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Background

This talk is

1. to give a very brief introduction to univalent type theory (UTT),

2. to demonstrate some experiments of doing mathematics in UTT, and

3. to collect your valuable advices of interesting concrete mathematics that
could be suitable to carry out within such foundation.
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Background

Constructive mathematics and Martin-Löf type theory

A central tenet of constructive mathematics is that the logical symbols carry
computational content.

Curry–Howard logic in Martin-Löf type theory (MLTT)

Propositions Types
P ∧Q P ×Q
P ∨Q P +Q
P → Q P → Q

∀(x :A).P (x) Π(x :A).P (x)
∃(x :A).P (x) Σ(x :A).P (x)

Computer proof assistants based on (variants of) MLTT include Agda, Coq,
Lean, Nuprl, . . .
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A central tenet of constructive mathematics is that the logical symbols carry
computational content.

Curry–Howard logic in Martin-Löf type theory (MLTT)
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Background

Martin-Löf type theory for constructive mathematics?

Nonaxiom of choice

Π(x :A).Σ(y :B).P (x, y)→ Σ(f :A→B).Π(x :A).P (x, f(x))

Trouble of defining the image of a function f : A→ B

(Σ(y :B).Σ(x :A).f(x) = y) ' A

Failure of Brouwer’s continuity principle (Escardó and X, 2015)(
Π(f :NN→N).Π(α :NN).Σ(n :N).Π(β :NN). (α =n β → f(α) = f(β))

)
→ 0 = 1

Is this theory of construction too computationally informative?
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Mathematics in Univalent type theory

Voevodsky’s Univalent Foundations

A univalent type theory is a mathematical language for expressing definitions,
theorems and proofs that is invariant under equivalences, i.e.

P (X)× (X ' Y )→ P (Y )

Examples: UniMath, HoTT book, cubical type theory.

Among the significant univalent concepts and techniques, here I present two:

Stratification of types

I A type P is a proposition if

isProp(P ) :≡ Π(x, y :P ).x = y

I A type A is a set if

isSet(A) :≡ Π(x, y :A).isProp(x = y)

I groupoids and, more generally, n-types

provides a flexible way to intuitively describe mathematical objects.
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Mathematics in Univalent type theory

Propositional truncation

A propositional truncation of a type X, if it exists, is a proposition ‖X‖
together with a map | − | : X → ‖X‖ such that for any proposition P and
f : X → P we can find f̄ : ‖X‖ → P with

X
|−| //

f

""

‖X‖

f̄

��
P

I Intuitively, ‖X‖ is the (type of) truth value of the inhabitedness of X.

I Several kinds of types can be shown to have truncations in MLTT.

I There are different ways to extend MLTT to get truncations for all types.

I ‖X‖ → X is not provable in general, and is equivalent to X + ¬X.
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Mathematics in Univalent type theory

Univalent logic

Let P,Q be propositions.

⊥ :≡ 0

> :≡ 1

P ∧Q :≡ P ×Q
P ∨Q :≡ ‖P +Q‖
P → Q :≡ P → Q

∀(x :A).P (x) :≡ Π(x :A).P (x)
∃(x :A).P (x) :≡ ‖Σ(x :A).P (x)‖

Axiom of choice

Π(x :A).‖Σ(y :B).P (x, y)‖ → ‖Σ(f :A→B).Π(x :A).P (x, f(x))‖
Image of f : A→ B

image(f) :≡ Σ(y :B).‖Σ(x :A).f(x) = y‖
Continuity principle

Π(f :NN→N).Π(α :NN).‖Σ(n :N).Π(β :NN). (α =n β → f(α) = f(β)) ‖

From now on, I use logical connectives for properties and type formers for structures.
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Mathematics in Univalent type theory

Example I: Intermediate Value Theorem

Continuity as a structure or a property?

Theorem (Bishop,1967)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). For any
ε > 0 we can find c ∈ [a, b] such that |f(c)| < ε.

In its proof, uniform continuity is used as a structure on f to construct the
approximate root c for each ε.

Theorem (Taylor, 2010)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). If f is
locally nonzero (for any x < y there exists z ∈ (x, y) such that f(z) 6= 0), then
we can find c ∈ [a, b] such that f(c) = 0.

Here the root c is constructed using the local-nonzero structure on f , and
uniform continuity is used only as a property of f to prove f(c) = 0.

So far it seems to be an art to decide if a particular mathematical statement
should be formulated as giving structure or as a proposition.

A univalent approach to constructive mathematics LMU Munich



Background Mathematics in Univalent type theory Summary

Mathematics in Univalent type theory

Example I: Intermediate Value Theorem

Continuity as a structure or a property?

Theorem (Bishop,1967)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). For any
ε > 0 we can find c ∈ [a, b] such that |f(c)| < ε.

In its proof, uniform continuity is used as a structure on f to construct the
approximate root c for each ε.

