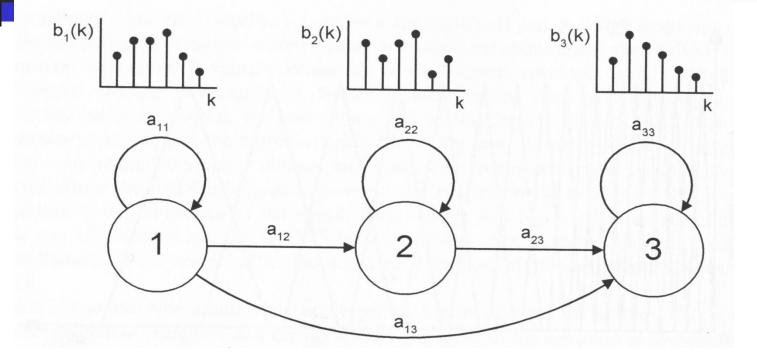
Speech Recognition System Grammar Lexicon Input Waveform 40 20 Feature Pattern Sentence 0 > Extraction Recognition Hypothesis -20 -40 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0 time/s Phonetic Model

Recognition Grammar

Modified BNF Format:

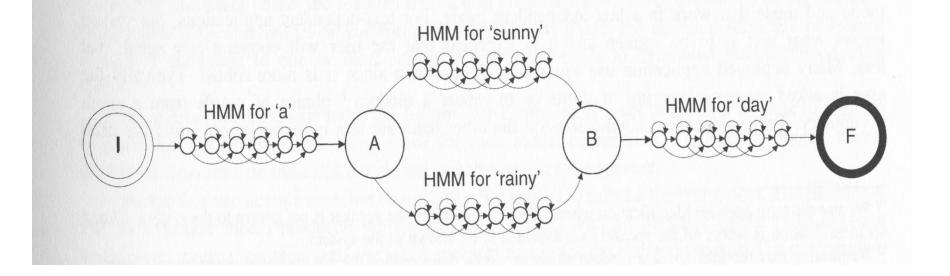
Weather ::= a Condition day

Condition ::= sunny | rainy


SRGS XML- Format:

<rule id=weather> a <one-of> <item> sunny </item> <item> rainy </item> </one-of> day </rule>

Lexicon (Dictionary)


a /A/ day /d/ rainy /r/ /eɪ/ /n/ /ɪ:/ sunny /s/ /u/ /n/ /ɪ:/ this /ð//I//s/ is /I/

A Three-State Hidden Markov Model

- a_{ii} probability of transition from state i to state j
- b_i(k) probability that observed symbol k is emitted from state i

HMM's for "A Sunny/Rainy Day"

Vocera Command Grammar Fragment

- Command ::= CallCommand | MessageCommand
- CallCommand ::= Call [Name | PhoneNumber]
- Call ::= call | get me

Name ::= doctor smith | nurse betty | home | captain james kirk | a cardiologist | room 2007

How do you pronounce "2007" in English?

- two thousand seven
- twenty oh seven
- two oh oh seven
- two double oh seven
- two zero zero seven
- two nought nought seven
- two double nought seven
- two double zero seven

Vocera Command Grammar Fragment

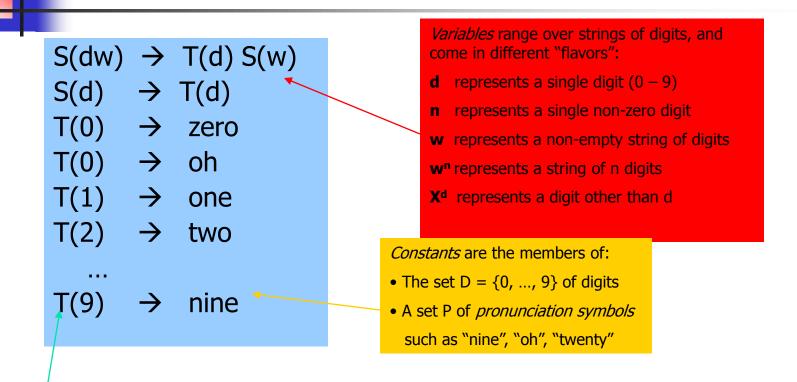
- Command ::= CallCommand | MessageCommand
- CallCommand ::= Call [Name | PhoneNumber]
- Call ::= call | get me

Name ::= doctor smith | nurse betty | home | captain james kirk | a cardiologist | room [two thousand seven | two double oh seven ...]

