Performance Evaluation of Workflows Using Continuous Approximation of Discrete Sets and Probability Distributions

Kunihiko Hiraishi School of Information Science Japan Advanced Institute of Science and Technology

To make information systems dependable,

- Qualitative \Rightarrow Verification of logical correctness
 - Formal verification (e.g., Model checking, Theorem proving)
- Quantitative ⇒ Guaranteeing performance index
 - Performance modeling (e.g., queuing theory)

Workflows / Business Processes

Activities in the Real World

Workflows integrate people, systems and information

Workflow: The automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules. (Def. by WFMC)

Performance Evaluation of Workflows

- Each workflow is a template of a business process.
- Many instances of workflows are running simultaneously in the information system.
- Optimal resource (people, machines, time, ...) assignment is a crucial issue.

Example: Review Process of an Academic Journal

Example: Review Process of an Academic Journal

- Given:
 - Workflow
 - Statistical data on paper submission
 - An upper bound of the number of papers each associate editor can handle
- Find:
 - The optimal number of associate editors
- Method:
 - Generalized Stochastic Petri net
 - Approximation by Extended Continuous Petri Nets

Analysis of Stochastic Petri Nets

Statistics

- Duration between submission and final judgment
 - Accept at 1st review: 2.4 month
 - Reject at 1st review: 3.9 month
 - Accept at 2nd review: 5.9 month
 - Reject at 2nd review: 6.8 month
- Ratio of acceptance and rejection
 - Accept at 1st review: 0.065
 - Reject at 1st review: 0.687
 - Accept at 2nd review: 0.238
 - Reject at 2nd review: 0.010
- Average number of paper submissions: 16.9 / month

GSPN Model

PAPER POOL is necessary for the model to have finite state space.

Tool (DSPNexpress)

Result

N	#states	CPU Time (sec.)	#Waiting papers	p(#paper pool = 0)
3	2926	0.3	10.18	0.30
4	8866	0.7	5.94	0.094
5	23023	2.3	1.99	0.013
6	53053	6.2	0.63	0.0021
7	110968	15	0.21	0.00049
8	213928	29	0.08	0.00020
9	384098	58	0.03	0.00010

Itanium2 1.6GHz/9MBCache, 16GB Memory

1 token = 16.9 papers

 $N = 6 \Rightarrow$ processing power : $P = 6 \times 16.9 = 101.4$ papers simultaneously 5 papers / person $\Rightarrow 101.4/5 = 20.28$ associate editors are necessary

Continuous Approximation

- Analysis by GSPN is costly, because of state space explosion.
- A large number of discrete resources can be approximated by a continuous quantity.
- We first make a hybrid Petri net model from the GSPN model as follows:
 - tokens in a place \Rightarrow a continuous variable
 - state space \Rightarrow polyhedral approximation
 - firing delay of a timed transition \Rightarrow firing speed of a continuous transition
 - probability distribution of firing delay \Rightarrow interval of firing speed
- Then we derive differential equation from the HPN model.
- Finally, we compute an approximated state space by symbolic computation.

Continuous Approximation

Firing Delay \Rightarrow Firing Speed

Extended Continuous Petri Net Model

Computation of the State Space

- 1. Differential equations (continuous time) \Rightarrow *Difference equations* (discrete time).
- 2. Rectangular approximation of reachable regions at each step. We use place invariants for avoiding divergence of intervals.
- **3.** Symbolic computation by KCLP-HS (a rapid prototyping tool for algorithms on hybrid systems).

1-Step State Transition

 $\underline{x}_{p} \leq x_{p} \leq \overline{x}_{p}, \underline{x}_{s} \leq x_{s} \leq \overline{x}_{s}, \underline{x}_{a1} \leq x_{a1} \leq \overline{x}_{a1}, \underline{x}_{r1} \leq x_{r1} \leq \overline{x}_{r1},$ $\underline{x}_{ca} \leq x_{ca} \leq \overline{x}_{ca}, \underline{x}_{a2} \leq x_{a2} \leq \overline{x}_{a2}, \underline{x}_{r2} \leq x_{r2} \leq \overline{x}_{r2},$

Approximation by Rectangular Sets

$$\begin{split} & \text{if } x_p \geq x_s, \quad \text{then } x_{tmp} \coloneqq x_p - x_s, in \coloneqq x_s, x_s' \coloneqq r_s; \\ & \text{else } x_{tmp} \coloneqq 0, in \coloneqq x_p, x_s' \coloneqq x_s - x_p + r_s; \\ & \text{if } x_{a1} \geq r_{a1}, \text{ then } x_{a1}' \coloneqq x_{a1} - r_{a1} + in \cdot p_{a1}, rel_0 \coloneqq r_{a1}; \\ & \text{else } x_{a1}' \coloneqq in \cdot p_{a1}, rel_0 \coloneqq x_{a1}; \\ & \text{if } x_{r1} \geq r_{r1}, \text{ then } x_{r1}' \coloneqq x_{r1} - r_{r1} + in \cdot p_{r1}, rel_1 \coloneqq rel_0 + r_{r1}; \\ & \text{if } x_{ca} \geq r_{ca}, \text{ then } x_{ca}' \coloneqq x_{ca} - r_{ca} + in \cdot p_{ca}, in_2 \coloneqq r_{ca}; \\ & \text{else } x_{ca}' \coloneqq in \cdot p_{ca}, in_2 \coloneqq x_{ca}; \\ & \text{if } x_{a2} \geq r_{a2}, \text{ then } x_{a2}' \coloneqq x_{a2} - r_{a2} + in_2 \cdot p_{a2}, rel_2 \coloneqq rel_1 + r_{a1}; \\ & \text{else } x_{a2}' \coloneqq in_2 \cdot p_{a2}, rel_2 \coloneqq rel_1 + x_{a2}; \\ & \text{if } x_{r2} \geq r_{r2}, \text{ then } x_{r2}' \coloneqq x_{r2} - r_{r2} + in_2 \cdot p_{r2}, rel_3 \coloneqq rel_2 + r_{r2}; \\ & \text{else } x_{r2}' \coloneqq in_2 \cdot p_{r2}, rel_3 \coloneqq rel_2 + x_{r2}; \\ & x_p + x_{a1} + x_{r1} + x_{ca} + x_{a2} + x_{r2} = N \end{split}$$

17

Result $\theta = 0.1$

🗕 U

The number of waiting papers at 6 month later (sampling interval = 0.5 month). Firing speeds may change $\pm 10\%$. CPU time < 0.1 sec. for each P.

Result

 $\theta = 0.2$

The number of waiting papers at 6 month later (sampling interval = 0.5 month). Firing speeds may change $\pm 20\%$. CPU time < 0.1 sec. for each P.

Comparison

CPU Time (sec.)

Duration	(1) Exact	(2) Approx	(3) Approx with inv.
3	0.02	0.01	0.02
4	0.09	0.02	0.03
5	0.27	0.03	0.03
6	3.3	0.04	0.05
7	17	0.05	0.07
8	48	0.06	0.08
9	106	0.08	0.09
10	212	0.09	0.10

 $N = 60, \pm 20\%.$

Comparison

Comparison

22

Conclusion

- For performance evaluation of workflows, we have tried to methods, GSPN and continuous approximation by hybrid systems.
- The later method derives a similar result in a much shorter time.
- We expect that the continuous approximation by hybrid systems is applicable to larger workflows for which GSPN is infeasible to compute the solution.