On a computational interpretation of sequent calculus for modal logic S4

Yosuke Fukuda

Graduate School of Informatics, Kyoto University

Second Workshop on Mathematical Logic and Its Applications
March 8th, 2018
Some studies [Kobayashi '97][Benton+ '98][Pfenning+ '01][Kimura+ '11] discovered that S4 corresponds to various typed λ-calculi for “meta-programming”

In the logical foundation, □-modality plays an essential role:

- □A means the set of programs which “encode” programs of type A
- (this is similar to the intuition in Logic of Proof, etc: □A means the proposition of a “proof” of A)
Some studies [Kobayashi '97][Benton+ '98][Pfenning+ '01][Kimura+ '11] discovered that S4 corresponds to various typed λ-calculi for “meta-programming”

In the logical foundation, □-modality plays an essential role:

- □A means the set of programs which “encode” programs of type A
- (this is similar to the intuition in Logic of Proof, etc: □A means the proposition of a “proof” of A)
Some studies [Kobayashi '97][Benton+ '98][Pfenning+ '01][Kimura+ '11] discovered that S4 corresponds to various typed λ-calculi for “meta-programming”

In the logical foundation, \Box-modality plays an essential role:

- $\Box A$ means the set of programs which “encode” programs of type A
- (this is similar to the intuition in Logic of Proof, etc: $\Box A$ means the proposition of a “proof” of A)
All the previous studies only consider natural-deduction-style λ-calculi, and they use the “one-step” substitution as usual:

$$(\lambda x. M) N \rightsquigarrow M[x := N]$$

However, the operation is too rich from a practical viewpoint.

Natural-deduction-style λ-calculus is not enough to capture the structure of computation.
Problem from a practical viewpoint

All the previous studies only consider natural-deduction-style \(\lambda \)-calculi, and they use the “one-step” substitution as usual:

\[
(\lambda x. M) N \rightsquigarrow M[x := N]
\]

However, the operation is too rich from a practical viewpoint.

Natural-deduction-style \(\lambda \)-calculus is not enough to capture the structure of computation.
Problem from a practical viewpoint

All the previous studies only consider natural-deduction-style λ-calculi, and they use the “one-step” substitution as usual:

$$(\lambda x. M) N \rightsquigarrow M[x := N]$$

However, the operation is too rich from a practical viewpoint

Natural-deduction-style λ-calculus is not enough to capture the structure of computation
This talk

Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

To do this, a sequent calculus and its corresponding calculus for intuitionistic S4 are proposed

1 proof-theoretically based on:
 - a modal sequent calculus and the G3-style system [Troelstra&Schwichtenberg '96]
 - a higher-arity modal natural deduction [Pfenning&Davies '01]

2 type-theoretically based on:
 - the higher-arity modal λ-calculus [Pfenning&Davies '01]
 - the Curry–Howard correspondence for a G3-style sequent calc. [Ohori '99]
This talk

Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

To do this, a sequent calculus and its corresponding calculus for intuitionistic S4 are proposed

1. proof-theoretically based on:
 - a modal sequent calculus and the G3-style system [Troelstra&Schwichtenberg ’96]
 - a higher-arity modal natural deduction [Pfenning&Davies ’01]

2. type-theoretically based on:
 - the higher-arity modal λ-calculus [Pfenning&Davies ’01]
 - the Curry–Howard correspondence for a G3-style sequent calc. [Ohori ’99]
This talk

Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

To do this, a sequent calculus and its corresponding calculus for intuitionistic S4 are proposed

1 proof-theoretically based on:
 - a modal sequent calculus and the G3-style system [Troelstra&Schwichtenberg ’96]
 - a higher-arity modal natural deduction [Pfenning&Davies ’01]

2 type-theoretically based on:
 - the higher-arity modal λ-calculus [Pfenning&Davies ’01]
 - the Curry–Howard correspondence for a G3-style sequent calc. [Ohori ’99]
This talk

Aim of this talk

To create another computational model for modal logic S4, in terms of sequent calculus

To do this, a sequent calculus and its corresponding calculus for intuitionistic S4 are proposed

1 proof-theoretically based on:
 - a modal sequent calculus and the G3-style system [Troelstra&Schwichtenberg ’96]
 - a higher-arity modal natural deduction [Pfenning&Davies ’01]

2 type-theoretically based on:
 - the higher-arity modal λ-calculus [Pfenning&Davies ’01]
 - the Curry–Howard correspondence for a G3-style sequent calc. [Ohori ’99]
Higher-arity Sequent Calculus for intuitionistic S4

We propose a “higher-arity” sequent calc. for \((\land, \lor, \supset, \Box)-\text{fragment}\) of intuitionistic S4, \(\text{HLJ}_{S4}\), based on [Troelstra&Schwichtenberg ’96]