Pronounciations Depend Strongly on the Language and the Context

French

- deux mille sept
- deux zéro zéro sept
- vingt zéro sept (for a phone extension)
- Mandarin
 - 二千零七
 - 二零零七
- Japanese
 - 二千七
 - 弐阡漆



- Find a way to quickly compute the set of all natural pronunciations for a given string of digits
- Find a way to compute a context-free grammar that generates pronunciations for all digit strings of a given length

The Solution

- Number Generating Term Rewriting Systems (NGTRS)
 - Efficient to compute
 - Intuitive, easy to verify by inspection
 - Easily adapted to different languages

Example of an NGTRS

Operators consist of:

- A set of uninterpreted function symbols that map $D^+ \rightarrow P^+$ S is the *start symbol*
- Concatenation (represented implicitly by juxtiposition)

Simple NGTRS Example

 $S(dw) \rightarrow T(d) S(w)$ $S(d) \rightarrow T(d)$ $T(0) \rightarrow zero$ $T(0) \rightarrow oh$ T(1) \rightarrow one T(2) \rightarrow two nine

Given a natural number q represented by a string $q_1q_2 \dots q_k$ of digits, we say that a string p of pronunciation symbols is a *pronunciation* of q iff

 $S(q_1q_2...q_{\prime}) \rightarrow^+ p$

Simple NGTRS Example

S(dw)	\rightarrow	T(d) S(w)
S(d)	\rightarrow	T(d)
T(0)	\rightarrow	zero
T(0)	\rightarrow	oh
T(1)	\rightarrow	one
T(2)	\rightarrow	two
T(9)	\rightarrow	nine

- S(2007)
- →T(2) S(007)
- → two S(007)
- → two T(0) S(07)
- \rightarrow two oh S(07)
- \rightarrow two oh T(0) S(7)
- \rightarrow two oh oh T(7)
- \rightarrow two oh oh seven

Example using "double"

S(dw)	\rightarrow	S(d) S(w)
S(wd)	\rightarrow	S(w) S(d)
S(dd)	\rightarrow	double T(d)
S(d)	\rightarrow	T(d)
T(0)	\rightarrow	zero
T(0)	\rightarrow	oh
T(1)	\rightarrow	one
T(2)	\rightarrow	two
T(9)	\rightarrow	nine

S(2007) $\rightarrow S(2) S(007)$ $\rightarrow S(2) S(00) S(7)$ $\rightarrow S(2) double T(0) S(7)$ $\rightarrow S(2) double oh S(7)$

 \rightarrow two double oh seven

. . .

Constraints:

- Left-hand sides of rules must consist of a single function symbol term
- Every variable on the left-hand side must occur exactly once on the right-hand side.

-	
; For numbers with > 10 digits, we demand that they be spoken digit by	
S(y11)	=>
G(d w)	=>
G(d)	=>
· Fax sumbars with a 10 disits we support patrical propunsistion	
; For numbers with ≤ 10 digits, we support natural pronunciation.	_ \
S(x10)	=> =>
L(w) L(w 0 0 0)	=>
L(w 0 0)	=>
E(W 0 0)	
T(w d1 d2)	=>
T(d1 d2 d3 w)	=>
T(d1 d2)	=>
T(10)	=>
T(1 1)	=>
T(1 2)	=>
T(1 3)	=>
T(1 4)	=>
T(1 5)	=>
T(1 6)	=>
T(1 7)	=>
T(1 8)	=>
T(1 9)	=>
T(2 0)	=>
T(2 n)	=>
T(3 0)	=>
T(3 n)	=>
T(4 0)	=>
T(4 n)	=>
T(5 0) T(5 n)	=>
T(6 0)	=> =>
T(6 n)	=>
T(7 0)	=>
T(7 n)	=>
T(8 0)	=>
T(8 n)	=>
T(9 0)	=>
T(9 n)	=>
T(0)	=>
T(1)	=>
T(2)	=>
T(3)	=>
T(4)	=>
T(5)	=>
T(6)	=>
T(7)	=>
T(8)	=>
T(9)	=>

