
On the mathematical and foundational
significance of the uncountable

Sam Sanders (jww Dag Normann)

Kanazawa, March 2018

Center for Advanced Studies, LMU Munich



Reverse “Mathematics”

Reverse Mathematics (RM), as developed by Friedman-Simpson
within Z2, is a mature field nowadays (Martin Davis, 2017, FOM).

The goal of RM is classification: find the minimal axioms needed
to prove theorems from mathematics. This results in the elegant
‘Big Five’ picture and associated linear order (see below).

The framework of RM is second-order arithmetic Z2, i.e. only
numbers and sets thereof are available.

Objects of higher type, like continuous functions on the reals,
topologies, Banach spaces, . . . , are represented via ‘codes’, i.e.
countable approximations.

Received view: coding in RM is harmless; adopting higher types
changes little-to-nothing.

This talk: introducing higher-order objects destroys the ‘Big Five’
picture of RM and collapses the associated linear order.
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The Big Five picture of RM

6

RCA0

WKL0

ACA0

ATR0

Π1
1-CA0

proves Interm. value thm, Soundness thm, Existence of alg. clos. . . .

↔ Peano exist. ↔ Weierstraß approx. ↔ Weierstraß max. ↔ Hahn-

Banach ↔ Heine-Borel ↔ Brouwer fixp. ↔ Gödel compl. ↔ . . .

↔ Bolzano-Weierstraß ↔ Ascoli-Arzela ↔ Köning ↔ Ramsey (k ≥ 3)

↔ Countable Basis ↔ Countable Max. Ideal ↔ MCT↔ . . .

↔ Ulm ↔ Lusin ↔ Perfect Set ↔ Baire space Ramsey ↔ . . .

↔ Cantor-Bendixson ↔ Silver ↔ Baire space Det. ↔ Menger ↔ . . .

Steve Simpson: the ‘Big Five’ capture most of ordinary mathematics

(=non-set-theoretic) in a linear order (part of the Gödel hierarchy).

This talk: introducing higher-order objects destroys the ‘Big Five’ picture

and collapses the linear order; the picture and order are merely artefacts

of second-order arithmetic (in particular: of countable approximations).
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This talk: introducing higher-order objects destroys the ‘Big Five’ picture

and collapses the linear order; the picture and order are merely artefacts

of second-order arithmetic (in particular: of countable approximations).



The Big Five picture of RM

6

RCA0

WKL0

ACA0

ATR0

Π1
1-CA0

proves Interm. value thm, Soundness thm, Existence of alg. clos. . . .

↔ Peano exist. ↔ Weierstraß approx. ↔ Weierstraß max. ↔ Hahn-

Banach ↔ Heine-Borel ↔ Brouwer fixp. ↔ Gödel compl. ↔ . . .
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↔ Countable Basis ↔ Countable Max. Ideal ↔ MCT↔ . . .

↔ Ulm ↔ Lusin ↔ Perfect Set ↔ Baire space Ramsey ↔ . . .

↔ Cantor-Bendixson ↔ Silver ↔ Baire space Det. ↔ Menger ↔ . . .

Steve Simpson: the ‘Big Five’ capture most of ordinary mathematics

(=non-set-theoretic) in a linear order (part of the Gödel hierarchy).
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Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

Cousin proved ‘Cousin’s lemma’ before 1893, dealing with R2:

Define a connected space S bounded by a simple or complex

closed contour; if to each point of S there corresponds a circle

of finite radius, then the region can be divided into a finite

number of subregions such that each subregion is interior to a

circle of the given set having its center in the subregion.

This is just Heine-Borel compactness for uncountable open covers.
Pincherle’s theorem (1882) has Cousin’s lemma as a special case.

Lindelöf proved the related ‘Lindelöf lemma’ (1903): an
uncountable open cover of E ⊂ Rn has a countable sub-cover.

The Cousin and Lindelöf lemmas cannot be formalised in
second-order arithmetic.
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Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

Dirichlet mentions ‘Dirichlet’s function’, i.e. the characteristic
function of Q, for the first time in 1829.

Riemann defines a function with countably many discontinuities via
a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.

Do we really need discontinuous functions and/or Cousin’s lemma?

