

Keyed CLP : Features

Kunihiko Hiraishi
School of Information Science,
Japan Advanced Institute of Science and Technology

1

1 Special Features of Keyed CLP

1.1 Keyed Predicates

In addition to ordinary predicates, Keyed CLP has an another type of predicates, called keyed predicate,
which has the form

Predicate-Name(Key1 ,...,Keyn : Arg1 ,..., Argm).

In logic programming languages, each predicate can be seen as a relation. The word key has the same
meaning as in the relational database theory, and represents a functional dependency in the relation. Each
keyed predicate corresponds to a tuple with Key1 ,..., Keyn as the key attributes. In a relation, a tuple is
uniquely determined if all the values of the key attributes are specified. This property is preserved in the
execution of programs, i.e. every predicate which has the same predicate name and the same key value must
have the same value.

The fastest way to understand how the keyed predicate works is to see examples.

Example 1.
p(X : A).
q(X, X + Y):- p(k : X), p(k : Y).

| ?- q(3, Z).
Z = 6.

*** yes ***

p(X:A) is a keyed predicate and X is the key of this predicate. Execution of Keyed CLP is the same as
ordinary prolog, excepting keyed predicates. In the above program, q(3,Z) is evaluated first and constraints
X=3 and Z=3+Y are generated. Next p(k:3) (keyed predicate which has k as the key attribute) is evaluated,
and at this time the value of predicate p with the key value k is determined as p(k:3). Therefore, the next goal
p(k:Y) is unified with p(k:3) and Z becomes to 3+3=6. In this case, this keyed predicate works as a global
variable.

Example 2.
a(1).
a(2).
p(X : A, B):- A >= B.
q(Z, A1):- p(k : A, Z), a(A1), p(k : A1, _).

| ?- q(2, B).
B = 2

*** yes ***

The values kept by a keyed predicate are not restricted to constants. In Example 2, by the unification between
p(k:A,2) and p(X:A,B):-A>=B, the value of predicate p with key k is determined as p(k:A,2) with a constraint
A≥2. a(A1) first gets a value A1=1 and then p(k:1,_) fails because 1≥2 does not holds. Next a(A1) gets a
value A1=2 and then p(k:2,_) succeeds. Therefore only B = 2 is the solution.

2

1.2 Operational Model of Keyed CLP

In this report the word constraint is used as numerical constraints. The following constraints are called
primitive constraints:

Expr = Expr, Expr ≥ Expr, Expr ≤ Expr,

Expr > Expr, Expr < Expr

where Expr is composed of variables, constants, +, -, * and /. Domain of variables is the real numbers. A
Keyed CLP program consists of a finite number of rules, each of which has the form:

A0 :- c1, c2, ... , cn, A1, A2, ... , Am.

where ci (i = 1, ... , n) are primitive constraints and Aj (j = 1,...,i) are terms. At each step of an execution, the
goals has the form

(c1, c2, ... , cq ; A1, A2, ... , Ar ; θ ; S)

where ci (i = 1,..., q) are primitive constraints, Aj (j = 1,...,r) are terms, θ is a substitution and S is the stack for
keyed predicate. Initially S is empty. Each Aj is called a subgoal. Let G1 be a nonempty goal including a set
C1 of primitive constraints, which has the form

G1 = (C1 ; A1, A2, ... , Am ; θ ; S)

When C1 is solvable, a new goal G2 is derived as follows :

(i) A1 is not a keyed predicate.

Suppose that the program P contains the following rule.

B0 :- C2, D1, D2, ... , Dh.

where A1θ and B0 have a mgu θ'. Then the new goal is

G2 = (C1, C2, [A1θ = B0] ; D1, D2, ... , Dh , A2, ... , Am ; θ ∪ θ' ; S).

New constraint is obtained by the union of C1, C2 and the constraints [A1θ = B0] generated by the unification
of A1θ and B0. New substitution is the union of θ and θ'. Constraint (C1, C2, [A1θ = B0]) must be solvable.
The set S of keyed predicate stack does not change.

(ii) A1 is a keyed predicate

A1θ should not contain any variables in the key arguments. There are two cases :

a. S contains a keyed predicate D with the same predicate name and the same key value as A1θ.

G2 = (C1, [A1θ = B0] ; A2, ... , Am ; θ ∪ θ' ; S)

where A1θ and D have a mgu θ'. In addition, (C1, [A1θ = B0]) is solvable. If (C1, [A1θ = B0]) are not solvable,
the subgoal A1 fails.

b. S does not contain any predicate D with the same predicate name and the same key value as A1θ.

Suppose that the program P contains a rule like

B0 :- C2, D1, D2, ... , Dh.

where A1θ and B0 have a mgu θ'. Then

G2 = (C1, C2, [A1θ = B0] ; D1, D2, ... Dh, A2, ... , Am ; θ ∪ θ' ; S ∪ { A1θ })

New constraint is obtained by the union of C1, C2 and the constraint [A1θ = B0] generated by the unification
of A1θ and B0. New substitution is the union of θ and θ'. Constraint (C1, C2, [A1θ = B0]) must be solvable.
New keyed predicate stack is the union of S and { A1θ }.

3

If such G2 exists we say that there is a derivation step from G1 to G2. A derivation sequence is a (possibly
infinite) sequence of goals wherein there is a derivation step to each goal from the preceding goal. A
derivation sequence is successful if it is finite and its last goal contains only constraints and the keyed
predicate stack. There exists nondeterminism on getting the next rule. Current implementation of Keyed CLP
uses the same rule as Prolog. In a successful sequence, arguments of every predicate which has the same key
value takes the same value.

We demonstrate the derivation sequence in Example 2.

Step 1. G0 = (∅; q(2, B) ; ∅ ; ∅)

Step 2. Unify with a rule q(Z,A1):-p(k:A,Z),a(A1),p(k:A1,_).

 G1 = (Z = 2, B = A1 ; p(k : A, Z), a(A1), p(k : A1, _) ; ∅ ; ∅)

Step 3. Unify with a rule p(X:A,B):-A>=B.

 G2 = (Z = 2, B = A1, A = A', Z = B', A' >= B' ; a(A1), p(k : A1, _) ; k/X ; {p(k : A', B')})

Step 4. Unify with a rule a(1).

