
Toward Practical Application of Formal Methods
 in Software Lifecycle Processes

November 14, 2012

Mario Tokoro

Research Supervisor, JST/CREST DEOS Project

Sony Computer Science Laboratories, Inc.

Keynote Speech at ICFEM 2012, Kyoto

Background
• Large Information Systems are continuously used for a long period of time,

while constantly being modified due to unexpected changes in, e.g.,
– Service Objectives
– Users’ Requirements
– Evolving Technologies
– Regulations and Standards

• These systems include externally-developed modules, and are often
connected to external systems, and might run on unknown environments
(clouds)

• The development and modification of a system is performed concurrently
with the system’s operation, and it is almost impossible to view the life of
the system as a temporal and spatial concatenation of static and isolated
systems.

• Existing software lifecycle processes can hardly cope with these situations,
whereas, achieving dependability in such an ever-changing system has
become one of the most demanding system issues to be solved.
 November 14, 2012 ©Mario Tokoro 2

Background
• Large Information Systems are continuously used for a long period of time,

while constantly being modified due to unexpected changes in, e.g.,
– Service Objectives
– Users’ Requirements
– Evolving Technologies
– Regulations and Standards

• These systems include externally-developed modules, and are often
connected to external systems, and might run on unknown environments
(clouds)

• The development and modification of a system is performed concurrently
with the system’s operation, and it is almost impossible to view the life of
the system as a temporal and spatial concatenation of static and isolated
systems.

• Existing software lifecycle processes can hardly cope with these situations,
whereas, achieving dependability in such an ever-changing system has
become one of the most demanding system issues to be solved.
 November 14, 2012 ©Mario Tokoro 3

Changing Environments
• Service objectives
• Users’ requirements
• Available technologies
• Standards
• Regulations, etc…

Consistency throughout Lifecycle

$ # !

Specification Implementation

Output

* $ & * # % !

Aim

Indeterminacy Problem

November 14, 2012 ©Mario Tokoro 4

is hard to be kept

Our Approach

• An approach to ever-changing systems
– the boundary

– Functions

– structures

– interfaces

• We need to consider the Indeterminacy Problem

• Thus, we need to give up completeness

• We view such system as Open Systems (than
Closed systems).

November 14, 2012 ©Mario Tokoro 5

Closed Systems vs. Open Systems

Subsystem

Closed Systems Open Systems

• The boundary of the system changes over time.
• Interaction with the outer world and the system

functions change over time.
• The subsystems or components of the system

and their relationship change over time.

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

• The boundary of the system is definable.
• Interaction with the outer world is limited,

and the system functions are fixed.
• The subsystems or components of the system

are fixed and their relationship does not
change over time.

Subsystem

Subsystem

Subsystem Subsystem

November 14, 2012 ©Mario Tokoro 6

Open Systems Dependability

• A system whose function, structure and boundary keep changing
over time is called an open system in contrast to a closed system
whose function, structure, and boundary stay the same through the
life of the system.

• We define Open Systems Dependability as the property of a system
such that it has the ability
– to continuously remove problem factors which may cause

failures,
– to take a quick and appropriate action when a failure occurs to

minimize damage,
– to safely and continuously provide the services expected by

users as much as possible, and
– to maintain accountability for the system operations and

processes.

November 14, 2012 ©Mario Tokoro 7

DEOS Process

• DEOS process implements Open Systems Dependability
• DEOS process treats the initial development, the

modification of a system, and system operation as an
integrated iterative lifecycle process.

• It includes
1. Change Accommodation Cycle to accommodate requirement

changes in service objectives and environments
2. Failure Response Cycle to respond quickly and properly to

failures
3. D-Case, which is an extension of Assurance Cases, for

stakeholders to achieve consensus on dependability issues,
and

4. The DEOS architecture which provides a database called D-
ADD to retain D-Cases and an application-oriented runtime
environment for flexible monitoring and control functions.
 November 14, 2012 ©Mario Tokoro 8

The DEOS Process
 Iterative process

• Change Accommodation Cycle to accommodate requirement changes in
service objectives and environments