; Room Number Generation Rules for North American English

NGTRS used for room numbers in the Vocera System

G(y11) T(d) G(w) T(d)

L(x10) T(w)

"thirty" "thirty" T(n)

"forty" "forty" T(n)

"fifty" "fifty" T(n) "sixty" "sixty" T(n) "seventy" "seventy" T(n) "eighty" "eighty" T(n) "ninety" "ninety" T(n) "[zero oh]" "one" "two" "three" "four" "five" "six" "seven" "eight" "nine"

T(w) "thousand" T(w) "hundred"

T(w) T(d1 d2) T(d1 d2) T(d3 w) T(d1) T(d2) "ten" "eleven" "twelve" "thirteen" "fourteen" "fifteen" "sixteen" "sixteen" "seventeen" "nineteen" "twenty" "twenty" T(n)

NUMBERS IN JAPANESE

0	0 zero	
_		

— 1 ichi

+-	11 juu ichi
+=	12 juu ni
+=	13 juu san

- 2 ni
- E 3 san
- 29 4 shi
- 五 5 90
- 六 6 rok

- 七 7 nana

八 8 achi

九 9 kyuu

+ 10 juni

_____ 20 ni-juu

- Ξ+ 30 san-juu
 - 四十 40 shi-juu

- A 100 hyaku
- ∓ 1.000 sen
 - 万 10.000 man
- 十四 14 juu shi 百万 1.000.000 hyaku man
 - 億 100.000.000 oku
- _____ 21 ni-juu ichi 3 1.000.000.000 choo

www.alfabetos.net

NG TRS for Japanese

S(0w)	\rightarrow	S(w)
S(nw)	\rightarrow	T(nw)
T(10)	\rightarrow	+
T(1n)	\rightarrow	+T(n)
T(x ¹ d)	\rightarrow	T(x ¹) T(1d)
T(100)	\rightarrow	百
T(10n)	\rightarrow	百 T(n)
T(1n0)	\rightarrow	百 T(n0)
$T(1n_1n_2)$	\rightarrow	百 T(n ₁ n ₂)
$T(x^1d_1d_2)$	\rightarrow	$T(x^{1}) T(1d_{1}d_{2})$
T(1000)	\rightarrow	Ŧ
T(100n)	\rightarrow	千T(n)
T(10n0)	\rightarrow	千T(n0)
$T(10n_1n_2)$	\rightarrow	千 T(n₁n₂)
T(1n00)	\rightarrow	千 T(n00)
$T(1n_10n_2)$	\rightarrow	千 T(n ₁ 0n ₂)
$T(1n_1n_20)$	\rightarrow	$+ T(1n_1n_20)$
$T(1n_1n_2n_3)$	$) \rightarrow$	+ T(n ₁ n ₂ n ₃)
$T(x^1d_1d_2d_3)$	3)→	$T(x^{1}) T(1d_{1}d_{2}d_{3})$

S(2007)
→ T(2007)
→ T(2) T(1007)
→ 二千T(7)
→二千七

NG TRS for Mandarin

 $S(0w) \rightarrow$ S(w) T(0) → 零 S(nw) \rightarrow T(nw) $T(1) \rightarrow$ $T(10) \rightarrow +$ $T(x^{1}0) \rightarrow T(x^{1}) +$ $T(2) \rightarrow \equiv$ $T(n_1n_2) \rightarrow T(n_10)T(n_2)$ $T(3) \rightarrow \Xi$ T(n00) → T(n) 百 $T(n_10n_2)$ → $T(n_100)$ 零 $T(n_2)$. . . $T(n_1n_20) \rightarrow T(n_100) T(n_2) +$ T(9) → 九 $T(n_1n_2n_3) \rightarrow T(n_1n_20)T(n_3)$ S(2007) T(n000) → T(n) 千 $T(n_100n_2)$ → $T(n_1000)$ 零 $T(n_2)$ → T(2000) 零 T(7) $T(n_10n_20) \rightarrow T(n_100n_2) +$ $T(n_1 0 n_2 n_3) \rightarrow T(n_1 0 n_2 0) T(n_3)$ → T(2) 千零 T(7) $T(n_1n_200) \rightarrow T(n_1000) T(n_2) 百$ → 二千零 T(7) $T(n_1n_20n_3)$ → $T(n_1n_200)$ 零 $T(n_3)$ $T(n_1n_2n_30) \rightarrow T(n_1n_200) T(n_3) +$ → 二千零七 $T(n_1n_2n_3n_4) \rightarrow T(n_1n_2n_30) T(n_4)$