 G3 = (Z = 2, B = A1, A = A', Z = B', A' >= B', A1 = 1 ; p(k : A1, _) ; k/X ; {p(k : A', B')})

Step 5. Unify with a rule p(k : A',B') in the stack.

 Z = 2, B = A1, A = A', Z = B', A' >= B', A1 = 1 , A1 = A' is not solvable.

Step 6. Unify with a rule a(2).

 G3 = (Z = 2, B = A1, A = A', Z = B', A' >= B', A1 = 2 ; p(k : A1, _) ; k/X ; {p(k : A', B')})

Step 7. Unify with a rule p(k : A',B') in the stack.

 G4 = (Z = 2, B = A1, A = A', Z = B', A' >= B', A1 = 2, A1 = A' ; ∅; k/X ; {p(k : A', B')})

 Z = 2, B = A1, A = A', Z = B', A' >= B', A1 = 2, A1 = A' is solvable.

1.3 How does the Keyed Predicates Work?

Keyed predicates are used as global variables, each value in which is specified by key attributes. Using keyed
predicates, we can keep values calculated by some process and use the value in another processes. Moreover,
when we describe a program, we can reduce the number of arguments in each predicate by using keyed
predicate.

Values calculated by some process are often referred by another processes. For example, when we intend to
build a budget plan, the following values are usually used as basic data and are often referred when other
values are calculated : costs of manufacturing goods, cost of materials and number of selling and so on. If we
describe these values as a non-keyed predicate like sales_units(a,X):-..., the body part will be evaluated
whenever sales_units is called. However, since the value of selling number is uniquely determined if the
goods name is given, once the value is calculated, we have only to refer the value and recalculation is not
necessary. This problem is avoidable by using keyed predicate with the goods name as the key attribute, i.e.
sales_units(a:X):-....

We will show an example in which keyed predicates works for improving efficiency in computation. The
following program calculates the Fibonacci numbers.

fib(0 : 1).
fib(1 : 1).
fib(N : X1 + X2):- N > 1, fib(N - 1 : X1), fib(N - 2 : X2).

Let us consider a goal fib(5:X). fib(5:X) is determined by fib(4:X1) and fib(3:X2). fib(4:X1) is determined by
fib(3:X1) and fib(2:X2). Fig. 1 show the derivation process for this goal.

4

1. fib(5 : X)

2. fib(4 : X1) 9. fib(3 : X2)

3. fib(3 : X3) 8. fib(2 : X4)

4. fib(2 : X5) 7. fib(1 : X6)

5. fib(1 : X7) 6. fib(0 : X8)

 Fig. 1 Execution of fib(5 : X)

The number associated with each node of the tree represents the ordering in the execution in Keyed CLP. For
keyed predicates in the nodes 7, 8 and 9, there exists keyed predicates having the same key value in 5, 4 and
3, respectively. Therefore evaluation of the body part of these predicate 7, 8, and 9 are omitted.

1.4 Nonlinear Constraints

In each derivation step, the simplex method is used for checking whether the new constraint is consistent with
existing ones. If the constraint contains a nonlinear term, then it is replaced with a variable and the nonlinear
term is separated from the linear constraint. Evaluation of each nonlinear constraint is delayed until it
becomes linear by substituting variables and/or by solving other constraints. When the derivation step is
successful, Keyed CLP interpreter outputs the substitutions to the variables in the initial goal and remaining
(linear and nonlinear) constraints.

Basically, Keyed CLP solves only linear constraints. However, since the target domain of Keyed CLP is
problems in OR/MS, linear constraint solver will cover most problem areas. In addition, it is essential to
handle inequalities when practical problems are considered. Because, each value usually has some allowable
range. It is not easy to handle inequalities when we solve nonlinear constraints.

1.5 Higher Order Predicates

Keyed CLP has the following higher order predicates for solving linear optimization problem.

min(Expr, Goal),

max(Expr, Goal)

where Expr is a linear formula. The predicate min (max) find the minimum (maximum) value of Expr
satisfying the Goal. If the Goal has alternatives, then min calculate every optimum value for each alternative
and then find the optimum value among them. Even when the region represented by given constraints is the
union of some convex areas, the predicate min (max) works correctly. Branch and bound method is used for

5

searching the optimum value. We demonstrate how min (max) finds the optimum value by the following
example.

Example 3.
region(X, Y):- X >= 0, Y >= 0, X + Y <= 1.
region(X, Y):- X >= 0, X <= 2, Y >= 0, Y <= X.

| ?- max(Y, region(X, Y)).
X = 2
Y = 2

*** yes ***

1

2

1 2 X

Y

Fig. 2 Union of Two Convex Sets

The region represented by the predicate region(X, Y) is the union of two convex sets (Fig. 2). The predicate
max find the maximum value of Y for each region (the maximum value for the first set is Y=2 and Y=1 for
the second set), and then take the maximum value Y=2. The optimum value for previous alternatives are used
for the upper (lower) bound of the function when another alternatives are searched. At some derivation step,
if the new alternative will not generate a value which is better than the bound, then the derivation step will
stop at the level and backtracking will occur. We note that the second argument of min (max) can contain
min/max. This allow us to solve the min-max (max-min) type optimization problems.

In addition to min and max, Keyed CLP has the following higher order predicates.

• sum(Expr, Goal, Res) : unify the summation of the value of Expr for every alternatives of Goal with the
variable Res;

• avg(Expr, Goal, Res) : unify the average of the value of Expr for every alternatives of Goal with the
variable Res;

• count(Goal, Res) : unify the number of alternatives of Goal with the variable Res;

• all(Goal) : find all alternatives.

The predicate sum works when Expr contains variables. In this case, sum generate an equality like Res =
Expr1 + Expr2 + ... + Exprn. For example, let us consider the following program.

6

Example 4.
key(k1).
key(k2).
key(k3).
a(k1 : X1).
a(k2 : 2 * X3 + 5):- a(k3 : X3).
a(k3 : X1 + X2):- a(k1 : X1), a(k2 : X2).
goal(S):- sum(X, (key(K), a(K : X)), S).

| ?- goal(S), a(k1 : 3).
S = -16.0

*** yes ***

By the evaluation of goal(S), the following equalities are generated :
X2 = 2 * X3 + 5
X3 = X1 + X2
S = X1 + X2 + X3

X1=3 is given by the second subgoal a(k1 : 3) and therefore we obtain X2=-11, X3=-8, S=-16 by solving the
above equalities. In ordinal Prolog, the predicate all usually implemented as follows :

all(X):- call(X), fail.
all(_).