Definition (Formula)

\[
A, B ::= p \mid A \land B \mid A \lor B \mid A \supset B \mid \Box A
\]

Definition (Higher-arity judgment [Pfenning+ ’01])

A \textit{judgment} is defined by the following higher-arity form:

\[
\Delta; \Gamma \vdash A
\]

which intuitively means \((\land \Box \Delta) \land (\land \Gamma) \supset A\)
Inference rules of HLJ_{S4}

Ax

\[
\begin{align*}
\Delta; \Gamma \vdash A & \quad \Delta; \Gamma \vdash B \\
\Delta; \Gamma \vdash A \land B
\end{align*}
\]

$\land R$

\[
\begin{align*}
\Delta; \Gamma \vdash A_i \\
\Delta; \Gamma \vdash A_1 \lor A_2 \\
\Delta; \Gamma \vdash B \\
\Delta; \Gamma \vdash A \lor B
\end{align*}
\]

$\lor R$

\[
\begin{align*}
\Delta; \emptyset \vdash A \\
\Delta; \emptyset \vdash A
\end{align*}
\]

$\Box R$

\[
\begin{align*}
\Delta; \Gamma \vdash B \\
\Delta; \Gamma \vdash B
\end{align*}
\]

W_\Box

\[
\begin{align*}
\Delta; \Gamma \vdash A, A, A \vdash B \\
\Delta; \Gamma, A, A \vdash B
\end{align*}
\]

C

\[
\begin{align*}
\Delta; \Gamma \vdash A, \Delta; \Gamma \vdash B \\
\Delta; \Gamma \vdash B
\end{align*}
\]

Cut

\[
\begin{align*}
\Delta; \emptyset \vdash A & \quad \Delta, A; \Gamma \vdash B \\
\Delta; \Gamma \vdash B
\end{align*}
\]

$\Box \text{Cut}$
Init rules of \mathbf{HLJ}_{S4}

Init rule

\[
\emptyset; A \vdash A \quad \text{Ax}
\]

\[
 A; \emptyset \vdash A \quad \Box \text{Ax}
\]

Intuition of Ax

\[
\Box A \supset A \quad \Box \text{Ax}
\]
Init rules of HLJ_{S4}

Init rule

\[\emptyset; A \vdash A \quad \text{Ax} \]

\[A; \emptyset \vdash A \quad \Box \text{Ax} \]

Intuition of Ax

\[\Box A \supset A \quad \Box \text{Ax} \]
Logical rules of \mathbf{HLJ}_{S4}

Logical rule

\[
\begin{align*}
 & \Delta; \Gamma \vdash A & \Delta; \Gamma \vdash B \\
 \quad & \frac{}{\Delta; \Gamma \vdash A \land B} & \land R \\
 & \Delta; \Gamma \vdash A_i \\
 \quad & \frac{}{\Delta; \Gamma \vdash A_1 \lor A_2} & \lor R \\
 & \Delta; \Gamma, A \vdash B \\
 \quad & \frac{}{\Delta; \Gamma \vdash A \supset B} & \supset R \\
 & \Delta; \emptyset \vdash A \\
 \quad & \frac{}{\Delta; \emptyset \vdash \Box A} & \Box R \\
 & \Delta; \Gamma, \emptyset \vdash A \\
 \quad & \frac{}{\Box \Gamma, \square A \vdash B} & \Box L
\end{align*}
\]

\[
\begin{align*}
 & \Delta; \Gamma, A_1 \land A_2 \vdash B \\
 \quad & \frac{}{\Delta; \Gamma \vdash A \land B} & \land L \\
 & \Delta; \Gamma, A \vdash C \\
 \quad & \frac{}{\Delta; \Gamma \vdash A \lor B \vdash C} & \lor L \\
 & \Delta; \Gamma, A \vdash B \\
 \quad & \frac{}{\Delta; \Gamma \vdash A \supset B \vdash C} & \supset L \\
 & \Delta, A; \Gamma \vdash B \\
 \quad & \frac{}{\Delta; \Gamma \vdash \Box A \vdash B} & \Box L
\end{align*}
\]
Logical rules of \(\text{HLJ}_{\text{s4}} \)