YES; even in scientifically applicable math!



Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

Dirichlet mentions ‘Dirichlet’s function’, i.e. the characteristic
function of Q, for the first time in 1829.

Riemann defines a function with countably many discontinuities via
a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.

Do we really need discontinuous functions and/or Cousin’s lemma?

YES; even in scientifically applicable math!



Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

Dirichlet mentions ‘Dirichlet’s function’, i.e. the characteristic
function of Q, for the first time in 1829.

Riemann defines a function with countably many discontinuities via
a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.

Do we really need discontinuous functions and/or Cousin’s lemma?

YES; even in scientifically applicable math!



Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

Dirichlet mentions ‘Dirichlet’s function’, i.e. the characteristic
function of Q, for the first time in 1829.

Riemann defines a function with countably many discontinuities via
a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.

Do we really need discontinuous functions and/or Cousin’s lemma?

YES; even in scientifically applicable math!



Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

Dirichlet mentions ‘Dirichlet’s function’, i.e. the characteristic
function of Q, for the first time in 1829.

Riemann defines a function with countably many discontinuities via
a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.

Do we really need discontinuous functions and/or Cousin’s lemma?

YES; even in scientifically applicable math!



Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

Dirichlet mentions ‘Dirichlet’s function’, i.e. the characteristic
function of Q, for the first time in 1829.

Riemann defines a function with countably many discontinuities via
a series in his Habilitationsschrift in 1855

Discontinuous functions cannot be represented via codes in general.

Do we really need discontinuous functions and/or Cousin’s lemma?

YES; even in scientifically applicable math!



Step 1: ordinary mathematics requiring higher types

Ordinary mathematics = prior to or independent of abstract set theory

The gauge integral was introduced in 1912 by Denjoy (in a different form)

and generalises Lebesgue’s integral (1904). The gauge integral (directly)

formalises the Feynman path integral from physics. Gefundenes Fressen!

As we will see below, the very definition of the gauge integral
requires higher-order theorems and objects, namely (full) Cousin’s
lemma and discontinuous functions on R.

The development of the gauge integral:
Denjoy-Luzin-Perron-Henstock-Kurzweil
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Introduction Shin-Reverse Mathematics Some philosophy and history

Step 2: The Big Five and Higher-order RM
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All the second-order systems have higher-order counterparts!

(∃3): there is a functional ∃3 deciding ‘(∃f ∈ NN)(F (f ) = 0)’ for any F 2

(S2
k ): there is a functional S2

k which decides Π1
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(UATR): ‘there is a functional expressing transfinite recursion’

(∃2): there is a functional ∃2 deciding arithm. formulas

(FF): the fan functional computes a modulus of uniform

continuity for any continuous functional on 2N
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Step 2: Cousin’s lemma in higher-order RM

Cousin’s lemma (1893)

implies that ANY open cover of I ≡ [0, 1] has a
finite sub-cover. Any functional Ψ : I → R+ yields a ‘canonical’ cover
∪x∈I IΨ

x of I , where IΨ
x ≡ (x −Ψ(x), x + Ψ(x)). Hence, we have:

(∀Ψ : I → R+)(∃y1, . . . , yk ∈ [0, 1])([0, 1] ⊂ ∪i≤k IΨ
yi ) (HBU)

The reals y1, . . . , yk yield a finite sub-cover; NO conditions on Ψ.

special fan functional Θ computes y1, . . . , yk from Ψ, i.e realiser for HBU.

Where does HBU fit in RM? Almost equivalent question: How
hard is it to compute Θ (in the sense of Kleene’s S1-S9)?

PS: Borel’s proof of HBU (≈ 1900) makes no use of the axiom of choice.

With minimal adaption, Borel’s proof yields a realiser Θ for HBU.
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FULL SOA as in Zω
2 is needed to prove HBU!

HBU falls FAR outside of the Big Five!