• Failure Response Cycle to respond quickly and properly to failures
 Agreement Description Database (D-ADD) including D-Case plays the key roles

of consensus building and of integration of development and operation phases

November 14, 2012 ©Mario Tokoro 9

Achieving Stakeholders’ Agreement and
Accountability through D-Case

• D-Case is an argumentation method/tool
extended from assurance cases to be used in
the development and operation phases

• We use the structural notation called GSN
(Goal Structuring Notation) with Goal,
Strategy, Context, Evidence, and
Undeveloped Nodes

• We added Monitor Node to glue the
development and operation phases

• We added External Node to incorporate
externally developed modules and to use
external services

• Description in Natural Language, Pseudo
(Controlled) Natural Language such as SBVR,
or more formal way in Agda

• Will be used to determine the level of
dependability (like SIL or ASIL)

November 14, 2012 ©Mario Tokoro 10

Coping with Externally-Developed Modules
and Connection to External Systems

• Off-the-shelf modules

• Legacy codes

• External services through
networks

• Systems may run in unknown
environment such as clouds

• D-Case Reverse Engineering in
addition to Forward Engineering

November 14, 2012 ©Mario Tokoro 11

d（A,B) assures
that B meets A’s
dependability
requirements

B A

C
d（A,C) assures that
subsystem C meets
A’s dependability
requirements

System A

System C

System B

d（B) to assure
that B is
dependable

d（A) to assure
that A is
dependable

d（C) to assure
that C is
dependable

DEOS Architecture
A DEOS architecture supports the execution of the DEOS process
 Agreement Description Database (D-ADD) which retains all the D-Case descriptions,
 Tools to support requirements management,
 Tools to develop dependable software (D-DST)
 Execution Environment to execute programs, to monitor and record the states of

programs, and to respond to failures (D-RE)

November 14, 2012 ©Mario Tokoro 12

Binding Development and Operation Phases

• Monitor Node in D-Case designates
monitoring the operation and logging
data

• D-Script describes responsive actions
to be taken when operation shows a
sign of failure or when operation fails

• D-Script Engine is designed to provide
flexible yet secure man-machine
interface in execution of D-Script

• D-ADD retains all the D-Case
descriptions historically with the
reasons why such decisions have been
made

• D-ADD contributes, when a system is to
be modified, to achieve stakeholders’
agreement

• D-ADD contributes, when a system fails,
to analyze causes of failures

November 14, 2012 ©Mario Tokoro 13
Hardware/TCB

D-Visor

Linux

D-Box D-System
Monitor OS

D-Application
Monitor

D-Script
Engine

D-Application Manager

Programs

D-Script D-Case
D-Script

Agreement
Description
Database

D-ADD Consists of 3 Layers

Fundamental Tools Layer

Support of Consensus Building
Contract Development

Monitoring

Models Layer

Fundamental Data
Consensus Building Toulmin

Meeting
･･･

Organization

D-Case

Repository Layer

Graph DB
Document DB

Key/Value Store

• Fundamental Tools Layer which provide user interface tools

• Model Layer which associates agreement graph with D-Cases and evidences
including documents and logged data

• Repository Layer which provides the storage

November 14, 2012 ©Mario Tokoro 14

How can we apply Formal Methods
 in Software Lifecycle Processes

for Open Systems?

November 14, 2012 ©Mario Tokoro 15

Formal D-Case for Rigorous V&V (1)

• Verification and Validation (Barry Boehm):

– Verification : Are we building the system right?
w.r.t. given, specified criteria: spec, operational conditions, …

– Validation: Are we building the right system?
w.r.t. “Real World” : user needs, actual environment, …

• Our thesis on D-Case:

A formal D-Case ≈ ⟨ a formal theory , a formal proof in it ⟩
Cf. Y. Kinoshita and M. Takeyama, keynote speech to be given in Safety-
critical Software Symposium 2013.

– Formal theory codifies the agreed vocabulary and reasoning principles
about the system, environment and processes.

– Formal proof represents the verification argument
of the agreed formal claim that specifies what is “right”

Proof assistants, such as Agda, support its construction/checking
November 14, 2012 ©Mario Tokoro 16

Formal D-Case for Rigorous V&V (2)

• Rigor in V&V enabled by formal D-Case:

Rigor in Verification: Communication through a formal D-
Case

Rigor in Validation: Requirements for a formal D-Case
Requirements for a positive answer to “Are we verifying the
system right w.r.t. the current best practice?”