Logical rule

\[
\frac{\Delta; \Gamma \vdash A}{\Delta; \Gamma \vdash A \land B} \quad \land R
\]

\[
\frac{\Delta; \Gamma \vdash B}{\Delta; \Gamma \vdash A \land B}
\]

\[
\frac{\Delta; \Gamma \vdash A}{\Delta; \Gamma \vdash A \lor B} \quad \lor R
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma \vdash A \lor B}
\]

\[
\frac{\Delta; \Gamma, A_i \vdash B}{\Delta; \Gamma, A_1 \land A_2 \vdash B} \quad \land L
\]

\[
\frac{\Delta; \Gamma, A_1 \land A_2 \vdash B}{\Delta; \Gamma, A_i \vdash B}
\]

\[
\frac{\Delta; \Gamma \vdash A}{\Delta; \Gamma \vdash A \lor B} \quad \lor L
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma \vdash A \lor B}
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma, A \lor B \vdash C} \quad \lor L
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma, A \lor B \vdash C}
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma, A \lor B \vdash C} \quad \lor L
\]

\[
\frac{\Delta; \Gamma, A \lor B \vdash C}{\Delta; \Gamma \vdash A \lor B}
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma \vdash A \lor B}
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma \vdash A \lor B}
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma \vdash A \lor B}
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma \vdash A \lor B}
\]

\[
\frac{\Delta; \Gamma \vdash A \lor B}{\Delta; \Gamma \vdash A \lor B}
\]
Logical rules of HLJ_{S_4}

Logical rule

$\Delta; \Gamma \vdash A$ $\Delta; \Gamma \vdash B$

$\Delta; \Gamma \vdash A \land B$

$\Delta; \Gamma \vdash A_i$

$\Delta; \Gamma \vdash A \lor A_i$

$\Delta; \Gamma, A \vdash B$

$\Delta; \Gamma \vdash A \lor B$

$\Delta; \Gamma \vdash A \\
\Delta; \Gamma \vdash B$

$\Delta; \Gamma \vdash A \supset B$

$\Delta; \Gamma, A \vdash A_i$

$\Delta; \Gamma, A_i \vdash B$

$\Delta; \Gamma \vdash A_i \land B$

$\Delta; \Gamma \vdash A \lor B$

$\Delta; \Gamma, A \lor B \vdash C$

$\Delta; \Gamma \vdash A$ $\Delta; \Gamma \vdash C$

$\Delta; \Gamma, A \lor B \vdash C$

$\Delta; \Gamma \vdash A$ $\Delta; \Gamma \vdash B$

$\Delta; \Gamma \vdash A \supset B$

$\Delta; \Gamma, A \supset B \vdash C$

$\Delta; \Gamma \vdash A \supset B$

$\Delta; \Gamma \vdash A \land B$

$\Delta; \Gamma, A \land B \vdash C$

$\Delta; \Gamma \vdash A \land B$

$\Delta; \Gamma, A \land B \vdash C$

$\Delta, \Gamma \vdash B$

$\Delta; \Gamma, A \vdash B$

$\Delta; \Gamma, A \vdash C$

$\Delta; \Gamma, A \supset B \vdash C$

$\Delta; \Gamma \vdash A \land B$

$\Delta; \Gamma, A \land B \vdash C$

$\Delta; \Gamma \vdash A$ $\Delta; \Gamma \vdash B$

$\Delta; \Gamma \vdash A \lor B$

$\Delta; \Gamma, A \lor B \vdash C$

$\Delta; \Gamma \vdash A \lor B$

$\Delta; \Gamma, A \lor B \vdash C$

$\Delta; \Gamma \vdash A \lor B$

$\Delta; \Gamma, A \lor B \vdash C$

$\Delta; \Gamma \vdash A \lor B$

$\Delta; \Gamma, A \lor B \vdash C$
Structural rules of HLJ_{S4}

Structural rule

$$
\frac{\Delta; \Gamma \vdash B}{\Delta; \Gamma, A \vdash B} \quad \text{W}
$$

$$
\frac{\Delta; \Gamma, A, A \vdash B}{\Delta; \Gamma, A \vdash B} \quad \text{C}
$$

Cut rule

$$
\frac{\Delta; \Gamma \vdash A \quad \Delta; \Gamma, A \vdash B}{\Delta; \Gamma \vdash B} \quad \text{Cut}
$$

$$
\frac{\Delta; \emptyset \vdash A \quad \Delta, A; \Gamma \vdash B}{\Delta; \Gamma \vdash B} \quad \Box \text{Cut}
$$

$$
\frac{\Delta, A, A; \Gamma \vdash B}{\Delta, A; \Gamma \vdash B} \quad \Box \text{C}
$$
On the cut-elimination procedure

While we can prove the cut-elimination theorem for \textbf{HLJ}_{S4}, the proof by the mix-elimination is problematic; because ...

\[
\begin{array}{c}
\Pi \\
\Delta; \Gamma \vdash A \\
\hline
\Pi' \\
\Delta'; \Gamma', A, A \vdash B \\
\end{array}
\quad \Rightarrow \quad
\begin{array}{c}
\Pi \\
\Delta; \Gamma \vdash A \\
\Delta'; \Gamma', A, A \vdash B \\
\hline
\end{array}
\quad \text{Cut}
\quad
\begin{array}{c}
\Pi \\
\Delta; \Gamma \vdash A \\
\Delta'; \Gamma', A, A \vdash B \\
\hline
\end{array}
\quad \text{Mix}
\]

