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Origin of proof interpretations

I Hilbert’s 2nd problem (1900): Is Peano arithmetic consistent ?

I Gödel (1931) : Impossible to prove the consistency of a theory
T within T .

I Gödel’s motivation: obtain a relative consistency proof for HA
(and hence for PA).

I Let theories T1, T2 with languages L(T1), L(T2) . T2 is
consistent relative to T1 if it can be proved that if T1 is
consistent then T2 is consistent.

I A theorem φ ∈ L(T1) transformed into φ′ ∈ L(T2) ; the proof
p of φ transformed in a proof p′ of φ′. This often gives new
quantitative information. Also: p′ using restricted version of
the assumptions of φ, thus proving a more general result φ′.

I Gödel’s functional ”Dialectica” Interpretation (1958):
consistency of PA reduced to a quantifier-free calculus of
primitive recursive functionals of finite type.



Proof Mining

G. Kreisel (1950’s): Unwinding of proofs

’What more do we know if we have proved a theorem by restricted
means than if we merely know that it is true ?”

Within the past 20 years, Ulrich Kohlenbach and his collaborators
have applied Dialectica and related interpretations to obtain a wide
spectrum of results in : approximation theory, ergodic theory, fixed
point theory and nonlinear analysis.

Applications described as instances of logical phenomena by
general logical metatheorems.



Herbrand normal form - Metastability

I In general, for a Π0
3 sentence, i.e. of the form

A ≡ ∀k ∃n ∀m A0(k , n,m)

where A0 is quantifier-free, it is not possible to compute a
bound on n.

I However: possible to compute a bound on n for AH , the
Herbrand normal form of A;

AH :≡ ∀k ∃n A0(k , n, g(n))

where g is the Herbrand index function (in theories allowing
function variables and function quantifiers it would be
AH :≡ ∀g , k ∃n A0(k , n, g(n))

I AH : ineffectively equivalent to A and related to the
no-counterexample interpretation of A.



Herbrand normal form - Metastability
An instance in analysis-convergence statements

I considering a statement of the form

lim
t→∞

P(t) = 0

I written as

∀k ∈ N ∃n ∈ N ∀t ≥ n (|P(t)| < 2−k),

I by considering the metastable version

∀k ∈ N ∀g : N→ N ∃n ∈ N ∀t ∈ [n, n + g(n)] (|P(t)| < 2−k),

possible to find a computable bound (rate of metastability)
Φ(k , g , ·) depending on general uniform bounds on the input
data, so that n ≤ Φ(k, g , ·).



Application to the Cauchy problem generated by accretive
operators

In the following X is a real Banach space with dual X ∗. A
mapping A : X → 2X will be called an operator on X .

Definition
(J. Garćıa-Falset, 2005) Let φ : X → [0,∞) continuous with
φ(0) = 0, φ(x) > 0 for x 6= 0 so that for every sequence (xn) in X
such that (‖xn‖) is decreasing and φ(xn)→ 0 as n→∞, then
‖xn‖ → 0. A with 0 ∈ Az is said to be φ-accretive at zero if

∀(x , u) ∈ A (〈u, x − z〉+ ≥ φ(x − z)).

where: 〈y , x〉+ := max{〈y , j〉 : j ∈ J(x)},

J(x) := {j ∈ X ∗; 〈x , j〉 = ‖x‖2, ‖j‖ = ‖x‖}.



Application to the Cauchy problem generated by accretive
operators
Preliminaries

Definition
(Kohlenbach, K.-A., 2014) A φ-accretive at zero operator A is
uniformly φ- accretive at zero if φ : X → [0,∞) is of the form
φ(x) = g(‖x‖) where g : [0,∞)→ [0,∞) is continuous, g(0) = 0
and g(α) > 0 for α 6= 0.