The above all find all alternatives by backtracking. The predicate all in Keyed CLP works in a different way.
It preserves the history of execution and the generated values can be passed through keyed predicates. In the
following program, key(K) has three alternatives and for each alternative key(K) (K = 0, 1, 2), a keyed
predicate p(K:K+1) is added to the stack. These values are preserved even after the evaluation of the
predicate all. Therefore, X=1, Y=2, Z=3 is obtained.

Example 5.
key(0).
key(1).
key(2).
p(K : K + 1).
q(X + Y + Z):-
 all((key(K), p(K : V)),
 p(0 : X), p(1 : Y), p(2 : Z).

| ?- q(A).
A = 6

*** yes ***

1.6 Keyed CLP Interpreter

Current version of Keyed CLP interpreter is developed by C language on UNIX operating system. Fig. 3
shows an overview of the system. User's queries are processed by the Engine Program control for higher
order predicates and keyed predicates are also processed by the Engine. Numerical constraints are separated
into linear constraints and nonliner constraints. Linear constraints are solved by the Simplex Solver.
Evaluations of nonlinear constraints are delayed until they become linear. Built-in function are processes by
the Built-in Function Module and their eveluations are delayed until every argument in the function is
constant. Built-in functions which have variables in their arguments are also stored in the Nonlinear
Constraint Stack.

7

Engine

Higher Order Control

Solver
(Simplex)

Linear
Constraint
Stack

Non-Linear
Constraint
Stack

User's
Program

Query /
Command

Built-in
Function
Module

Answer

Keyed Predicate Stack

Fig. 3 Keyed CLP Interpreter - System Overview -

8

2 Problem Solving using Keyed CLP

2.1 Production Planning

The program in Appendix I represents a linear programming problem for deciding production plan in a small
company. The company produces four kinds of products a, b, c, d. For each product, three kinds of resources
(material, electric power and man power) necessary for production is given. For each resources, upper limit
of available quantity is given. One of the aim is to find quantity of production for each product which
maximize the total profit and satisfies the resource constraints. In addition, the predicate in the program
contains the following nonlinear constraint:

(Pb = 0 ; Pc = 0 ; Pd = 0)

where Pb, Pc and Pd are quantity of production for each product b, c, d, respectively. The meaning of this
constraint is that at least one of the three products should not be produced. For such constraints, the predicate
max easily find the optimal solution.

| ?- max(S, Feasible(S, Pa, Pb, Pc, Pd)).
S = 740.000000
Pa = 53.333333
Pb = 0.000000
Pc = 23.333333
Pd = 6.666667

*** yes ***

In this program, the predicate Products(:Pa,Pb,Pc,Pd) works as a place to store global variables. This
predicate has no key attribute. This means that it has a unique value in a derivation sequence. When
Products(:Pa,Pb,Pc,Pd) is called at the first time, inequalities Pa>=0, Pb>=0, Pc>=0, Pd>=0 are evaluated. At
the next time Products(:Pa,Pb,Pc,Pd) is called, Products(:Pa,Pb,Pc,Pd) is already exists in the keyed predicate
stack and therefore the inequalities in the body are not evaluated.

2.3 PERT Diagram and Scheduling

Next problem is a scheduling problem using PERT (Program Evaluation and Review Technique).

Design
engine

Design
body

Order
body
metal

Deliver
body
metal

Manufactur and
test engine

Manufactur
body

Assemble car

5

4

1 2

0

4

3

2
10

20

30

40 50 60

9

Fig.4 PERT Diagram for Manufacturing Cars

The PERT diagram in Fig. 4 represents processes of manufacturing new cars [Willis 87]. A number
associated with each arc is the duration of the activity. The arc from node 20 to 40 has 0 as the duration
because it is a dummy arc which represent only the precedence relation. Using a PERT diagram, the earliest
start time and the latest finish time are calculated for each node, and find critical activities1. The earliest start
time for each activity is found by taking the maximum of the earliest start time + the duration for each of its
preceding activities. The latest finish time for each activity is found by taking the minimum of the latest
finish time - the duration for each of its successive activities. Using the build-in predicate max, the earliest
start time and the latest finish time for each node can be easily written as follows (the whole program is in
Appendix II) :

Earliest_Start_Time(A : Es):-
 Diagram(A, N, _),
 max(Es1 + D, (
 Diagram(B, _, N),
 Duration(B : D),
 Earliest_Start_Time(B : Es1)
), Es),!.
Earliest_Start_Time(A : 0).

Latest_Finish_Time(A : Lf):-
 Diagram(A, _, N),
 min(Lf1 - D, (
 Diagram(B, N, _),
 Duration(B : D),
 Latest_Finish_Time(B : Lf1)
), Lf),!.
Latest_Finish_Time(A : Es + D):-
 Earliest_Start_Time(A : Es),
 Duration(A : D).

In this program, each predicate Diagram(a, n1, n2) means that an activity a is represented by an arc from a
node n1 to a node n2. The following is a result of the execution of the predicate time_analysis, which
calculates the earliest start time, the earliest finish time, the latest start time, the latest finish time and the total
float for each activity.

| ?- time_analysis.
Activity : start
 Earliest Start Time = 0
 Earliest Finish Time = 0
 Latest Start Time = 0
 Latest Finish Time = 0
 Total Float = 0

Activity : Design_Engine
 Earliest Start Time = 0
 Earliest Finish Time = 5
 Latest Start Time = 0
 Latest Finish Time = 5
 Total Float = 0

Activity : Design_Body
 Earliest Start Time = 0
 Earliest Finish Time = 4
 Latest Start Time = 1
 Latest Finish Time = 5
 Total Float = 1

Activity : Order_Body_Metal

1 Critical activity means that delay of a critical activity causes delay of the whole system.

10

 Earliest Start Time = 0
 Earliest Finish Time = 1
 Latest Start Time = 2
 Latest Finish Time = 3
 Total Float = 2

Activity : Deliver_Body_Metal
 Earliest Start Time = 1
 Earliest Finish Time = 3
 Latest Start Time = 3
 Latest Finish Time = 5
 Total Float = 2

Activity : dummy
 Earliest Start Time = 5
 Earliest Finish Time = 5
 Latest Start Time = 5
 Latest Finish Time = 5
 Total Float = 0

Activity : Manufacture_Body
 Earliest Start Time = 5
 Earliest Finish Time = 9
 Latest Start Time = 5
 Latest Finish Time = 9
 Total Float = 0

Activity : Manufacture_and_Test_Engine
 Earliest Start Time = 5
 Earliest Finish Time = 8
 Latest Start Time = 6
 Latest Finish Time = 9
 Total Float = 1

Activity : Assemble_Car
 Earliest Start Time = 9
 Earliest Finish Time = 11
 Latest Start Time = 9
 Latest Finish Time = 11
 Total Float = 0

Activity : end
 Earliest Start Time = 11
 Earliest Finish Time = 11
 Latest Start Time = 11
 Latest Finish Time = 11
 Total Float = 0

*** yes ***

Retry? n

Interrupted.