In the elimination procedure,

- it is “okay” if we consider the provability of the judgment; but
- it is “not okay” if we consider the construction of the judgment
While we can prove the cut-elimination theorem for HLJ_{S4}, the proof by the mix-elimination is problematic; because ...

\[
\frac{\Pi'}{\Pi} \quad \frac{\Delta; \Gamma \vdash A}{\Delta'; \Gamma' \vdash A, A \vdash B} \quad \frac{\Delta'; \Gamma', A, A \vdash B}{\Delta, \Delta'; \Gamma, \Gamma' \vdash B} \quad \text{Cut} \quad \frac{\Pi'}{\Pi} \quad \frac{\Delta; \Gamma \vdash A}{\Delta'; \Gamma' \vdash A, A \vdash B} \quad \frac{\Delta, \Delta'; \Gamma, \Gamma' \vdash B}{\Delta, \Delta'; \Gamma, \Gamma' \vdash B} \quad \text{Mix}
\]

In the elimination procedure,

- it is “okay” if we consider the provability of the judgment; but
- it is “not okay” if we consider the construction of the judgment
While we can prove the cut-elimination theorem for HLJ_{S4}, the proof by the mix-elimination is problematic; because ...

\[
\frac{\Pi'}{\Delta; \Gamma \vdash A} \quad \frac{\Delta'; \Gamma', \Delta; \Gamma \vdash B}{\Pi} \quad \frac{\Delta'; \Gamma', \Delta; \Gamma \vdash B}{\Pi'} \quad \frac{\Pi}{\Delta; \Gamma \vdash A} \quad \frac{\Delta'; \Gamma', \Delta; \Gamma \vdash B}{\Pi'}
\]

In the elimination procedure,

- it is “okay” if we consider the provability of the judgment; but
- it is “not okay” if we consider the construction of the judgment
The *G3-style* [Kleene ’52][Dragalin ’88] is a style of formalization to make a cut-free, or precisely, “structural-rule-free” system.

The G3-style inference rules are defined in a somewhat tricky way to derive the “height-preserving admissible” structural rules.
G3-style system for HLJ_{S4}, named G3-HLJ_{S4}

The G3-style inference rules are defined as follows:

- **Ax**
 \[\frac{}{\Delta; \Gamma, A \vdash A} \]

- **□Ax**
 \[\frac{}{\Delta, A; \Gamma \vdash A} \]

- **⊃R**
 \[\frac{\Delta; \Gamma, A \vdash B}{\Delta; \Gamma \vdash A \supset B} \]

- **⊃L**
 \[\frac{\Delta; \Gamma, A \vdash B}{\Delta; \Gamma \vdash A \supset B} \]

- **∧R**
 \[\frac{\Delta; \Gamma \vdash A \quad \Delta; \Gamma \vdash B}{\Delta; \Gamma \vdash A \land B} \]

- **∧L**
 \[\frac{\Delta; \Gamma, A \land B, A, B \vdash C}{\Delta; \Gamma, A \land B \vdash C} \]

- **∨R**
 \[\frac{\Delta; \Gamma \vdash A_i}{\Delta; \Gamma \vdash A_1 \lor A_2} \]

- **∨L**
 \[\frac{\Delta; \Gamma, A \lor B, A \vdash C \quad \Delta; \Gamma, A \lor B, B \vdash C}{\Delta; \Gamma, A \lor B \vdash C} \]

- **□R**
 \[\frac{\Delta; \emptyset \vdash A}{\Delta; \Gamma \vdash \Box A} \]

- **□L**
 \[\frac{\Delta, A; \Gamma, \Box A \vdash B}{\Delta; \Gamma, \Box A \vdash B} \]
From the original rules to the G3-style

Idea: all we have to do is to get “height-preserving” structural rules

Original HLJ_{S4}

- $\emptyset; A \vdash A$ \hspace{1cm} Ax
- $\Delta; \Gamma, A_i \vdash B$ \hspace{1cm} $\Delta; \Gamma, A_1 \land A_2 \vdash B$ \hspace{1cm} $\land L$
- $\Delta, A; \Gamma \vdash B$ \hspace{1cm} $\Delta; \Gamma, \Box A \vdash B$ \hspace{1cm} $\Box L$

G3-style G3-HLJ_{S4}

- $\Delta; \Gamma, A \vdash A$ \hspace{1cm} Ax
- $\Delta; \Gamma, A \land B, A, B \vdash C$ \hspace{1cm} $\Delta; \Gamma, A \land B \vdash C$ \hspace{1cm} $\land L$
- $\Delta, A; \Gamma, \Box A \vdash B$ \hspace{1cm} $\Delta; \Gamma, \Box A \vdash B$ \hspace{1cm} $\Box L$
Desired properties

