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• The sets of controllable/observable events may change 
dynamically in the environment → Each controller Ci can 
control/observe the behavior of AGV if it is in zone Zi.

• Communication link may change, e.g., mobile agent 
systems.

Dynamic environment



Modeling

PN2: Petri Nets in a Petri Net
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Agent-Based Control
under Dynamic Environment (ABCDE)

Given:
A finite automaton G defined over Σ that represents the 
plant.
The environment under which G and controllers Z = 
{ C1, ..., Cn } act. 
A finite automaton S that represents the desired behavior.

Find: 
Controllers Z = { C1, ..., Cn } such that G/Z and S are Σ –
bisimilar.



Why bisimulation?

The controlled system has two kinds of events:

Σ : the set of plant events

Σ : the set of synchronization events
(communication, movement of agents, ... )

^

However, the plant G and the spec. S are defined over Σ.



Why bisimulation?
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L(G/Z)|Σ = L(S), but b does not always occur after a.



Why bisimulation?
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How to describe dynamic environment 

• Σc,i (controllable events), Σo,i (observable events), Σi
(sync. events) depends on the configuration π of the 
system, i.e, Σc,i(π), Σo,i(π), Σi(π).

• Let Π be the finite set of all configurations.
• The configuration changes according to a transition 

function δΠ: Π × (Σ ∪ Σ ) → Π.
• PN2 gives an uniform way to define the problem 

including dynamic environment.
• Since Π is finite, existence of dynamic environment has 

no effect on the decidability of the problem.

^

^



Decidability/undecidability results
on decentralized control problem

Without communication
decidable
[Rudie and Wonham 92]

A ⊆ L(G/Z) ⊆ E

decidable
[Rudie and Wonham 92]

Lm(G/Z) = E, 
nonblocking

undecidable
[Tripakis 01]

Lm(G/Z) ⊆ E,
nonblocking

undecidable
[Lamouchi and Thistle 00]

A ⊆ L(G/Z) ⊆ E,
ω-language, deadlock-free
≡ *-language, nonblocking

Let A, E be regular languages and Let G be a finite automaton.



Decidability/undecidability results
on decentralized control problem

With communication

(maybe) decidable
[Tripakis 00]

Lm(G/Z) |= φ,
φ : responsible property,
k-bounded delay communication

undecidable
[Tripakis 00]

Lm(G/Z) |= φ,
φ : responsible property,
unbounded delay communication

decidable
[Barett and Lafortune 98]

Lm(G/Z)|Σ = E,
nonblocking, no-delay communication

Let A, E be regular languages and Let G be a finite automaton.

Responsible property: a → b (b occurs after every a).



Undecidability

• Problem ABCDE is undecidable in general. This is 
proved by simulating Tripakis’s architecture of 
decentralized control with unbounded delay 
communication.

• How can we find finite-state controllers?



An instance of ABCDE

L(G) = ((β* + γ*)α(γ + βγ))*.
Z = { C1, C2 }. Σo,1 = { α }, Σc,1 = ∅; Σo,2 = { γ }, Σc,2 = { β, γ }.
E = (α(γ + βγ))*.
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Occurrence graph N
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• An occurrence graph N is called consistent if for any s, s'
L(N): Pi(s) = Pi(s') ⇒ γi(s) = γi(s').

• An occurrence graph N is called legal if for any state y = 
(k, < x, z, π >, γ1, γ2):
• (i) If δG(x, σ)! ∧ ¬δS(z, σ)!, then ¬δN(y, σ)!.
• (ii) If δG(x, σ)! ∧ δS(z, σ)!, then there exists a finite 

sequence of sync. events u such that δN(y, uσ)!.
• Lemma. N is legal if and only if N and S are Σ-bisimilar. 
• Given a legal and consistent occurrence graph N, we 

can have finite-state controllers by projecting it.

Occurrence graph



projection
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• For a given index set Im, the number of possible 
occurrence graphs is finite.

• Increasing m from 0, we can enumerate all occurrence 
graphs, and can check legality and consistency of them. 
That is, the set of all occurrence graphs is a recursively 
enumerable set.

• This implies that we can have a procedure to find finite-
state controllers if they exist. 

Occurrence graph



Communication behavior 

• On of the reasons why the undecidability arises is that 
the behavior on communication is unspecified in the 
problem. 
– Even if the languages of the plant and the specification are 

regular, the controlled behavior including communication may 
not.

• A communication behavior is a function that maps each 
trajectory observed so far to a set of synchronization 
events to be enabled.

• We assume the communication behavior of each Ci by a 
transition system Wi. Using Wi’s and G, we construct a 
transition system U that represents the uncontrolled 
behavior including communication.



• Then we solve a decentralized control problem without 
communication to find controllers such that S and U/Z are 
Σ-bisimilar.

• This problem is decidable if
– the communication behavior is rational: it is given by 

a finite transition system that does not allow 
occurrence of infinite strings consisting only of 
synchronization events.

– observation by each controller Ci does not diverges:      
P−1

i(Pi(s)) ∩ L(G) is infinite for some s ∈ L(G) (this 
condition may be dropped).

Communication behavior 



Idea of the proof

Similar to the language equivalence L(G/Z) = E, Σ - bisimulation can 
be checked locally and it does not require the system to be 
nonblocking. 

(..., v, z, ...)

Σ ∗^

Σ

state of U state of S

These are sufficient for determining control 
actions.finite set



Instances of rational communication

• State-estimation-based controllers: each controller tries 
to send the current state estimate to all other controllers 
after every observation of plant events.

• k-bounded-delay communication.



Further work

• Methods to compute finite controllers that are optimal in 
a sense that
– reduction of communication,
– reduction of the sizes.

• It is easy to expect that finding optimal solution is NP-
hard.