Earliest start time and latest finish time are obtained by considering only time constraints. In practical
problems, however, there exists some limitations for available resources (such as machines, electric power
and man power), and therefore we have to make a schedule satisfying the limitations. The predicate Schedule
generates successively feasible schedules considering only time constraints. The results are stored in the
predicate Active. Active(a,t:on) means that an activity a is processes at a time t. Using this scheduling,
necessary resources (engineers, power units and draftsmen) are calculated, and are compared with the upper
limits of available resources. If at least one of the resources does not satisfy the constraint, backtracking is

11

occurred and the predicate Schedule generate an another schedule. If the schedule satisfies all of the resource
constraint, the program shifts to the scheduling of the next time.

resource_analysis1(Time):-
 scheduling(Time),
 Resource_Needs(Time, engineers : A),
 Resource_Limit(engineers : A1),
 A <= A1,
 Resource_Needs(Time, power_units : B),
 Resource_Limit(power_units: B1),
 B <= B1,
 Resource_Needs(Time, draftsmen : C),
 Resource_Limit(draftsmen : C1),
 C <= C1,
 resource_analysis_summary(Time, A, B, C),
 (Active(end, Time : on),
 nl, write("Project Duration = "),
 print("%3.0f", Time), nl,
 Total_Cost(TC),
 write("Total Direct Cost(NPV) = "),
 print("%7.0f", TC),nl,
 dump([TC]) ;
 resource_analysis1(Time + 1)
),!.

We show the execution of this scheduling. At each time, executing activities and the amount of resources
used are displayed.

| ?- resource_analysis.
Week 0 :
 Active Processes = [start, Design_Engine, Order_Body_Metal]
 Engineers = 1
 Power Units = 0
 Draftsmen = 2

Week 1 :
 Active Processes = [Design_Engine, Deliver_Body_Metal]
 Engineers = 1
 Power Units = 5
 Draftsmen = 2

Week 2 :
 Active Processes = [Design_Engine, Deliver_Body_Metal]
 Engineers = 1
 Power Units = 5
 Draftsmen = 2

Week 3 :
 Active Processes = [Design_Engine]
 Engineers = 1
 Power Units = 0
 Draftsmen = 2

Week 4 :
 Active Processes = [Design_Engine]
 Engineers = 1
 Power Units = 0
 Draftsmen = 2

Week 5 :
 Active Processes = [Design_Body, dummy,

Manufacture_and_Test_Engine]
 Engineers = 4
 Power Units = 20

12

 Draftsmen = 2

Week 6 :
 Active Processes = [Design_Body, Manufacture_and_Test_Engine]
 Engineers = 4
 Power Units = 20
 Draftsmen = 2

Week 7 :
 Active Processes = [Design_Body, Manufacture_and_Test_Engine]
 Engineers = 4
 Power Units = 20
 Draftsmen = 2

Week 8 :
 Active Processes = [Design_Body]
 Engineers = 1
 Power Units = 0
 Draftsmen = 2

Week 9 :
 Active Processes = [Manufacture_Body]
 Engineers = 2
 Power Units = 15
 Draftsmen = 0

Week 10 :
 Active Processes = [Manufacture_Body]
 Engineers = 2
 Power Units = 15
 Draftsmen = 0

Week 11 :
 Active Processes = [Manufacture_Body]
 Engineers = 2
 Power Units = 15
 Draftsmen = 0

Week 12 :
 Active Processes = [Manufacture_Body]
 Engineers = 2
 Power Units = 15
 Draftsmen = 0

Week 13 :
 Active Processes = [Assemble_Car]
 Engineers = 1
 Power Units = 15
 Draftsmen = 0

Week 14 :
 Active Processes = [Assemble_Car]
 Engineers = 1
 Power Units = 15
 Draftsmen = 0

Week 15 :
 Active Processes = [end]
 Engineers = 0
 Power Units = 0
 Draftsmen = 0

Project Duration = 15

13

Total Direct Cost(NPV) = 137231

*** yes ***

Retry? n

Interrupted.

2.3 Multi-Objective Decision Making

A decision-making problem which has more than two objective functions are called a multi-objective
decision making problem. We use a problem described in [Dhar 88]. This probvlem is for deciding a
computer system to introduce, and is described as follows (the whole program is in Appendix III) :

Choice sets :

There are four choice sets: hardware, air-conditioning units, operating systems, and database management
systems. Each alternative is defined over the set of choice-set attributes, e.g. hardware has four attributes :
Cost, MIPS, Memory (M bytes) and Annual maintenance. This choice-set of hardware is written as the
following Keyed CLP Program :

/*
 Hardware Specifications
 Name : Cost(K), MIPS, Memory(MB), Annual maintenance
*/

Hardware('DEC').
Hardware('IBM').
Hardware('CDC').
Hardware('ATT').

HW_Spec('DEC' : 300000, 5, 8, low).
HW_Spec('IBM' : 500000, 5, 8, high).
HW_Spec('CDC' : 350000, 5, 8, high).
HW_Spec('ATT' : 100000, 2, 4, medium).

There are two types of constraints.

Quantitative constraints :

Rule A1 : At least 6M bytes must be available apart from memory requirements of the operating system
and the database system.

Rule A2 : The total cost of the various information system components should not exceed $375,000.

Qualitative constraints :

Rule B1 : If IBM is selected as the hardware, then the OS must be CMS.

Rule B2 : If IBM is selected as the hardware, then the AirConditioning power must be greater than 400
KW.

