An Approximation Algorithm for Box Abstraction of Transition Systems on Real Vector Fields

(This is a revised version of a paper presented in SICE2009.)

Kunihiko HIRAISHI and Koichi KOBAYASHI,
JAIST
Predicate abstraction for Hybrid Systems

- Predicate abstraction is a powerful technique for extracting finite-state models from infinite-state systems.
- Predicate abstraction has also been applied to the verification of hybrid systems [Alur00, Alur02, Alur06].
- Given a hybrid system with linear dynamics and a set of linear predicates, the verifier performs a search of *the finite discrete quotient* whose states correspond to the truth assignments to the input predicates.
- We propose a technique that can be used for *accelerating* the computation of abstract state spaces for hybrid systems.
Predicate abstraction: example (1)

\[
\begin{bmatrix}
 x_1(t+1) \\
 x_2(t+1)
\end{bmatrix} = \alpha \cdot \begin{bmatrix}
 \cos \beta \pi & -\sin \beta \pi \\
 \sin \beta \pi & \cos \beta \pi
\end{bmatrix} \cdot \begin{bmatrix}
 x_1(t) \\
 x_2(t)
\end{bmatrix}
\]

\(\alpha = 0.8,\)
\(\beta = 1/6 \ (x_1 \leq 0, \ x_2 > 0);\)
\(\beta = -1/6 \ (x_1 > 0, \ x_2 > 0);\)
\(\beta = 1/8 \ (x_1 \leq 0, \ x_2 \leq 0);\)
\(\beta = -1/8 \ (x_1 > 0, \ x_2 \leq 0).\)

A PieceWise Linear System
Predicate abstraction: example (2)

Predicates $\Pi = \{ \pi_i \}$

$x_1 \leq k \ (k = -1, 0, 1)$,

$x_2 \leq k \ (k = -1, 0, 1)$.

Abstract states B

$S_1 = [1,1,1,1,1,1]$, …,

$S_{10} = [0,1,1,0,0,1]$, …,

$S_{16} = [0,0,0,0,0,0]$.

Transitions

$S_{10} \rightarrow S_{11} \equiv \exists x \in S_{10} \exists x' \in S_{11}. \ x \rightarrow x'$

(over-approximation)
Exact computation

\[b(v_1, \ldots, v_n) : \text{an abstract states with state variables } v_1, \ldots, v_n \]

\[C_\Pi(b) \subseteq \mathbb{R}^n : \text{Concretization of } b \]

\[\pi(R) \in \{0, 1\}^m : \text{Discretization of region } R \]

\[\text{Im}(R) \subseteq \mathbb{R}^n : \text{Image of region } R \]

\[\text{Im}_\Pi(b) := \pi(\text{Im}(C_\Pi(b))) : \text{Discretized Image of abstract state } b \]

\[\Delta(v_1, \cdots, v_n, v_1', \cdots, v_n') := \bigvee_{b \in B} \left(b(v_1, \cdots, v_n) \land \text{Im}_\Pi(b)(v_1', \cdots, v_n') \right) \]
Approximated computation (1)

Enlarged abstract states $B = \{ b_i \}$

$b_1 = [1, 1, 1, dc, dc, dc]$

$dc :$ don’t care

$b_2 = [dc, dc, dc, 1, 1, 1]$

$S_1 = b_1 \land b_2$

Conjunction complete: Each abstract state is represented by conjunction of enlarged abstract states.
Approximated computation (2)

\[b(v_1, \ldots, v_n) : \text{enlarged abstract state with state variables } v_1, \ldots, v_n \]
\[B : \text{the set of enlarged abstract states} \]
\[\text{Im}_\Pi(C_\Pi(b)) : \text{discretized image of } b \]

\[\Delta^\sim(v_1, \cdots, v_n, v'_1, \cdots, v'_n) := \bigwedge_{b \in B} (b(v_1, \cdots, v_n) \rightarrow \text{Im}_\Pi(b)(v'_1, \cdots, v'_n)) \]
Approximated computation (3)

\[\text{Im}_{\Pi}(b_1) \]
\[\text{Im}(C_{\Pi}(b_1)) \]
\[C_{\Pi}(b_1) \]

\[\text{Im}_{\Pi}(b_2) \]
\[\text{Im}(C_{\Pi}(b_2)) \]
\[C_{\Pi}(b_2) \]
Approximated computation (4)

Over-approximation:
\[\text{Im}_\Pi(b_1 \land b_2) \subseteq \text{Im}_\Pi(b_1) \land \text{Im}_\Pi(b_2) \]
Justification of the Idea (1)