Definition
(Kohlenbach, K.-A., 2014) Given Θ(·)(·) : N×N∗ → N, a uniformly
φ- accretive at zero operator A has a modulus of accretivity Θ if

∀K ∈ N∗ ∀n ∈ N ∀(x , u) ∈ A (‖x−z‖ ∈ [2−n,K ]→ 〈u, x−z〉+ ≥ 2−ΘK (n))

Proposition

(Kohlenbach, K.-A., 2014) Every uniformly φ-accretive at zero
operator A has a modulus of accretivity Θ .



Application to the Cauchy problem generated by accretive
operators
Preliminaries

We introduce in higher generality the property of uniform
accretivity at zero for an operator A : D(A)→ 2X with 0 ∈ Az as
follows:

Definition
(Kohlenbach, K.-A., 2014) An accretive operator A : D(A)→ 2X

with 0 ∈ Az is called uniformly accretive at zero if

∀k ∈ N ∀K ∈ N∗ ∃m ∈ N ∀(x , u) ∈ A

(‖x − z‖ ∈ [2−k ,K ]→ 〈u, x − z〉+ ≥ 2−m)(∗).

Any function Θ(·)(·) : N× N∗ → N is called a modulus of
accretivity at zero for A if m := ΘK (k) satisfies (∗).



Application to the Cauchy problem generated by accretive
operators
Preliminaries

Definition
Let F = {S(t) : C → C , t ≥ 0} be a family of self-mappings of
C ⊆ X . F is said to be a nonexpansive semigroup acting on C if

1. S(0) = I , where I is the identity mapping on C ,

2. S(s + t)x = S(s)S(t)x for all s, t ∈ [0,∞) and x ∈ C ,

3. ‖S(t)x − S(t)y‖ ≤ ‖x − y‖ for all x , y ∈ C and t ∈ [0,∞),

4. t → S(t)x is continuous in t ∈ [0,∞) for each x ∈ C .

Definition
A continuous function u : [0,∞)→ C ⊆ X is said to be an
almost-orbit of F if

lim
s→∞

( sup
t∈[0,∞)

‖u(t + s)− S(t)u(s)‖) = 0.



Application to the Cauchy problem generated by accretive
operators
Preliminaries

It is known that the following initial value problem

u′(t) + A(u(t)) 3 f (t), t ∈ [0,∞)

u(0) = x

where f ∈ L1(0,∞,X ). for each x ∈ D(A) has a unique integral
solution u so that u(t) ∈ D(A) for all t.
Moreover, it is known that for x0 ∈ D(A)

u′(t) + A(u(t)) 3 0, t ∈ [0,∞)

u(0) = x0

has a unique integral solution given by Crandall- Liggett :

u(t) := S(t)(x0) = lim
n→∞

(I +
t

n
A)−n(x0).



Application to the Cauchy problem generated by accretive
operators

Theorem
(Garćıa-Falset, 2005) If A is an operator on X so that
∀λ > 0 (D(A) ⊆ R(I + λA)) that is φ-accretive at zero and such
that the problem

v ′(t) + A(v(t)) 3 0, t ∈ [0,∞), v(0) = x0

has a strong solution for each x0 ∈ D(A) and
F := {S(t) : D(A)→ D(A) : t ≥ 0} is the nonexpansive
semigroup generated by −A , then every almost-orbit
u : [0,∞)→ D(A) of F is strongly convergent to the zero z of A.



Application to the Cauchy problem generated by accretive
operators

Theorem
(Kohlenbach, K.-A., 2014) Same as above with A uniformly
accretive at zero with modulus of accretivity Θ . Then every
almost-orbit u : [0,∞)→ D(A) of F is strongly convergent to the
zero z of A with rate of metastability Ψ(k , ḡ ,B,Φ,Θ) so that

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Ψ(k , ḡ ,B,Φ,Θ)

∀t ∈ [n̄, n̄ + ḡ(n̄)] (‖u(t)− z‖ < 2−k),

where



Application to the Cauchy problem generated by accretive
operators

Ψ(k , ḡ ,B,Φ,Θ) = Φ(k + 1, g) + h(Φ(k + 1, g))

with
g(n) := ḡ(n + h(n)) + h(n),

h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1,

K (n) := p
√

2(B(n) + 1)q.