Rule B3 : If the Hardware is DEC and the OS is UNIX, then INGRES must be selected as the DBMS.

Rule B4 : If IMS is selected as the OS, then the hardware must be IBM.

Rule B5 : If INGRES is selected as the DBMS, then the hardware must not be CDS.

Rule B6 : VMS operating system should not be installed on hardware that is less than 5 MIPS.

These constraints are described by Keyed CLP program as follows :
constraints :-

14

 quantative_constraints,
 qualitative_constraints.

quantative_constraints :-
 selection(: HW, AC, OS, DB, N),
 HW_Spec(HW : HWcost, HWmips, HWmem, HWmaint),
 AC_Spec(AC : ACcost, ACpower, ACspace),
 OS_Spec(OS : OScost, OSmem),
 DB_Spec(DB : DBcost, DBmem, DBrec),

 /* Rule A1 */
 HWmem - OSmem - DBmem/1024 >= 6.0,

 /* Rule A2 */
 HWcost + ACcost + OScost + N * DBcost <= 375000.

qualitative_constraints :-

 selection(: HW, AC, OS, DB, N),

 HW_Spec(HW : HWcost, HWmips, HWmem, HWmaint),
 AC_Spec(AC : ACcost, ACpower, ACspace),
 OS_Spec(OS : OScost, OSmem),
 DB_Spec(DB : DBcost, DBmem, DBrec),

 /* Rule B1 */
 IF(EQ(HW, 'IBM'), EQ(OS, 'CMS')),

 /* Rule B2 */
 IF(EQ(HW, 'IBM'), ACpower > 400),

 /* Rule B3 */
 IF((EQ(HW, 'DEC'), EQ(OS, 'UNIX')),
 EQ(DB, 'INGRES')),

 /* Rule B4 */
 IF(EQ(OS, 'IMS'), EQ(HW, 'IBM')),

 /* Rule B5 */
 IF(EQ(DB, 'INGRES'), NEQ(HW, 'CDC')),

 /* Rule B6 */
 IF(HWmips < 5, NEQ(OS, 'VMS')).

where the predicate selection is a keyed predicate with empty key which works as global variables containing
selected tuple from the choice sets. The predicate IF is defined by

IF(Cond, Then) :- call(Cond),!,call(Then).
IF(_,_).

EQ(X,Y) succeeds iff X and Y are unifirable and NEQ succeeds iff X and Y are not unifirable. Feasible
solutions are written as follows :

Feasible(HW, AC, OS, DB, N, TotCost, HWmips):-
 selection(: HW, AC, OS, DB, N),
 constraints,
 TotalCost(:TotCost),
 HW_Spec(HW : HWcost, HWmips, HWmem, HWmaint).

go1 finds the solution that minimizes the total cost.

go1:-
 min(TotCost,
 Feasible(HW, AC, OS, DB, N, TotCost, HWmips)

15

),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

go2 finds the solution that maximizes MIPS value.

go2:-
 max(HWmips,
 Feasible(HW, AC, OS, DB, N, TotCost, HWmips)
),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

The aim of this problem is to find a solution optimizing both of the objectives, minimizing costs and
maximizing MIPS value. We use here a technique of sequential optimization. This technique find the
optimum value by assigning an order of evaluation among the objectives. go3 first find solutions that
maximizes MIPS value, and among them find the solution that minimizes the total cost. go4 first find
solutions that minimizes the total cost, and among them find the solution that maximizes MIPS value.

go3:-
 min(TotCost,
 max(HWmips,
 Feasible(HW, AC, OS, DB, N,
 TotCost, HWmips)
)
),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

go4:-
 max(HWmips,
 min(TotCost,
 Feasible(HW, AC, OS, DB, N,
 TotCost, HWmips)
)
),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

Nesting levels of min and max is only restricted by the available memory.

2.4 Keyed CLP As an Extension of Spread Sheets

Spread sheet are widely recognized as a tool of modeling and problem solving on personal computers. In
spread sheets, problems are modeled on two-dimensional tables and constraints are described as formulas in
each cell. Calculation of spread sheets is executed by substituting each cell with the calculated valued of the
formula. There is a direction defined by referring other cells in each formula. Since this referring relation
must be acyclic, spread sheets cannot always find the solution even when the solution is obtainable by
algebraic operations. In addition, each cell is specified by its coordinate on the table like A10, B5. Therefore,
though spread sheets have a form of tables, their topological structure as tables is not reflected on modeling
processes2. If we treat a table as a relational table, we can model problems in a more sophisticated way. For
example, let us consider the sheet in Table 1.
Table 1 An example of spread sheets

2 Spread sheets have a function of copying foumulas with shifting coordinates. This might be a function using topological structure

16

 A B C D
1 Goods Unit Price Number Total Price
2 Computer 298,000 2 B2 * C2
3 Monitor 99,800 2 B3 * C3
4 Printer 324,000 1 B4 * C4
5 Software 86,000 2 B5 * C5
6
7 Total SUM(D2:D5)

The following is a Keyed CLP program corresponding to the above sheet:

goods(computer).
goods(monitor).
goods(printer).
goods(software).

unit_price(computer : 298000).
unit_price(monitor : 99800).
unit_price(printer : 324000).
unit_price(software : 86000).

number_of_purchases(computer : 2).
number_of_purchases(monitor : 2).
number_of_purchases(printer : 1).
number_of_purchases(software : 2).

payment(G : P * N):-
 unit_price(G : P), number_of_purchases(G : N).

total_payment(S):- sum(X, (goods(G), payment(G : X)), S).

Unit price, number of purchases and payment are uniquely determined when a goods name is specified.
Therefore, they can be expressed by keyed predicate having goods name as the key attribute. Moreover, by
replacing constants in the predicate number_of_purchases with variables, the maximum number of computer
sets we can purchase within a given total payment can be found..

number_of_purchases(computer : X).
number_of_purchases(monitor : X):-
 number_of_purchases(computer : X).
number_of_purchases(software : X):-
 number_of_purchases(computer : X).

Given a budget 2,000,000 yen, the number of computer sets is calculated by

| ?- number_of_purchases(computer : X),
total_payment(2000000).
X = 3.46

*** yes ***

Therefore, we can purchase three sets. Bi-directional computation is one of the characteristic features of
constraint programming.
Problem solving using Keyed CLP can be seen as an abstraction of spread sheet type languages. Each
predicate in Keyed CLP is an intensional description of a relation, i.e. a description of constraints satisfied by
each element in the relation. This constraints are common to all the elements in the relation. Therefore, we do
not have to define a formula in every cell in the sheet as in spread sheets. Moreover, while each value is
specified by the coordinate in spread sheets, it is specified by key attributes in Keyed CLP.