Theorem (Taylor, 2010)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). If f is
locally nonzero (for any x < y there exists z ∈ (x, y) such that f(z) 6= 0), then
we can find c ∈ [a, b] such that f(c) = 0.

Here the root c is constructed using the local-nonzero structure on f , and
uniform continuity is used only as a property of f to prove f(c) = 0.

So far it seems to be an art to decide if a particular mathematical statement
should be formulated as giving structure or as a proposition.

A univalent approach to constructive mathematics LMU Munich



Background Mathematics in Univalent type theory Summary

Mathematics in Univalent type theory

Example I: Intermediate Value Theorem

Continuity as a structure or a property?

Theorem (Bishop,1967)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). For any
ε > 0 we can find c ∈ [a, b] such that |f(c)| < ε.

In its proof, uniform continuity is used as a structure on f to construct the
approximate root c for each ε.

Theorem (Taylor, 2010)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). If f is
locally nonzero (for any x < y there exists z ∈ (x, y) such that f(z) 6= 0), then
we can find c ∈ [a, b] such that f(c) = 0.

Here the root c is constructed using the local-nonzero structure on f , and
uniform continuity is used only as a property of f to prove f(c) = 0.

So far it seems to be an art to decide if a particular mathematical statement
should be formulated as giving structure or as a proposition.

A univalent approach to constructive mathematics LMU Munich



Background Mathematics in Univalent type theory Summary

Mathematics in Univalent type theory

Example I: Intermediate Value Theorem

Continuity as a structure or a property?

Theorem (Bishop,1967)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). For any
ε > 0 we can find c ∈ [a, b] such that |f(c)| < ε.

In its proof, uniform continuity is used as a structure on f to construct the
approximate root c for each ε.

Theorem (Taylor, 2010)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). If f is
locally nonzero (for any x < y there exists z ∈ (x, y) such that f(z) 6= 0), then
we can find c ∈ [a, b] such that f(c) = 0.

Here the root c is constructed using the local-nonzero structure on f , and
uniform continuity is used only as a property of f to prove f(c) = 0.

So far it seems to be an art to decide if a particular mathematical statement
should be formulated as giving structure or as a proposition.

A univalent approach to constructive mathematics LMU Munich



Background Mathematics in Univalent type theory Summary

Mathematics in Univalent type theory

Example I: Intermediate Value Theorem

Continuity as a structure or a property?

Theorem (Bishop,1967)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). For any
ε > 0 we can find c ∈ [a, b] such that |f(c)| < ε.

In its proof, uniform continuity is used as a structure on f to construct the
approximate root c for each ε.

Theorem (Taylor, 2010)
Let f : [a, b]→ R be uniformly continuous such that f(a) ≤ 0 ≤ f(b). If f is
locally nonzero (for any x < y there exists z ∈ (x, y) such that f(z) 6= 0), then
we can find c ∈ [a, b] such that f(c) = 0.

Here the root c is constructed using the local-nonzero structure on f , and
uniform continuity is used only as a property of f to prove f(c) = 0.

So far it seems to be an art to decide if a particular mathematical statement
should be formulated as giving structure or as a proposition.

A univalent approach to constructive mathematics LMU Munich



Background Mathematics in Univalent type theory Summary

Mathematics in Univalent type theory

Example II: Fan Theorem

To distinguish principles of structures from those of properties (univalent reverse math?)

Given B : 2∗ → Prop where Prop is the universe of propositions, define
I decidable(B) :≡ Π(u :2∗).B(u) + ¬B(u)

I bar(B) :≡ ∀(α :2N).∃(n :N).B(ᾱ(n))

I barΣ(B) :≡ Π(α :2N).Σ(n :N).B(ᾱ(n))

I uBar(B) :≡ · · · , uBarΣ(B) :≡ · · ·
I FAN :≡ ∀(B :2∗→Prop). (decidable(B)→ bar(B)→ uBar(B))

I FANΣ :≡ Π(B :2∗→Prop). (decidable(B)→ barΣ(B)→ uBarΣ(B))

I Cont :≡ · · · , ContΣ :≡ · · · , UC :≡ · · · , UCΣ :≡ · · · , MUC :≡ · · · , MUCΣ :≡ · · ·
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Theorem (in e.g. BISH).

FAN

l

∧ Cont → UC

MUC
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Theorem (in MLTT + ‖ − ‖).

FANΣ

l

↔ FAN

l

∧ Cont → UC

MUCΣ ↔ MUC ContΣ

↑

UCΣ

l
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Summary

Summary and ...

Univalent type theory seems a good approach to constructive mathematics,
because

I it is constructive, but also compatible with classical and intuitionistic
mathematics,

I the stratification of types (e.g. propositions and sets) provides a flexible
and informative way to formulate mathematical statements, and

I its implementations such as cubical Agda allow us to verify and execute
proofs and constructions.

A constructive proof of the above claim is to do actual mathematics in UTT.

Thank you!

And, comments, remarks, suggestions . . . , please!!!
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