Lemma (Height-preserving weakening/contraction)

The followings are height-preserving admissible rules in $\text{G3-\text{HLJ}}_{S4}$:

\[
\frac{\Delta; \Gamma \vdash B}{\Delta; \Gamma, A \vdash B} \quad W
\]

\[
\frac{\Delta; \Gamma, A, A \vdash B}{\Delta; \Gamma \vdash B} \quad C
\]

\[
\frac{\Delta; \Gamma \vdash B}{\Delta, A; \Gamma \vdash B} \quad \Box W
\]

\[
\frac{\Delta, A, A; \Gamma \vdash B}{\Delta, A; \Gamma \vdash B} \quad \Box C
\]

Theorem (Equivalence)

The provability of HLJ_{S4} and $\text{G3-\text{HLJ}}_{S4} + \text{Cut}$ is equivalent.

Theorem (Cut-elimination)

The cut rules Cut and $\Box \text{Cut}$ are admissible in $\text{G3-\text{HLJ}}_{S4}$.
Desired properties

Lemma (Height-preserving weakening/contraction)

The followings are height-preserving admissible rules in $\text{G}_3\text{-HLJ}_{S_4}$:

- $\Delta; \Gamma \vdash B \quad W$
- $\Delta; \Gamma, A \vdash B \quad C$
- $\Delta; \Gamma \vdash B \\ ^{\square}W$
- $\Delta, A; \Gamma \vdash B \\ ^{\square}C$

Theorem (Equivalence)

The provability of HLJ_{S_4} and $\text{G}_3\text{-HLJ}_{S_4} + \text{Cut}$ is equivalent.

Theorem (Cut-elimination)

The cut rules Cut and $\Box \text{Cut}$ are admissible in $\text{G}_3\text{-HLJ}_{S_4}$.
Desired properties

Lemma (Height-preserving weakening/contraction)

The followings are height-preserving admissible rules in \(\text{G3-HLJ}_{S4} \):

\[
\begin{align*}
\Delta; \Gamma \vdash B & \quad \text{W} \\
\Delta; \Gamma, A \vdash B & \\
\Delta; \Gamma, A, A \vdash B & \quad \text{C} \\
\Delta; \Gamma, A, A \vdash B & \\
\Delta; \Gamma \vdash B & \quad \Box W \\
\Delta, A; \Gamma \vdash B & \\
\Delta, A, A; \Gamma \vdash B & \quad \Box C \\
\Delta, A; \Gamma \vdash B & \\
\Delta, A \vdash B & \\
\Delta \vdash B & \\
\Delta; \Gamma \vdash B & \\
\Delta, A; \Gamma \vdash B & \quad \Box C
\end{align*}
\]

Theorem (Equivalence)

The provability of \(\text{HLJ}_{S4} \) and \(\text{G3-HLJ}_{S4} + \text{Cut} \) is equivalent

Theorem (Cut-elimination)

The cut rules \(\text{Cut} \) and \(\Box \text{Cut} \) are admissible in \(\text{G3-HLJ}_{S4} \)
We propose a term assignment system for the $\text{G3-}\text{HLJ}_{S4}$, λ_{seq}, to get the computational model

As [Ohori ’99] did for a G3-style prop. int. sequent calc., we assign terms to $\text{G3-}\text{HLJ}_{S4} + \text{Cut}$ as follows:

- **Init/Right rules**: assign λ-terms, as we do for N.D. system
- **Left/Cut rules**: assign the so-called “let expression”

Good point: λ_{seq} does not use “meta-level” substitution!
We propose a term assignment system for the $\text{G3-HLJ}_{\mathbf{S}_4}$, $\lambda_{\Box_{\text{seq}}}$, to get the computational model

As [Ohori ’99] did for a G3-style prop. int. sequent calc., we assign terms to $\text{G3-HLJ}_{\mathbf{S}_4} + \text{Cut}$ as follows:

- Init/Right rules: assign λ-terms, as we do for N.D. system
- Left/Cut rules: assign the so-called “let expression”

Good point: $\lambda_{\Box_{\text{seq}}}$ does not use “meta-level” substitution!
Assign the modal λ-term [Pfenning+ ’01] to the init/right rules:

\[
\begin{align*}
\Delta; \Gamma, x : A & \vdash x : A \quad \text{Ax} & \\
\Delta, u : A; \Gamma & \vdash u : A \quad \Box \text{Ax} \\
\Delta; \Gamma & \vdash M : A & \\
\Delta; \Gamma & \vdash N : B & \\
\Delta; \Gamma & \vdash \langle M, N \rangle : A \land B \quad \land R \\
\Delta; \Gamma & \vdash \lambda x : A. M : B & \\
\Delta; \Gamma & \vdash M : A \supset B \quad \supset R \\
\Delta; \emptyset & \vdash M : A & \\
\Delta; \Gamma & \vdash \text{box} M : \Box A \quad \Box R
\end{align*}
\]
Assign “let-expression” to the left conjunction rule:

\[
\frac{\Delta; \Gamma, x : A \land B, y : A, z : B \vdash M : C}{\Delta; \Gamma, x : A \land B \vdash \text{let } \langle y, z \rangle = x \text{ in } M : C} \quad ^{\land \text{L}}
\]

