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Motivation

ñ Arnon Avron: Hypersequents, Logical Consequence and
Intermediate Logics for Concurrency Ann.Math.Art.Int. 4
(1991) 225-248

ñ The second, deeper objective of this paper is to contribute
towards a better understanding of the notion of logical
consequence in general, and especially its possible relations
with parallel computations

ñ We believe that these logics [...] could serve as bases for
parallel λ-calculi.

ñ The name “communication rule” hints, of course, at a
certain intuitive interpretation that we have of it as
corresponding to the idea of exchanging information
between two multiprocesses: [...]

ñ General aim: provide Curry-Howard style correspondences
for parallel computation, starting from logical systems
with good intuitive algebraic / relational semantics.
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Rules for NJ plus
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A prederivation is a well-formed derivation tree based on the
rules of HNGL.
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Hyper rules

Applies to k prehyper deductions and produces another
prehyper deduction:
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Hyper communication rule

R1

Γ
·····
A

R2

∆
·····
B

h-Com

R1 R2

Γ
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x: ComA,B
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∆
·····
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Hyper splitting rule

R

Γ ,∆
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A
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R

k[Γ],∆
·····
A

x:k SptΓ ,∆ A

Γ , l[∆]
·····
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Hyper contraction and repetition rules

R

Γ
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∆
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Γ
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·····
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Γ
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Γ
·····
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Why this verbosity?

Natural deduction, as well as Sequent calculus, define a partial
order of rule instances, and any linearisation that agrees with
the partial order gives a valid derivation.

In the case of Hyper Natural Deductions we have multiple trees
with multiple partial orders, but due to the connections
between prederivations via communication rules, the final
HNGL does not define a unique derivation order.
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Proof of linearity - GLC version

C = (A→ B)∨ (B → A),

A⇒ A B ⇒ Bcom
A⇒ B | B ⇒ A→,r
⇒ A→ B | B ⇒ A→,r
⇒ A→ B | ⇒ B → A∨1,r ⇒ C | ⇒ B → A∨2,r

⇒ C | ⇒ C
EC ⇒ C



Proof of linearity - HNGL version

1[A]x: ComA,B B1→-i A→ B∨-i C

2[B]
x: ComA,B A2→-i B → A∨-i Cy : Ctr
C



HNGL deduction

A B

h-Com

A
x: ComA,B

B

B
x̄: ComB,A

A

h-→-i

1[A]
x: ComA,B

B
1 →:i

A→ B

B
x̄: ComB,A

A

h-→-i

1[A]
x: ComA,B

B
1 →:i

A→ B

2[B]
x̄: ComB,A

A
2 →:i

B → A
h-∨-i

1[A]
x: ComA,B

B
1 →:i

A→ B
∨:i

C

2[B]
x̄: ComB,A

A
2 →:i

B → A

h-∨-i

1[A]
x: ComA,B

B
1 →:i

A→ B
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x̄: ComB,A

A
2 →:i

B → A
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h-Ctr

1[A]
x: ComA,B

B
1 →:i

A→ B
∨:i

C

2[B]
x̄: ComB,A

A
2 →:i

B → A
∨:i

C
y : Ctr

C



Results on HNGL

Theorem
If A is GLC derivable, then A is also HNGL derivable.

Theorem
If A is HNGL derivable, then A is also GLC derivable.

Theorem
The system HNGL is sound and complete for infinitary
propositional Gödel logic.



Discussion

ñ Hyper rules – derivations are completely in ND style

ñ Hyper rules mimic HLK/BCF system

ñ natural style of deduction

ñ but: procedural definition (like BCF system):
ñ difficult to check whether a given figure forms a proof
ñ difficult to reason on normalisation (needs reshuffling of

proof trees)

We need criteria to check whether a set of trees forms a proof!
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Towards an explicit definition



Proof criteria

What about the following proof part:

Bx: ComB,A A

E

Ax̄: ComA,B B

F
E ∧ F



Equivalence classes

c1

∧

c2

c̄2

c3

. . .

cn

c̄1

Criterion 1: The sets of trees connected to the sub-trees routed
in the predecessors of any non-unary logical rule need to be
disjoint.
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Another criteria

What about this:

Bx: ComB,A A

Ex: ComE,F F

Fx̄: ComF,E E

Ax̄: ComA,B B

Criterion 2: There is a total order on communication and split
labels that is compatible with the order on the branches.
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Canopy graphs

Two operations on labeled directed graphs:

Cut(G, E) drops a set of edges from the graph

Drop(G, N) drops a set of nodes and related edges that are
reachable from all nodes labeled with a name in N

Definition
Let G = (V , E,N, f ) be a labeled graph, and let Ec ⊆ E be the
set of symmetric edges, that is the set of all edges (r , s) ∈ E
where also (s, r) ∈ E. If Cut(G, Ec) is a disjoint union of trees,
we call G a C-graph or canopy graph.
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Motivation of these concepts

Consider the following hyper-sequent derivation:

B ⇒ B
C, B ⇒ B A⇒ A

com1 C,B ⇒ A | A⇒ B

C ⇒ C
C,B ⇒ C A⇒ A

com2 C,B ⇒ A | A⇒ C∧-r
C,B ⇒ A | C,B ⇒ A | A⇒ B ∧ C

contr
C,B ⇒ A | A⇒ B ∧ C

⇒ C → (B → A) | ⇒ A→ B ∧ C

And the following intended HND proof:

[C]x1: ComC,A A
[B]x2: ComB,A Ay : Ctr

Az
B → Aw

C → (B → A)
[A]x̄1: ComA,C C

[A]x̄2: ComA,B Bu:∧-i B ∧ Cv
A→ (B ∧ C)
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Motivation of these concepts II

[C]x1: ComC,A A
[B]x2: ComB,A Ay : Ctr

Az
B → Aw

C → (B → A)
[A]x̄1: ComA,C C

[A]x̄2: ComA,B Bu:∧-i B ∧ Cv
A→ (B ∧ C)

x1 x2 x̄2 x̄1

y z w

Expresses an implicit ordering between the conjunction
(introduced first) and the contraction (introduced later).