In fact: NO type 2 functional computes (S1-S9) a realiser Θ for HBU.

hence: NO Big Five system implies HBU; same for Π1
k -CAω0
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Step 3: Some mathematical friends for HBU

The following properties of the gauge integral are equivalent to HBU:

1 If a function is gauge integrable, the associated integral is unique.

2 If a function is Riemann int., it is gauge int. with the same integral.

3 There is a non-gauge integrable function.

4 There is a gauge integrable function which is not Lebesgue int.

5 a version of Hake’s theorem (about improper gauge integrals)

The gauge integral provides a simpler generalisation of Lebesgue’s
integral and a partial/direct formalisation for Feynman’s path integral.

f : R→ R is Riemann integrable on I ≡ [0, 1] with integral A ∈ R:

(∀ε > 0)(∃ δ > 0︸ ︷︷ ︸
constant

)(∀P)( ‖P‖ < δ︸ ︷︷ ︸
P is ‘finer’ than δ

→ |S(P, f )− A| < ε)

P = (0, t1, x1, . . . xk , tk , 1) partition of I ; mesh ‖P‖ := maxi≤k(xi+1 − xi );

Riemann sum S(P, f ) =
∑k

i=0 f (ti )(xi+1 − xi ).
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Step 3: More mathematical friends for HBU

The Lindelöf lemma LIND is HBU with the weaker conclusion ‘there is a
countable sub-cover’. RCAω0 + LIND is conservative over RCA0 and
HBU↔ [WKL + LIND] (splitting).

The existence of Lebesgue numbers for any open cover of [0, 1] implies
HBU. Marcone and Guisto (1998) write:

the restriction [on Lebesgue numbers] imposed by the
expressive power of the language of [Z2] on the spaces we
study consists solely of forsaking non separable spaces.

Lebesgue numbers for countable covers of [0, 1] exists in ACA0; HBU is
not provable in any fragment of second-order arithmetic Π1

k -CAω0 .

Many ‘covering lemmas’ imply LIND or HBU: Vitali, Besicovitsch,
Banach-Alaoglu, paracompactness, Young-Young, Rademacher, . . . .

Vitali (1907) expresses his surprise about the uncountable case of the

Vitali covering theorem; Diener & Hedin (2012) however. . .
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Step 4: Some conceptual results for HBU and LIND

NON-LINEARITY: By itself, HBU (and same for Θ) is weak:

RCAω
0 + HBU is conservative over WKL0

With other axioms, HBU is powerful and jumps all over the place:

ACAω
0 + HBU proves ATR0

Π1
1-CAω

0 + HBU proves ∆1
2-CA0 and the Π1

3-consequences of Π1
2-CA0

Theorems of second-order arithmetic NEVER jump anywhere!
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Step 4: Some conceptual results for HBU and LIND

COLLAPSE: RCAω
0 + HBU proves [ACAω

0 ↔ ATRω
0 ]

The 3rd and 4th Big Five are equivalent; the linear order of RM collapses!

MORE COLLAPSE: LIND0, the Lindelöf lemma for Baire space
NN, follows from Lindelöf’s original lemma (1903).

RCAω
0 + ‘There is a realiser for LIND0’︸ ︷︷ ︸

weak: not stronger than RCA0

proves ACAω
0 ↔ Π1

1-CAω
0

The 3rd and 5th Big Five are equivalent: almost total collapse!

Anil Nerode: That’s not reverse math, that’s topsy turvy math!
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Step 4: conceptual results for HBU

DISJUNCTIONS as in A↔ [B ∨ C ] are rare in RM.

However, there are loads of those in higher-order RM:

If ACA0 → X →WKL0, then RCAω
0 proves WKL↔ [X ∨ HBU].

If ACA0 → Y , then RCAω
0 proves Y ∨ LIND.

If ACA0 → Z , then RCAω
0 + WKL proves that Z ∨ HBU.

And many more: the dam really breaks!
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Recent work

Theorem (Heine)

A continuous function f : [0, 1]→ R is uniformly continuous.

Dini, Pincherle, and even Bolzano actually proved the following:

Theorem (Uniform Heine)

A continuous f : [0, 1]→ R has a modulus of uniform continuity; the
latter only depends on a modulus of continuity for f .

HBU is equivalent to Uniform Heine given countable choice (QF-AC0,1).

Same for uniform versions of Dini’s, Pincherle’s, and Fejér’s theorems.
The redevelopment of analysis based on the gauge integral (Bartle et al)
produces many such uniform theorems.