The reduction intuitively proceeds, e.g., as:

\[
(\text{let } \langle y, z \rangle = \langle N, L \rangle \text{ in } M) \rightsquigarrow M[y := N, z := L]
\]
Assign “let-expression” to the left conjunction rule:

\[
\frac{\Delta; \Gamma, x : A \land B, y : A, z : B \vdash M : C}{\Delta; \Gamma, x : A \land B \vdash \text{let } \langle y, z \rangle = x \text{ in } M : C} \quad \land L
\]

The reduction intuitively proceeds, e.g., as:

\((\text{let } \langle y, z \rangle = \langle N, L \rangle \text{ in } M) \rightsquigarrow M[y := N, z := L]\)
Assign “let-expression” to the left conjunction rule:

\[
\frac{\Delta; \Gamma, x : A \land B, y : A, z : B \vdash M : C}{\Delta; \Gamma, x : A \land B \vdash \text{let} \langle y, z \rangle = x \text{ in } M : C} \quad \land L
\]

The reduction intuitively proceeds, e.g., as:

\[
(\text{let} \langle y, z \rangle = \langle N, L \rangle \text{ in } M) \leadsto M[y := N, z := L]
\]
Assign “let-expression” to the left conjunction rule:

\[
\frac{
 \Delta; \Gamma, x : A \land B, y : A, z : B \vdash M : C
}{
 \Delta; \Gamma, x : A \land B \vdash \text{let} \langle y, z \rangle = x \text{ in } M : C
}\]

\(\land L\)

The reduction intuitively proceeds, e.g., as:

\((\text{let} \langle y, z \rangle = \langle N, L \rangle \text{ in } M) \leadsto M[y := N, z := L]\)
The rules for the other left rules are defined similarly:

\[
\begin{align*}
\Delta; \Gamma, x : A \supset B & \vdash M : A & & \Delta; \Gamma, x : A \supset B, y : B & \vdash N : C \\
\Delta; \Gamma, x : A \supset B & \vdash \text{let } y = x \text{ in } N : C & & \text{\textbf{\(\square L\)}}
\end{align*}
\]

\[
\begin{align*}
\Delta, u : A; \Gamma, x : \Box A & \vdash M : B & & \Delta; \Gamma, x : \Box A & \vdash \text{let box } u = x \text{ in } M : B & & \Box L
\end{align*}
\]
The term assignment for cut rules are defined as a “composition” of two constructions, again by using let-expressions:

\[
\frac{\Delta; \Gamma \vdash M : A \quad \Delta; \Gamma, x : A \vdash N : B}{\Delta; \Gamma \vdash \text{let } x = M \text{ in } N : B} \quad \text{Cut}
\]

\[
\frac{\Delta; \emptyset \vdash M : A \quad \Delta, u : A; \Gamma \vdash N : B}{\Delta; \Gamma \vdash \text{let } u = M \text{ in } N : B} \quad \Box \text{Cut}
\]
Let us consider the cut-elimination for conjunction:

\[
\frac{\vdash M : A \quad \vdash N : B}{\vdash \langle M, N \rangle : A \land B} \quad \text{\(\land R\)}
\]
\[
\frac{x : A \land B, y : A, z : B \vdash L : C}{x : A \land B \vdash \text{let } \langle y, z \rangle = x \text{ in } L : C} \quad \text{\(\land L\)}
\]

\[
\frac{\vdash \text{let } x = \langle M, N \rangle \text{ in let } \langle y, z \rangle = x \text{ in } L : C}{\vdash \text{let } x = \langle M, N \rangle \text{ in let } \langle y, z \rangle = x \text{ in } L : C} \quad \text{Cut}
\]

To eliminate cuts, all we have to do is to compute:

\[
(\text{let } x = \langle M, N \rangle \text{ in let } \langle y, z \rangle = x \text{ in } L)
\]

\[
\leadsto L[y := M, z := N, x := \langle M, N \rangle]
\]

but we do not want to use “meta-level” substitution.