Motivation of these concepts II

[C]x1: ComC,A A
[B]x2: ComB,A Ay : Ctr

Az
B → Aw

C → (B → A)
[A]x̄1: ComA,C C

[A]x̄2: ComA,B Bu:∧-i B ∧ Cv
A→ (B ∧ C)

and the associated graph

x1 x2 x̄2 x̄1

y z w u v

Expresses an implicit ordering between the conjunction
(introduced first) and the contraction (introduced later).



Motivation of these concepts II

[C]x1: ComC,A A
[B]x2: ComB,A Ay : Ctr

Az
B → Aw

C → (B → A)
[A]x̄1: ComA,C C

[A]x̄2: ComA,B Bu:∧-i B ∧ Cv
A→ (B ∧ C)

connectivity condition does not hold for u

x1 x2 x̄2 x̄1

y z w

Expresses an implicit ordering between the conjunction
(introduced first) and the contraction (introduced later).



Motivation of these concepts II

[C]x1: ComC,A A
[B]x2: ComB,A Ay : Ctr

Az
B → Aw

C → (B → A)
[A]x̄1: ComA,C C

[A]x̄2: ComA,B Bu:∧-i B ∧ Cv
A→ (B ∧ C)

cut at the contraction, conn. comp. fall apart

x1 x2 x̄2 x̄1

y z w

Expresses an implicit ordering between the conjunction
(introduced first) and the contraction (introduced later).



Motivation of these concepts II

[C]x1: ComC,A A
[B]x2: ComB,A Ay : Ctr

Az
B → Aw

C → (B → A)
[A]x̄1: ComA,C C

[A]x̄2: ComA,B Bu:∧-i B ∧ Cv
A→ (B ∧ C)

cut at the contraction, conn. comp. fall apart

x1 x2 x̄2 x̄1

y z w

Expresses an implicit ordering between the conjunction
(introduced first) and the contraction (introduced later).



Explicit definition of HND for Gödel logics

A finite set of pre-derivations R (together with a total order on
labels) forms a hyper natural deduction iff

ñ some obvious consistency conditions are satisfied;
like occurrence of dual labels, compatibility with fixed
label order, . . .

ñ Independence of premises for non-unary logical rules r
and communication:
The connected components in Cut(Drop(G(R), r)) of
premises of r are disjoint.

ñ Local dependence of contraction premises r :
The connected components in Cut(Drop(G(R), r)) of
premises of r are equal.
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Core lemma

Chain lemma – in a GLHD the following figure cannot appear.

x1

u1

y1

u+1

∗t ∗
t

∗t

x2

u2

y2

u+2

∗t ∗
t

∗t

. . .

x`

u`

y`

u+`

∗t ∗
t

∗t



Normalisation



Normalisation

Idea: Reorder deductions where an introduction rule is
followed by an elimination rule:

[A]

B→-i A→ B

Γ

A→-e
B

converts to

Γ

A

B

Effect of normalisation: hourglass form of derivation,
eliminations followed by introductions.
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Permutation Conversions for hyper

natural deduction

Example conversion for normalisation in hyper natural
deduction:

Γ
σ0

A→ Bx: ComA→B,C C

∆
σ1

Cx̄: ComC,A→B A→ B

Π
σ2

A→-e
B

converts to (similar to cut-elimination in HLK)

Γ
σ0

A→ B

1[Π]
σ2

A→-e
B1SyΓ ,Π Bx: ComB,C C

2[Γ]
σ0

A→ B

Π
σ2

A→-e
B2SȳΠ,Γ B

∆
σ1

Cx̄: ComC,B Bcontr B
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Conversions

ñ proof follows Troelstra/Schwichtenberg proof

ñ detour conversions, simplification conversion and
permutation conversions as there, with cases for cut and
split added

ñ branches and tracks

ñ double induction on cut-rank and ordinal sum of critical
label sequences

Theorem
Contraction, communication and splitting permutation
conversions convert hyper natural deductions into hyper
natural deductions.
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Results

Theorem (Normalisation)
Hyper Natural Deduction for Gödel Logic admits (weak)
normalisation. That is, there is a way to move all elimination
rules above introduction rules by applying the above
conversions.

Theorem (Sub-formula property)

Let R be a normal hyper natural deduction with derived
hypersequentH . Then each formula in R is a subformula of a
formula inH .
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Returning to our wishlist

(semi) local

" construction of deductions:
apply ND inspired rules to extend a HND deductions

" modularity of deductions:
reorder/restructure deductions

" analyticity (sub-formula property)

normalisation

" procedural normalisation via conversion steps
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Further steps

ñ Extend hyper natural deduction to first order

ñ Reconsidering BCF system in the light of our procedural
definition

ñ Develop term systems (“parallel λ”) and establish
Curry-Howard correspondences

ñ Investigate confluence of normalisation

ñ Connections to process algebra or other systems

ñ Extension to other hyper sequent systems

Thanks for your attention!

Ref: Beckmann, A. and P., N. Hyper Natural Deductions, to
appear in Journal of Logic and Computation.
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