17

Appendix I

/***

 Linear Programming

***/

Goods(a).
Goods(b).
Goods(c).
Goods(d).

Product(a : X):- X >= 0.
Product(b : X):- X >= 0.
Product(c : X):- X >= 0.
Product(d : X):- X >= 0.

Resource(materials).
Resource(epower).
Resource(mpower).

Need(materials, a : 2.5).
Need(materials, b : 5).
Need(materials, c : 6).
Need(materials, d : 2).

Need(epower, a : 5).
Need(epower, b : 6).
Need(epower, c : 7).
Need(epower, d : 3).

Need(mpower, a : 3).
Need(mpower, b : 2).
Need(mpower, c : 2).
Need(mpower, d : 5).

Profit(a : 9).
Profit(b : 5).
Profit(c : 8).
Profit(d : 11).

Res_Available(materials : 350).
Res_Available(epower : 450).
Res_Available(mpower : 240).

TotProfit(S):-
 sum(X * Y, (Goods(P), Product(P : X), Profit(P : Y)), S).

Decision_Vars(: Pa, Pb, Pc, Pd):-
 Product(a : Pa), Product(b : Pb), Product(c : Pc), Product(d : Pd).

Constr(R):-
 sum(X * Y,
 (Resource(R), Goods(P), Need(R, P : X), Product(P : Y)),

2

 Z),
 Res_Available(R : L),
 Z <= L.

constraints:-
 all((Resource(R), Constr(R))),
/*
 Constr(materials), Constr(epower), Constr(mpower),
*/
 Decision_Vars(: Pa, Pb, Pc, Pd),
 Pa >= 25, Pb + Pc + Pd >= 30, !, (Pb = 0 ; Pc = 0 ; Pd = 0).

Feasible(S, Pa, Pb, Pc, Pd):-
 Decision_Vars(: Pa, Pb, Pc, Pd),
 TotProfit(S),
 constraints.

RANGE(V, X, L, U):- min(V, X, L), max(V, X, U).

3

Appendix II

/*

 Project Management and Control

 Robert J. Willis :
 Computer Models for Business Decisions,
 JOHN WILEY & SONS (1987).

*/

/*
 Time Analysis
*/

time_analysis:-
 Activities(: As),
 time_analysis1(As).

time_analysis1([]).
time_analysis1([A|R]):-
 Earliest_Start_Time(A : Es),
 Earliest_Finish_Time(A : Ef),
 Latest_Start_Time(A : Ls),
 Latest_Finish_Time(A : Lf),
 Total_Float(A : Tf),
 time_analysis_summary(A, Es, Ef, Ls, Lf, Tf),
 time_analysis1(R).

time_analysis_summary(A, Es, Ef, Ls, Lf, Tf):-
 write("Activity : "), write(A),nl,
 tab, write("Earliest Start Time = "), print("%3.0Lf", Es), nl,
 tab, write("Earliest Finish Time = "), print("%3.0Lf", Ef), nl,
 tab, write("Latest Start Time = "), print("%3.0Lf", Ls), nl,
 tab, write("Latest Finish Time = "), print("%3.0Lf", Lf), nl,
 tab, write("Total Float = "), print("%3.0Lf", Tf), nl, nl,
 dump([Es, Ef, Ls, Lf, Tf]).

/*
 Earliest Start Time :
 The earliest start time for each activity is found by
 taking the maximum of the earliest start time + duration
 for each of its preceding activities.
*/

Earliest_Start_Time(A : Es):-
 Diagram(A, N, _),
 max(Es, (
 Diagram(B, _, N),
 Duration(B : D),
 Earliest_Start_Time(B : Esp),
 Es = Esp + D
)),!.
Earliest_Start_Time(A : 0).

4

/*
 Earliest Finish Time :
 The earliest finish time for each activity is calculated by
 adding the relevant activity duration to its earliest start time.
*/

Earliest_Finish_Time(A : Es + D):-
 Earliest_Start_Time(A : Es),
 Duration(A : D).

/*
 Latest Finish Time :
 The latest finish time for each activity is found by
 taking the minimum of the latest finish time - duration
 for each of its successing activities.
*/

Latest_Finish_Time(A : Lf):-
 Diagram(A, _, N),
 min(Lf, (
 Diagram(B, N, _),
 Duration(B : D),
 Latest_Finish_Time(B : Lfs),
 Lf = Lfs - D
)),!.
Latest_Finish_Time(A : Es + D):-
 Earliest_Start_Time(A : Es),
 Duration(A : D).

/*
 Latest Start Time :
 The latest start time for each activity is calculated by
 subtracting the relevant activity duration from its latest
 finish time.
*/

Latest_Start_Time(A : Lf - D):-
 Latest_Finish_Time(A : Lf),
 Duration(A : D).

/*
 Total Float :
 The total float for each activity is its earliest finish time
 subtracted from its latest finish time.
*/

Total_Float(A : Lf - Ef):-
 Latest_Finish_Time(A : Lf),
 Earliest_Finish_Time(A : Ef).

/*
 Resource & Cost Analysis
*/

resource_analysis:-

5

 time_constraints,
 resource_analysis1(0).

resource_analysis1(Time):-
 scheduling(Time),
 Resource_Needs(Time, engineers : A),
 Resource_Limit(engineers : A1),
 A <= A1,
 Resource_Needs(Time, power_units : B),
 Resource_Limit(power_units: B1),
 B <= B1,
 Resource_Needs(Time, draftsmen : C),
 Resource_Limit(draftsmen : C1),
 C <= C1,
 resource_analysis_summary(Time, A, B, C),
 (Active(end, Time : on),
 nl, write("Project Duration = "), print("%3.0Lf", Time), nl,
 Total_Cost(TC),
 write("Total Direct Cost(NPV) = "), print("%7.0Lf", TC),nl,
 dump([TC]) ;
 resource_analysis1(Time + 1)
),!.

resource_analysis_summary(Time, A, B, C):-
 write("Week "), print("%3.0Lf", Time), write(" : "),nl,
 bagof(X, (Diagram(X, _, _), Active(X, Time : on)), As),
 tab, write("Active Processes = "), write(As), nl,
 tab, write("Engineers = "), print("%3.0Lf", A), nl,
 tab, write("Power Units = "), print("%3.0Lf", B), nl,
 tab, write("Draftsmen = "), print("%3.0Lf", C), nl, nl.