Constructing a Grammar from an NGTRS

- Speech apps often require grammars for recognizing all phone numbers, tracking numbers, etc. of a certain length
- Such grammars are most often constructed by hand, and are often buggy or incomplete
- Given an NGTRS that generates pronunciations for such numbers, one can mechanically generate an equivalent CF grammar

Grammar Construction Algorithm

Construct a grammar G_N from NGTRS N:

- Terminal symbols are the pronunciation symbols of N
- Nonterminal symbols are certain terms of N
- The start symbol is S(d₁...d_k) where
 - k is the # of digits in the numbers whose pronunciations are to be generated
- Additional nonterminal symbols and rules are added using the following *closure* operation:

Adding Rules to G_N

- For each nonterminal symbol T of G_N and each rule L \rightarrow R of N such that T and L are *unifiable* with m.g.u. σ :
 - Add the functional terms in R_σ as new nonterminal symbols
 - Add a new rule T \rightarrow R σ

Example with Two-Digit Numbers

G_n

S(dw)	\rightarrow	T(d) S(w)
S(d)	\rightarrow	T(d)
T(0)	\rightarrow	zero
T(1)	\rightarrow	one
T(2)	\rightarrow	two
T(9)	\rightarrow	nine

Ν

 $S(d_1d_2) \rightarrow T(d_1) S(d_2)$ $S(d_2) \rightarrow T(d_2)$ $T(d_1) \rightarrow zero$ $T(d_1) \rightarrow$ one . . . $T(d_1) \rightarrow nine$ $T(d_2) \rightarrow$ zero . . .

 $T(d_2) \rightarrow nine$

Claim

The language of G_N is the set of pronunications of k-digit numbers generated by N **Proof Outline**

Need to show that:

- 1) Each terminal string in the language of G_N is a pronunciation of some k-digit number q in N
- 2) Each pronunciation of a k-digit number in N is a terminal string in the language of G_N
- 3) (Lifting Lemma) Each term of N derivable from an instance of $S(d_1d_2 \dots d_k)$ is an instance of a derivable string in G_N

The Language of G_N Consists of Pronunications of N

To Show: Each terminal string s of G_N is a pronunciation of a k-digit number in N

Lemma 1: Each derivable string s of G_N , considered as a term of N, is derivable in N from $S(d_1d_{2...}d_k)$

Lemma 2: If t \rightarrow^* u in N, then for each instance u α of u, there is an instance t' of t such that $t'\alpha \rightarrow^* u\alpha$

(Proofs by induction on the length of the derivations).

From Lemma 1, $S(d_1...d_k) \rightarrow * s$ in N. Applying Lemma 2, there exists a ground instance $S(q_1...q_k)$ of $S(d_1...d_k)$ with $S(q_1...q_k) \rightarrow * s$. Hence s is a pronunciation of the k-digit number $q_1...q_k$.

The Language of G_N Contains All Pronuniciations of N

To Show: Each pronunication of N is a terminal string s of G_N

Lemma (Lifting): Each term of N derivable from an instance of $S(d_1...d_k)$ is an instance of a derivable string in G_N .

(Proof by induction on the length of derivations)

In particular, each pronunciation string s for a k-digit number $q_1...q_k$ in N must be an instance of a derivable string in G_N . But since s consists only of pronunciation symbols, s must be a terminal string of G_N .

谢谢你 Hey! Thanks, man!