• But beware! We can never say we built a 100% right system.

∵ its rightness is w.r.t. the real world.

Validation is inherently a vaguely defined action that ideally is never
ending (open systems viewpoint).

• Yet we can say something definite about the
conformance to the requirements of best practices.
Proof assistants, such as Agda, help here, too.

November 14, 2012 ©Mario Tokoro 17

Checking, construction, generation of D-Cases
as formal proofs using Agda proof assistant

Graphical edit,
domain-expert review

using D-Case Editor

D-Case/Agda (“D-Case in Agda” Verification Tool)
supports checking/construction of formal D-Cases

November 14, 2012 ©Mario Tokoro 18

Applying Formal Methods to Open Systems

$ # !

Specification Implementation

Output

* $ & * # % !

Aim

November 14, 2012 ©Mario Tokoro 19

Repetitive Application of Formal D-Case to an open system for
More Rigorous in Verification and in Validation

User Interfaces for Formal Methods are getting more important

Verification Validation

About the DEOS Project
Dependability Engineering for Open Systems

• A project under Japan Science and Technology Agency (JST)

• Roughly $60M in total over 7.5 years started in 2006

• 5 teams selected in 2006 and 4 teams in 2008

• 17 professors, 8 researchers from national laboratories, more
than 40 post-docs, and many graduate students have worked
together.

• R&D Center (DEOSC) was established in 2007 for supporting
development, integrating codes developed by the teams, and
promoting the use.

November 14, 2012 ©Mario Tokoro 20

• The DEOS process is defined
• Prototype Architectures have been

demonstrated
• D-Cases are described for a few

systems and more
• A book is published from CRC

Press in October
• Other books are being written,

e.g., on D-Case, D-ADD, D-Script…

• We are promoting international

standardization (see next pages).

November 14, 2012 ©Mario Tokoro 21

Current Status

Standardization (1)

Purpose
 Sharing the concepts of Open Systems Dependability

 Provide guidelines for IT systems for social infrastructures

 Achieving common use of tools

We have been active in IEC and ISO standardization efforts
 IEC TC56 (Dependability)

• The concept of Open Systems Dependability was submitted as

NWIP to IEC TC56 in September 2012

• Participating as experts: IEC60300-1(Dependability management),

IEC62741(Dependability case), and

IEC62628(Guidance on software aspects of dependability)

 ISO/IEC JTC1/SC7 (Software and systems engineering)

• Standards for methodology of consensus building, achieving

accountability and process

• ISO/IEC15026 Systems and Software Assurance (Co-editor)

November 14, 2012 ©Mario Tokoro 22

Standardization (2)

Purpose
 To contribute to Users

We have been working with The Open Group:
 To contribute to TOGAF 9.1 and/or TOGAF Next Generation wrt

Dependability

 Importance of Change Management (the notion of Open Systems

Dependability) for achieving Dependability

 Necessity of Integrating Development and Operation into a single

iterative process (the DEOS Process)

 Importance of Stakeholders’ Agreement and Accountability

Achievement through an assurance case (D-Case with RTES

“Dependability Through Assuredness”) and its history

 D-Case Tools, D-ADD Implementations, etc.

November 14, 2012 ©Mario Tokoro 23

We much appreciate your support and participation.

For more information, please send e-mail to
mario.tokoro@csl.sony.co.jp

Thank you

JST/DEOS Center
http://www.dependable-os.net/index-e.html

JST/DEOS Project

http://www.jst.go.jp/kisoken/crest/en/category/area04-4.html

Sony Computer Science Laboratories, Inc.

http://www.sonycsl.co.jp

November 14, 2012 ©Mario Tokoro 24

mailto:mario.tokoro@csl.sony.co.jp
http://www.dependable-os.net/index-e.html
http://www.dependable-os.net/index-e.html
http://www.dependable-os.net/index-e.html
http://www.dependable-os.net/index-e.html
http://www.dependable-os.net/index-e.html
http://www.dependable-os.net/index-e.html
http://www.jst.go.jp/kisoken/crest/en/category/area04-4.html
http://www.jst.go.jp/kisoken/crest/en/category/area04-4.html
http://www.jst.go.jp/kisoken/crest/en/category/area04-4.html
http://www.sonycsl.co.jp/