Finish(Time):- Start_Time(end : St), St <= Time.

Activities(: As):- bagof(A, Diagram(A, _, _), As).

/* Time Constraints */

Start_Time(A : St).

time_constraints:-
 Activities(: As),
 time_constraints1(As),!.

time_constraints1([]).
time_constraints1([A|R]):-
 Diagram(A, N, _),
 bagof(B, Diagram(B, _, N), Bs),
 time_constraints2(A, Bs),
 time_constraints1(R).

time_constraints2(A, []):-
 Start_Time(A : St),
 St >= 0.
time_constraints2(A, [B|R]):-
 Start_Time(A : St),
 Start_Time(B : St1),
 Duration(B : D1),
 St1 + D1 <= St,

6

 time_constraints2(A, R).

/* Scheduling */

Active(A, -1 : off):-!.
Active(A, Time : X):- Time >= 0.

scheduling(Time):-
 Activities(: As),
 scheduling1(Time, As).

scheduling1(Time, []).
scheduling1(Time, [A|R]):-
 Start_Time(A : St),
 Duration(A : D),
 scheduling2(A, Time, St, D),
 scheduling1(Time, R).

scheduling2(A, Time, Time, D):-
 Active(A, Time - 1 : off),
 Active(A, Time : on).
scheduling2(A, Time, St, D):-
 Active(A, Time - 1 : on),
 Time < St + D,
 Active(A, Time : on).
scheduling2(A, Time, _, _):-
 Active(A, Time : off).

/* Resources */

Resource_Needs(Time, Res : Needs):-
 sum(R, (
 Diagram(A, _, _),
 Active(A, Time : on),
 Duration(A : D),
 Resources(A, Res : R)
),
 Needs),!.
Resource_Needs(Time, Res : 0).

/* Cost Analysis */

Net_Present_Value(Rate, Weeks, V, V / (1 + R)):-
 R = Rate * Weeks * 7 / 365.

Total_Cost(TC):-
 discount_rate(: Rate),
 sum(V1, (
 Diagram(X, _, _),
 Start_Time(X : St),
 Cost(X : V),
 Net_Present_Value(Rate, St, V, V1)
),
 TC).

/*
--
 Car Manufacture Model

7

--
*/

/* Discount Rate */

discount_rate(: 0.12).

/* Diagram */

Diagram(start, n0, n1).
Diagram('Design_Engine', n1, n2).
Diagram('Design_Body', n1, n4).
Diagram('Order_Body_Metal', n1, n3).
Diagram('Deliver_Body_Metal', n3, n4).
Diagram(dummy, n2, n4).
Diagram('Manufacture_Body', n4, n5).
Diagram('Manufacture_and_Test_Engine', n2, n5).
Diagram('Assemble_Car', n5, n6).
Diagram(end, n6, n7).

/* Duration */

Duration(start : 0).
Duration('Design_Engine' : 5).
Duration('Design_Body' : 4).
Duration('Order_Body_Metal' : 1).
Duration('Deliver_Body_Metal' : 2).
Duration(dummy : 0).
Duration('Manufacture_Body' : 4).
Duration('Manufacture_and_Test_Engine' : 3).
Duration('Assemble_Car' : 2).
Duration(end : 0).

/* Resources */

Resources(start, engineers : 0).
Resources('Design_Engine', engineers : 1).
Resources('Design_Body', engineers : 1).
Resources('Order_Body_Metal', engineers : 0).
Resources('Deliver_Body_Metal', engineers : 0).
Resources(dummy, engineers : 0).
Resources('Manufacture_Body', engineers : 2).
Resources('Manufacture_and_Test_Engine', engineers : 3).
Resources('Assemble_Car', engineers : 1).
Resources(end, engineers : 0).

Resources(start, power_units : 0).
Resources('Design_Engine', power_units : 0).
Resources('Design_Body', power_units : 0).
Resources('Order_Body_Metal', power_units : 0).
Resources('Deliver_Body_Metal', power_units : 5).
Resources(dummy, power_units : 0).
Resources('Manufacture_Body', power_units : 15).
Resources('Manufacture_and_Test_Engine', power_units : 20).
Resources('Assemble_Car', power_units : 15).
Resources(end, power_units : 0).

Resources(start, draftsmen : 0).

8

Resources('Design_Engine', draftsmen : 2).
Resources('Design_Body', draftsmen : 2).
Resources('Order_Body_Metal', draftsmen : 0).
Resources('Deliver_Body_Metal', draftsmen : 0).
Resources(dummy, draftsmen : 0).
Resources('Manufacture_Body', draftsmen : 0).
Resources('Manufacture_and_Test_Engine', draftsmen : 0).
Resources('Assemble_Car', draftsmen : 0).
Resources(end, draftsmen : 0).

/* Resource Constraints */

Resource_Limit(engineers : 4).
Resource_Limit(power_units : 25).
Resource_Limit(draftsmen : 2).

/* Cost */

Cost(start : 0).
Cost('Design_Engine' : 10000).
Cost('Design_Body' : 35000).
Cost('Order_Body_Metal' : 2500).
Cost('Deliver_Body_Metal' : 2000).
Cost(dummy : 0).
Cost('Manufacture_Body' : 35000).
Cost('Manufacture_and_Test_Engine' : 25000).
Cost('Assemble_Car' : 30000).
Cost(end : 0).

9

Appendix III
/*

 A Model for Setupping a computer-bases corporate information system

 Vasant Dhar and Albert Croker,
 Knowledge-Bases Decision Support in Business:
 Issues and a Solution,
 IEEE EXPERT, Spring 1988, pp53-62

*/

/*
 Hardware Specifications
 Name : Cost(K), MIPS, Memory(MB), Annual maintenance
*/

Hardware('DEC').
Hardware('IBM').
Hardware('CDC').
Hardware('ATT').

HW_Spec('DEC' : 300000, 5, 8, low).
HW_Spec('IBM' : 500000, 5, 8, high).
HW_Spec('CDC' : 350000, 5, 8, high).
HW_Spec('ATT' : 100000, 2, 4, medium).