Fortunately, the (local) cut-elimination step defined in the G3-style is exactly what we want!
Cut-elimination in terms of λ_{seq}

Let us consider the cut-elimination for conjunction:

$$
\frac{
\vdash M : A \quad \vdash N : B
}{
\vdash \langle M, N \rangle : A \land B}
\quad
\frac{
x : A \land B, y : A, z : B \vdash L : C
}{
\vdash \text{let } \langle y, z \rangle = x \text{ in } L : C}
\quad
\frac{
x : A \land B \vdash L : C
}{
\text{Cut}}
$$

To eliminate cuts, all we have to do is to compute:

$$(\text{let } x = \langle M, N \rangle \text{ in let } \langle y, z \rangle = x \text{ in } L)$$

$$\leadsto L[y := M, z := N, x := \langle M, N \rangle]$$

but we do not want to use “meta-level” substitution

Fortunately, the (local) cut-elimination step defined in the G3-style is exactly what we want!
Let us consider the cut-elimination for conjunction:

\[
\frac{\vdash M : A \quad \vdash N : B}{\vdash \langle M, N \rangle : A \land B} \quad \land R
\]

\[
\frac{x : A \land B, y : A, z : B \vdash L : C}{\vdash \text{let } \langle y, z \rangle = x \text{ in } L : C} \quad \land L
\]

\[
\frac{\vdash \text{let } x = \langle M, N \rangle \text{ in let } \langle y, z \rangle = x \text{ in } L : C}{\vdash \text{let } x = \langle M, N \rangle \text{ in let } \langle y, z \rangle = x \text{ in } L : C} \quad \text{Cut}
\]

To eliminate cuts, all we have to do is to compute:

\[
(\text{let } x = \langle M, N \rangle \text{ in let } \langle y, z \rangle = x \text{ in } L)
\]

\[
\leadsto L[y := M, z := N, x := \langle M, N \rangle]
\]

but we do not want to use “meta-level” substitution

Fortunately, the (local) cut-elimination step defined in the G3-style is exactly what we want!
Local cut-elimination as program-simplification

(A part of) translation rules are obtained as follows:

Optimization

\[(\text{let } x = M \text{ in } x) \rightsquigarrow M\]
\[(\text{let } x = M \text{ in } y) \rightsquigarrow y\]

Flattening

\[(\text{let } w = (\text{let } \langle y, z \rangle = x \text{ in } M) \text{ in } N) \rightsquigarrow (\text{let } \langle y, z \rangle = x \text{ in } \text{let } w = M \text{ in } N)\]
\[(\text{let } y = (\text{let } \text{box } u = x \text{ in } M) \text{ in } N) \rightsquigarrow (\text{let } \text{box } u = x \text{ in } \text{let } y = M \text{ in } N)\]

Decomposition

\[(\text{let } x = \langle M, N \rangle \text{ in } \text{let } \langle y, z \rangle = x \text{ in } L) \rightsquigarrow (\text{let } y = M \text{ in } \text{let } z = N \text{ in } \text{let } x = \langle y, z \rangle \text{ in } L)\]
\[(\text{let } x = \text{box } M \text{ in } \text{let } \text{box } u = x \text{ in } N) \rightsquigarrow (\text{let } u = M \text{ in } \text{let } x = \text{box } u \text{ in } N)\]

These translation corresponds to “A-normal form compilation” in the theory of programming languages.
(A part of) translation rules are obtained as follows:

Optimization

(\texttt{let } x = M \texttt{ in } x) \rightsquigarrow M \\
(\texttt{let } x = M \texttt{ in } y) \rightsquigarrow y

Flattening

(\texttt{let } w = \langle \texttt{let } y, z \rangle = x \texttt{ in } M \rangle \texttt{ in } N) \rightsquigarrow (\texttt{let } \langle y, z \rangle = x \texttt{ in } \texttt{let } w = M \texttt{ in } N) \\
(\texttt{let } y = \langle \texttt{let } box u = x \texttt{ in } M \rangle \texttt{ in } N) \rightsquigarrow (\texttt{let } box u = x \texttt{ in } \texttt{let } y = M \texttt{ in } N)

Decomposition

(\texttt{let } x = \langle M, N \rangle \texttt{ in } \texttt{let } \langle y, z \rangle = x \texttt{ in } L) \rightsquigarrow (\texttt{let } y = M \texttt{ in } \texttt{let } z = N \texttt{ in } \texttt{let } x = \langle y, z \rangle \texttt{ in } L) \\
(\texttt{let } x = box M \texttt{ in } \texttt{let } box u = x \texttt{ in } N) \rightsquigarrow (\texttt{let } u = M \texttt{ in } \texttt{let } x = box u \texttt{ in } N)

These translation corresponds to “A-normal form compilation” in the theory of programming languages.
Properties of λ_{seq} and the cut-elimination theorem

Theorem (Subject reduction)

If $\Delta; \Gamma \vdash M : A$ and $M \leadsto M'$, then $\Delta; \Gamma \vdash M' : A$

Theorem (Strong normalization)

Every typable term is strongly normalizing

Corollary (Cut-elimination theorem)