Here Φ : N× (N→ N)→ N is a rate of metastability
corresponding to a given almost-orbit u : [0,∞)→ D(A) of F , i.e.

∀k ∈ N ∀g : N→ N ∃n ≤ Φ(k, g)

∀t ∈ [0, g(n)] (‖u(t + n)− S(t)u(n)‖ ≤ 2−k)

and B(n) ∈ N is any nondecreasing upper bound on 1
2‖u(n)− z‖2.



Application to the Cauchy problem generated by accretive
operators

We now come to a case where the premise (the information
coming from the almost-orbit which before was unknown) can be
explicitly witnessed.
This is our central result.

Because the integral solution of

u′(t) + A(u(t)) 3 f (t), t ∈ [0,∞), u(0) = x

where f (·) ∈ L1(0,∞,X ) turns out to be an almost orbit of
F := {S(t) : D(A)→ D(A) : t ≥ 0 } generated by −A via the
Crandall-Liggett formula, the following result by Garćıa-Falset is
actually a corollary of his previous theorem, and analogously our
following theorem (our central result ) can be seen as a corollary of
our metastable theorem above.



Application to the Cauchy problem generated by accretive
operators

Theorem
(J. Garćıa-Falset, 2005) Let A be an φ-accretive at zero operator
on X so that ∀λ > 0 (D(A) ⊆ R(I + λA)). If

v ′(t) + A(v(t)) 3 0, t ∈ [0,∞), v(0) = x0

has a strong solution for each x0 ∈ D(A), Then for each x ∈ D(A)
the integral solution u(·) of

u′(t) + A(u(t)) 3 f (t), t ∈ [0,∞), u(0) = x

where f (·) ∈ L1(0,∞,X ) converges strongly to the zero z of A as
t →∞.



Application to the Cauchy problem generated by accretive
operators

Theorem
(Kohlenbach, K.-A., 2014) Same as above except that A is a
uniformly accretive at zero operator on X with a modulus of
accretivity Θ. Then, for each x ∈ D(A) the integral solution u(·) of

u′(t) + A(u(t)) 3 f (t), t ∈ [0,∞), u(0) = x

where f (·) ∈ L1(0,∞,X ) u(·) satisfies

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Ψ(k , ḡ ,M,Θ,B)

∀t ∈ [n̄, n̄ + ḡ(n̄)] (‖u(t)− z‖ < 2−k)



with rate of metastability

Ψ(k , ḡ ,M,B,Θ) = g̃ (M·2k+1)(0) + h(g̃ (M·2k+1)(0))

where
g̃(n) := g(n) + n,

( g (0)(k) := k

g (i+1)(k) := g(g (i)(k)) ),

g(n) := ḡ(n + h(n)) + h(n),

h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1,

K (n) := p
√

2(B(n) + 1)q,

B(n) is a monotone upper bound :B(n) ≥ 1
2‖u(n)− z‖2,

N 3 M ≥ I :=

∫ ∞
0
‖f (ξ)‖dξ.



Thank you !



APPENDIX: Mathematical Definitions

Definition
A continuous function u : [0,∞)→ X is said to be a strong
solution of the homogeneous problem if it is Lipschitz on every
bounded subinterval of [0,∞), a.e. differentiable on [0,∞),
u(t) ∈ D(A) a.e., u(0) = x0 and u′(t) + A(u(t)) 3 0 for almost
every t ∈ [0,∞).

Definition
A continuous function u : [0,∞)→ X is an integral solution of the
(non)homogeneous problem if u(0) = x and for s ∈ [0, t] and
(w , y) ∈ A

‖u(t)− w‖2 − ‖u(s)− w‖2 ≤ 2

∫ t

s
〈f (τ)− y , u(τ)− w〉+dτ.