- Discrete-time autonomous system: \(x(t_{k+1}) = f(x(t_k)) \).
- If \(f \) is injective (one-to-one), then \(\text{Im}(Q_1 \cap Q_2) = \text{Im}(Q_1) \cap \text{Im}(Q_2) \). [This holds for discrete-time linear/affine systems.]
- Even if \(\text{Im}(Q_1 \cap Q_2) = \text{Im}(Q_1) \cap \text{Im}(Q_2) \), \(\pi(\text{Im}(Q_1 \cap Q_2)) = \pi(\text{Im}(Q_1)) \cap \pi(\text{Im}(Q_2)) \) does not necessarily hold (discretization error).
- However, the error occurs \textit{only around correct boxes}.
 - If \(\| f^{-1}(x_1) - f^{-1}(x_2) \| / \| x_1 - x_2 \| \leq K \) for any \(x_1, x_2 \) (Lipschitz continuity of \(f^{-1} \)), then \(\| x_1 - x_2 \| \leq K \| f(x_1) - f(x_2) \| \). [This holds for discrete-time linear/affine systems.]
 - Suppose that \(x_1 \in Q_1 - Q_2, x_2 \in Q_2 - Q_1 \), but \(f(x_1) \) and \(f(x_2) \) are in the same box.
 - Then, there exists a positive real \(R \) s.t. \(\| f(x_1) - f(x_2) \| \leq R \).
 - We have \(\| x_1 - x_2 \| \leq KR \).
Justification of the Idea (2)

\[\| x_1 - x_2 \| \leq KR \]

Same box \(\rightarrow \) Discretization error
Complexity

- h_i: the number of predicates in the i-th axis.
- The number of abstract states is
 \[|B| = \prod_{i=1}^{n} (h_i + 1) = O((1 + m/n)^n). \]
- The number of enlarged abstract states is
 \[|\mathcal{B}| = \sum_{i=1}^{n} (h_i + 1) = O(m + n). \]
Discretization of Polyhedra: how to compute $\text{Im}_\Pi(b)$ from $\text{Im}(C_\Pi(b))$

- Since $\text{Im}(C_\Pi(b))$ is much larger than $\text{Im}(C_\Pi(b))$, the approximated computation requires more time at this step, provided that the computation time for the discretization depends on the size of polyhedra. As a result, the approximated computation is not very fast.

- We have develop an efficient algorithm, called the beam method, for this step. The algorithm uses convexity of regions.

- The beam method is compared with
 - Direct comparison: computing intersection between polyhedron P and each box in the axis-aligned bounding box of P,
 - Shannon expansion.
Beam Method for 2D Space

\[x_2 \]

\[bm((j, 0), P) \]

\[pceil_2(high((j, 0), P)) \]

\[pfloor_2(low((j, 0), P)) \]

\[line((j, 0)) \]

\[c^1_{j-1} \quad c^1_j \quad c^1_{j+1} \]

\[x_1 \]
Systems with Inputs

\[x(t_{k+1}) = Ax(t_k) + Bu(t_k) \]

\[
\begin{pmatrix}
 x(t_{k+1}) \\
 u
\end{pmatrix} =
\begin{pmatrix}
 A & B \\
 0 & I
\end{pmatrix}
\begin{pmatrix}
 x(t_k) \\
 u
\end{pmatrix}
\]

We embed the input in the state space. Then the matrix is nonsingular, provided that \(A \) is nonsingular.
Computation Results (1)

\[x(t_{k+1}) = Ax(t_k) + \left(\begin{array}{c} -0.1 \\ \vdots \\ -0.1 \end{array} \right) \]

where \(A \) is an \(n \)-dimensional square matrix that represents the following rotations:

- \(n = 2 \): \(\pi/3 \) around the origin.
- \(n = 3 \): \(\pi/3 \) around the origin on \(x_{23} \)-plane, \(x_{13} \)-plane, and \(x_{12} \)-plane.
- \(n = 4 \): \(\pi/3 \) around the origin on \(x_{12} \)-plane, \(x_{23} \)-plane, and \(x_{31} \)-plane.
- \(n = 5 \): \(\pi/3 \) around the origin on \(x_{12} \)-plane, \(x_{23} \)-plane, \(x_{34} \)-plane, and \(x_{45} \)-plane.
Computation Results (2)

- τ_Π: the exact transitions.
- $\tau_\Pi\sim$: the approximated transitions.
- Evaluation criteria:
 - Ratio $\gamma\sim = |\tau_\Pi\sim| / |\tau_\Pi|$.
 - The number of error transitions classified by hamming distance. Let $#e_i$ be the number of transitions in $\tau_\Pi\sim - H_i(\tau_\Pi)$, where $H_i(\tau_\Pi)$ is the set of all transitions whose hamming distance to at least one of transitions in τ_Π is no more than i.
Computation Results (3)