λ_{seq} enjoys the cut-elimination theorem, which also yields that every typable term can be reduced to the unique normal form
The following tells us that $\lambda^{\square}_{\text{seq}}$ can be used as a basis of model for the existing theory:

Theorem (Embedding from modal typed λ-calculus)

The modal λ-calc. λ^{\square} [Pfenning+ ’01] can be embeded into $\lambda^{\square}_{\text{seq}}$:

- If $\Delta; \Gamma \vdash M : A$ in λ^{\square}, then $\Delta; \Gamma \vdash \langle M \rangle : A$ in $\lambda^{\square}_{\text{seq}}$
- If $M \rightsquigarrow M'$ in λ^{\square}, then $\langle M \rangle \rightsquigarrow \langle M' \rangle$ in $\lambda^{\square}_{\text{seq}}$

where $\langle \square \rangle$ means the translation mapping from λ^{\square} to $\lambda^{\square}_{\text{seq}}$
Conclusion and future work

- **Conclusion**
 - A cut-free higher-arity sequent calc. for intuitionistic S4: HLJ_{S4} and G3-HLJ_{S4}
 - (A cut-free higher-arity sequent calc. for classical S4: HLK_{S4} and G3-HLK_{S4})
 - The corresponding term calculus for G3-HLJ_{S4}

- **Future work**
 - The corresponding term calculus for the classical version, following the work of $\lambda\mu$-calculus for modal logic [Kimura+ ’11]
 - (Ongoing work with Akira Yoshimizu): Geometry of Interaction semantics for modal logic in terms of MELL, following the work of GoI semantics for PCF [Mackie ’95]
let \(x = y \) in \(M \) \(\leadsto \) \(M[x := y] \)

let \(x = u \) in \(M \) \(\leadsto \) \(M[x := u] \)

let \(u = v \) in \(M \) \(\leadsto \) \(M[u := v] \)

let \(x = M \) in \(x \) \(\leadsto \) \(M \)

let \(x = M \) in \(y \) \(\leadsto \) \(y \)

let \(u = M \) in \(x \) \(\leadsto \) \(x \)

let \(u = M \) in \(u \) \(\leadsto \) \(M \)

let \(u = M \) in \(v \) \(\leadsto \) \(v \)

let \(x = M \) in \(u \) \(\leadsto \) \(u \)

let \(z = (\text{let } y = x \text{ in } M) \text{ in } N \) \(\leadsto \) let \(y = x \text{ in } M \text{ in } z = N \text{ in } L \)

let \(w = (\text{let } \langle y, z \rangle = x \text{ in } M) \text{ in } N \) \(\leadsto \) let \(\langle y, z \rangle = x \text{ in } \text{ let } w = M \text{ in } N \)

let \(w = (\text{case } x \text{ of } [y]M \text{ or } [z]N) \text{ in } L \) \(\leadsto \) case \(x \text{ of } [y](\text{let } w = M \text{ in } L) \text{ or } [z](\text{let } w = N \text{ in } L) \)

let \(y = (\text{let box } u = x \text{ in } M) \text{ in } N \) \(\leadsto \) let \(\text{box } u = x \text{ in } \text{ let } y = M \text{ in } N \)
let $x = L$ in let $z = y \; M$ in $N \leadsto$ let $z = y \; (\text{let } x = L \; \text{in } M)$ in let $x = L \; \text{in } N$

let $x = N$ in let $\langle y, z \rangle = w \; \text{in } M \leadsto$ let $\langle y, z \rangle = w$ in let $x = N \; \text{in } M$

let $x = L$ in case w of $[y]M$ or $[z]N \leadsto$ case w of $[y] (\text{let } x = L \; \text{in } M)$ or $[z] (\text{let } x = L \; \text{in } N)$

let $x = N$ in let box $u = y \; \text{in } M \leadsto$ let box $u = y$ in let $x = N \; \text{in } M$

let $y = \lambda x : A. M$ in let $z = y \; N$ in $L \leadsto$ let $y = \lambda x : A. M$ in let $x = N$ in let $z = M \; \text{in } L$

let $x = \langle M, N \rangle$ in let $\langle y, z \rangle = x \; \text{in } L \leadsto$ let $y = M$ in let $z = N$ in let $x = \langle y, z \rangle \; \text{in } L$

let $x = \iota^A \lor^B (M)$ in case x of $[y]N$ or $[z]L \leadsto$ let $y = M$ in let $x = \iota^A \lor^B (y) \; \text{in } N$

let $x = \iota^A \lor^B (M)$ in case x of $[y]N$ or $[z]L \leadsto$ let $z = M$ in let $x = \iota^A \lor^B (z) \; \text{in } L$

let $x = \text{box } M$ in let box $u = x \; \text{in } N \leadsto$ let $u = M$ in let $x = \text{box } u \; \text{in } N$