The original Bolzano-Weierstrass thm has produced many such ‘uniform’

theorems of considerable hardness (namely requring Zω2 ). Weierstrass’

version of the Bolzano-Weierstrass thm was ‘more constructive’

(requiring only ACA0)’; the former was forgotten by history....
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Paper

Most of the aforementioned results are proved in:

On the mathematical and foundational significance of the
uncountable (Dag Normann & Sam Sanders, arXiv)

https://arxiv.org/abs/1711.08939

This paper makes NO use of Nonstandard Analysis.

https://arxiv.org/abs/1711.08939
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About that ‘predicativist’ mathematics. . .

Russell-Weyl-Feferman predicativism: rejection of
impredicative/self-referential definitions. (TT, Coq, Agda, etc)

LIND0, the Lindelöf lemma for Baire space NN, follows from
Lindelöf’s original lemma (1903).

Compatibility problem: Both ‘There is a realiser for LIND0’ and
Feferman’s µ are acceptable in predicative math. The combination
yields the Suslin functional, not acceptable in predicative math.
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compactness of the unit interval.

BUT: the sequential compactness of the unit interval is equivalent to
ACA0. HBU requires full second-order arithmetic Zω2 .

LIND0, the Lindelöf lemma for Baire space NN, follows from Lindelöf’s
original lemma (1903).

Constructive math community: LIND0 is ‘neutral’ or ‘semi-constructive
twice-over’ (=3/4-constructive?).

BUT: the Lindelöf lemma LIND0 requires full second-order arithmetic Zω2 !

Classically, the ‘common core’ notion ‘constructive’ makes no sense!

Anil Nerode: Bishop said we should not try to formalise his notion of
‘constructive’; these results suggest that Bishop was right!
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LIND0, the Lindelöf lemma for Baire space NN, follows from Lindelöf’s
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The actual beginning. . .

was Nonstandard Analysis (NSA)!

Robinson’s theorem introduces the notion nonstandard compactness, a
NSA-definition of compactness stating for every object, there is a
standard object infinitely close.

van den Berg et al (2012, APAL) introduce Sst, a version of Gödel’s
Dialectica interpretation from (the finite type part of) of IST to ZFC.
Applying Sst to the nonstandard compactness of [0, 1], yields Θ and HBU.

In fact, the nonstandard compactness of [0, 1] is equivalent to HBU (in a
nonstandard version of RCAω0 due to van den Berg and S.). Moreover
HBU is the ‘metastable version’ of nonstandard compactness of [0, 1].

Most results have two proofs: one via NSA and Sst (weak base theory;

terms of Gödel’s T ), and one via higher-order recursion theory (more

general results, greater scope). Most of the above is both Normann-S.
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terms of Gödel’s T ), and one via higher-order recursion theory (more

general results, greater scope). Most of the above is both Normann-S.



Introduction Shin-Reverse Mathematics Some philosophy and history

The actual beginning. . .

was Nonstandard Analysis (NSA)!

Robinson’s theorem introduces the notion nonstandard compactness, a
NSA-definition of compactness stating for every object, there is a
standard object infinitely close.

van den Berg et al (2012, APAL) introduce Sst, a version of Gödel’s
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terms of Gödel’s T ), and one via higher-order recursion theory (more

general results, greater scope). Most of the above is both Normann-S.



Introduction Shin-Reverse Mathematics Some philosophy and history

Final Thoughts

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund
auch in dich hinein. (Nietzsche)

We thank CAS-LMU Munich, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!



Introduction Shin-Reverse Mathematics Some philosophy and history

Final Thoughts

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund
auch in dich hinein. (Nietzsche)

We thank CAS-LMU Munich, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!



Introduction Shin-Reverse Mathematics Some philosophy and history

Final Thoughts

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund
auch in dich hinein. (Nietzsche)

We thank CAS-LMU Munich, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!



Introduction Shin-Reverse Mathematics Some philosophy and history

Final Thoughts

Und wenn du lange in einen Abgrund blickst, blickt der Abgrund
auch in dich hinein. (Nietzsche)

We thank CAS-LMU Munich, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!


	Introduction
	Shin-Reverse Mathematics
	Some philosophy and history