<table>
<thead>
<tr>
<th>(h)</th>
<th>(n = 2), Exact</th>
<th>(h) : the number of predicates in each axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>CPU time (sec.)</td>
<td>(</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>Shannon</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>10</td>
<td>0.12</td>
<td>0.37</td>
</tr>
<tr>
<td>15</td>
<td>0.24</td>
<td>0.95</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>2.42</td>
</tr>
<tr>
<td>30</td>
<td>1.4</td>
<td>8.02</td>
</tr>
<tr>
<td>40</td>
<td>3.13</td>
<td>19.22</td>
</tr>
<tr>
<td>50</td>
<td>6.05</td>
<td>37.78</td>
</tr>
<tr>
<td>60</td>
<td>10.54</td>
<td>66.77</td>
</tr>
<tr>
<td>70</td>
<td>17.14</td>
<td>108.41</td>
</tr>
<tr>
<td>80</td>
<td>26.69</td>
<td>164.85</td>
</tr>
<tr>
<td>90</td>
<td>39.03</td>
<td>240.69</td>
</tr>
<tr>
<td>100</td>
<td>56.5</td>
<td>338.98</td>
</tr>
</tbody>
</table>
Computation Results (4)

| h | CPU time (sec.) | $|\tau_\Pi|$ | γ^\sim | $\#e_1$ |
|-----|----------------|-------------|-------------|---------|
| | Direct | Shannon | Beam | | | |
| 3 | 0.02 | 0.02 | 0.01 | 67 | 1.14 | 0 |
| 5 | 0.04 | 0.06 | 0.02 | 162 | 1.16 | 0 |
| 10 | 0.14 | 0.56 | 0.07 | 555 | 1.16 | 0 |
| 15 | 0.29 | 0.23 | 0.11 | 1,190 | 1.17 | 0 |
| 20 | 0.72 | 1.4 | 0.17 | 2,060 | 1.18 | 0 |
| 30 | 2.26 | 4.57 | 0.38 | 4,488 | 1.18 | 0 |
| 40 | 5.42 | 10.88 | 0.73 | 7,898 | 1.18 | 0 |
| 50 | 10.53 | 21.34 | 1.29 | 12,252 | 1.18 | 0 |
| 60 | 18.67 | 37.57 | 2.13 | 17,530 | 1.18 | 0 |
| 70 | 30.4 | 60.76 | 3.16 | 23,718 | 1.18 | 0 |
| 80 | 46.02 | 91.79 | 4.7 | 30,913 | 1.18 | 0 |
| 90 | 67.13 | 133.34 | 6.45 | 38,943 | 1.18 | 0 |
| 100 | 95.2 | 188.06 | 9.01 | 48,037 | 1.18 | 0 |

$n = 2$, Approx.
Computation Results (5)

| ℓ | CPU time (sec.) | $|\tau_\Pi|$ | $|\tau_\Pi|$ | γ | $#c_1$ | $#c_2$ |
|-------|-----------------|------------|------------|--------|------|------|
| 3 | 0.16 | 450 | 574 | 1.28 | 4 | 0 |
| 5 | 0.7 | 1,679 | 2,129 | 1.27 | 3 | 0 |
| 10 | 4.96 | 10,896 | 14,029 | 1.29 | 8 | 0 |
| 15 | 14.11 | 34,044 | 44,605 | 1.31 | 93 | 0 |
| 20 | 40.33 | 77,265 | 101,552 | 1.31 | 399 | 0 |
| 30 | 152.64 | 248,912 | 327,702 | 1.32 | 1,222| 0 |

$n = 3$, Exact/Approx.
Computation Results (6)

| h | CPU time (sec.) | $|\tau_\Pi|$ | $|\tilde{\tau}_\Pi|$ | γ^\sim | $#e_1$ | $#e_2$ | $#e_3$ |
|-----|-----------------|--------------|-----------------|-------------|--------|--------|--------|
| 3 | 3.67 | 3,927 | 6,095 | 1.55 | 71 | 0 | 0 |
| 5 | 15.08 | 22,322 | 36,673 | 1.64 | 468 | 0 | 0 |
| 7 | 43.91 | 72,957 | 123,526 | 1.69 | 1,738 | 0 | 0 |
| 10 | 196.55 | 265,111 | 459,607 | 1.73 | 7,050 | 1 | 0 |

$n = 4$, Exact/Approx.
Computation Results (7)

| h | CPU time (sec.) | $|\tau_{\Pi}|$ | $|\tau_{\Pi}^{|}$ | $\gamma^{|}$ | $\#e_1$ | $\#e_2$ | $\#e_3$ |
|-----|-----------------|----------------|-----------------|-----------|--------|--------|--------|
| 2 | 10.98 | 6,233 | 10,997 | 1.76 | 412 | 0 | 0 |
| 3 | 44.04 | 32,338 | 61,282 | 1.90 | 2,294 | 8 | 0 |
| 4 | 172.24 | 110,703 | 220,908 | 2.00 | 9,697 | 62 | 0 |
| 5 | 443.49 | 284,518 | 578,721 | 2.03 | 26,034 | 150 | 0 |
| 7 | - | - | - | - | - | - | - |
| 10 | - | - | - | - | - | - | - |

$n = 5$, Exact/Approx.
Future Work

- Application to parameter design of hybrid dynamical systems.
- Development of method for general predicates.