/*
 Air-conditioning Units
 Name : Cost(K), Power(KW), Space(K sqft)
*/

Air_Conditioning('Borg').
Air_Conditioning('Westinghouse').
Air_Conditioning('GE').

AC_Spec('Borg' : 20000, 200, 2).
AC_Spec('Westinghouse' : 35000, 500, 3).
AC_Spec('GE' : 30000, 300, 3).

/*
 Operating Systems
 Name : Cost(K), Memory required(MB)
*/

Operating_System('UNIX').
Operating_System('VMS').
Operating_System('CMS').
Operating_System('TOPS').

OS_Spec('UNIX' : 10000, 1.5).
OS_Spec('VMS' : 20000, 2.0).
OS_Spec('CMS' : 40000, 2.0).

10

OS_Spec('TOPS' : 5000, 1.0).

/*
 Database Management Systems
 Name : Cost(K), Memory required(MB)
*/

Database('INGRES').
Database('IMS').
Database('RIM').
Database('DMS').

DB_Spec('INGRES' : 7000, 200, 200).
DB_Spec('IMS' : 15000, 350, 1000).
DB_Spec('RIM' : 4000, 100, 150).
DB_Spec('DMS' : 10000, 150, 200).

/* selection */

selection(: HW, AC, OS, DB, N):-
 Hardware(HW),
 Air_Conditioning(AC),
 Operating_System(OS),
 Database(DB),
 N >= 1.

/* Constraints */

constraints :- quantative_constraints, qualitative_constraints.

quantative_constraints :-

 selection(: HW, AC, OS, DB, N),

 HW_Spec(HW : HWcost, HWmips, HWmem, HWmaint),
 AC_Spec(AC : ACcost, ACpower, ACspace),
 OS_Spec(OS : OScost, OSmem),
 DB_Spec(DB : DBcost, DBmem, DBrec),

 /* at least 6M bytes must be available
 apart from memory requirements of the operating system
 and the database system. */

 HWmem - OSmem - DBmem/1024 >= 6.0,

 /* the total cost of the various information system components
 should not exceed $375,000 */

 HWcost + ACcost + OScost + N * DBcost <= 375000.

qualitative_constraints :-

 selection(: HW, AC, OS, DB, N),

 HW_Spec(HW : HWcost, HWmips, HWmem, HWmaint),
 AC_Spec(AC : ACcost, ACpower, ACspace),
 OS_Spec(OS : OScost, OSmem),

11

 DB_Spec(DB : DBcost, DBmem, DBrec),

 /* Rule 1 :
 if IBM is selected as the hardware
 then the OS must be CMS
 */

 IF(EQ(HW, 'IBM'), EQ(OS, 'CMS')),

 /* Rule 2 :
 if IBM is selected as the hardware
 then the AirConditioning power must be greater than 400 KW
 */

 IF(EQ(HW, 'IBM'), (ACpower > 400)),

 /* Rule 3 :
 if the Hardware is DEC and the OS is UNIX
 then INGRES must be selected as the DBMS.
 */

 IF((EQ(HW, 'DEC'), EQ(OS, 'UNIX')), EQ(DB, 'INGRES')),

 /* Rule 4 :
 if IMS is selected as the OS
 then the hardware must be IBM.
 */

 IF(EQ(OS, 'IMS'), EQ(HW, 'IBM')),

 /* Rule 5 :
 if INGRES is selected as the DBMS
 then the hardware must not be CDS.
 */

 IF(EQ(DB, 'INGRES'), NEQ(HW, 'CDC')),

 /* Rule 6 :
 VMS operating system should not be installed
 on hardware that is less than 5 MIPS
 */

 IF((HWmips < 5), NEQ(OS, 'VMS')).

/* Equations */

TotalCost(: HWcost + ACcost + OScost + N * DBcost) :-

 selection(: HW, AC, OS, DB, N),

 HW_Spec(HW : HWcost, HWmips, HWmem, HWmaint),
 AC_Spec(AC : ACcost, ACpower, ACspace),
 OS_Spec(OS : OScost, OSmem),
 DB_Spec(DB : DBcost, DBmem, DBrec).

SpaceRequired(: ACspace * 1000 + 1000):-
 selection(: HW, AC, OS, DB, N),
 AC_Spec(AC : ACcost, ACpower, ACspace).

/* Goal */

Feasible(HW, AC, OS, DB, N, TotCost, HWmips):-

12

 selection(: HW, AC, OS, DB, N),
 constraints,
 TotalCost(:TotCost),
 HW_Spec(HW : HWcost, HWmips, HWmem, HWmaint).

write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space):-
 write("Ans :"),nl,
 tab,write("Hardware Maker = "),write(HW),
 write(" ("),print("%2.0Lf", HWmips),write(" MIPS)"),nl,
 tab,write("Air-Conditioner = "),write(AC),nl,
 tab,write("Operating System = "),write(OS),nl,
 tab,write("Database Software = "),write(DB),
 write(" * "), print("%2.0Lf", N),nl,
 tab,write("------------------------------------"),nl,
 tab,write("Total Cost = "),print("%6.0Lf", TotCost),nl,
 tab,write("Space = "),print("%6.0Lf", Space),nl,nl,
 dump([N, TotCost]).

/* mininize Total Cost */
go1:-
 min(TotCost, Feasible(HW, AC, OS, DB, N, TotCost, HWmips)),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

/* maximizing MIPS */
go2:-
 max(HWmips, Feasible(HW, AC, OS, DB, N, TotCost, HWmips)),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

/* combination of two objectives */
go3:-
 min(TotCost,
 max(HWmips, Feasible(HW, AC, OS, DB, N, TotCost, HWmips))
),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

go4:-
 max(HWmips,
 min(TotCost, Feasible(HW, AC, OS, DB, N, TotCost, HWmips))
),
 SpaceRequired(: Space),
 write_ans(HW, AC, OS, DB, N, TotCost, HWmips, Space).

/* Utility */

EQ(X, Y) :- unify(X, Y).

NEQ(X, Y) :- unify(X, Y),!,fail.
NEQ(_, _).

IF(Cond, Then) :- call(Cond),!,call(Then).
IF(_,_).

RANGE(V, X, L, U):- min(V, X, L), max(V, X, U).

