On the Bourbaki-Witt and Banach-Tarski Fixed-point Theorems

Andrej Bauer1 \quad Peter Lumsdaine2

1University of Ljubljana
Ljubljana, Slovenia

2Carnegie Mellon University
Pittsburgh, USA

Constructive Aspects of Logic and Mathematics
Kanazawa, Japan, March 2010
A fixed-point theorem

Theorem: Let \((L, \leq)\) be a complete lattice and \(f : L \rightarrow L\) a **progressive map:** \(x \leq f(x)\) for all \(x \in L\). Then \(f\) has a fixed point.

Proof. Consider the least \(C \subseteq L\) closed under arbitrary suprema and \(f\). (\(C\) is the intersection of all subsets that are so closed.) Then \(y = \bigvee_{x \in C} f(x)\) is a fixed point because \(y \leq f(y) \leq \bigvee_{x \in C} f(x) = y\). QED.
A fixed-point theorem

Theorem: Let \((L, \leq)\) be a complete lattice and \(f : L \to L\) a progressive map: \(x \leq f(x)\) for all \(x \in L\). Then \(f\) has a fixed point.

Proof. Consider the least \(C \subseteq L\) closed under arbitrary suprema and \(f\). (\(C\) is the intersection of all subsets that are so closed.) Then \(y = \bigvee_{x \in C} f(x)\) is a fixed point because \(y \leq f(y) \leq \bigvee_{x \in C} f(x) = y\). QED.

Classically, \(C\) is the chain obtained by iterations of \(f\), indexed by a sufficiently large ordinal,

\[
\bot \leq f(\bot) \leq f^2(\bot) \leq \cdots \leq f^\omega(\bot) \leq f^{\omega+1}(\bot) \leq \cdots
\]

so the theorem is classically valid for chain-complete posets (ccpo).

(A chain is a subset \(C\) such that \(x \leq y \lor y \leq x\) for all \(x, y \in C\).)
Fixed-point theorems for chain-complete posets

Theorem [Bourbaki-Witt, 1949 and 1951]:
A progressive map on a chain-complete poset has a fixed point.
Fixed-point theorems for chain-complete posets

Theorem [Bourbaki-Witt, 1949 and 1951]:
A progressive map on a chain-complete poset has a fixed point.

Not to be confused with:

Theorem (Knaster-Tarski, 1955):
A monotone map on a chain-complete poset has a fixed point.
The intuitionistic status of BW and KT

Let \((P, \leq)\) be a poset and \(f : P \to P\) monotone or progressive. When does it have a fixed point, intuitionistically?

Does \(f\) have a fixed point?

- \(f\) progressive: yes [Tarski '55]
- \(P\) complete: yes
- \(P\) directed-complete: yes [Pataraia '97]
- \(P\) chain-complete: BW, KT

An observation by France Dacar: BW ⇔ BW dcpo and BW ⇒ KT.

We will show that (1), (2), and (3) may fail.
The intuitionistic status of BW and KT

Let \((P, \leq)\) be a poset and \(f : P \rightarrow P\) monotone or progressive. When does it have a fixed point, intuitionistically?

<table>
<thead>
<tr>
<th></th>
<th>(f) progressive</th>
<th>(f) monotone</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) complete</td>
<td>yes</td>
<td>yes [Tarski ’55]</td>
</tr>
<tr>
<td>(P) directed-complete</td>
<td>(BW^{dcpo})</td>
<td>yes [Pataraia ’97]</td>
</tr>
<tr>
<td>(P) chain-complete</td>
<td>(BW)</td>
<td>KT</td>
</tr>
</tbody>
</table>

An observation by France Dacar: \(BW \Leftrightarrow BW^{dcpo}\) and \(BW \Rightarrow KT\). We will show that (1), (2), and (3) may fail.
Versions of Bourbaki-Witt

Theorem: The following are equivalent:

1. Progressive maps on ccpos have fixed points.
2. Ccpos have fixed-point operators for progressive maps.

Proof. $(2) \Rightarrow (1)$ is obvious. For $(1) \Rightarrow (2)$, let (P, \leq) be a ccpo and let $\text{Prog}(P) = \{ f : P \to P | f \text{ progressive} \}$. The power $Q = \text{Prog}(P)$ with pointwise order is a ccpo. The map $F : Q \to Q$, defined by $F(h)(f) = f(h(f))$, is progressive and so has a fixed point h by (1). Then h is a fixed-point operator on $\text{Prog}(P)$ since $h(f) = F(h)(f) = f(h(f))$. QED.
Theorem: The following are equivalent:

(1) Progressive maps on ccpos have fixed points.

(2) Ccpos have fixed-point operators for progressive maps.

Proof. (2) ⇒ (1) is obvious. For (1) ⇒ (2), let \((P, \leq)\) be a ccpo and let

\[
\text{Prog}(P) = \{ f : P \to P \mid f \text{ progressive} \}.
\]

The power \(Q = P^{\text{Prog}(P)}\) with pointwise order is a ccpo. The map \(F : Q \to Q\), defined by \(F(h)(f) = f(h(f))\), is progressive and so has a fixed point \(h\) by (1). Then \(h\) is a fixed-point operator on \(\text{Prog}(P)\) since \(h(f) = F(h)(f) = f(h(f))\). QED.
Versions of anti-Bourbaki-Witt

Theorem: The following are equivalent:

1. There is a ccpo on which not all progressive maps have fixed points.
2. There is a ccpo and a progressive map on it without a fixed point.
Versions of anti-Bourbaki-Witt

Theorem: The following are equivalent:

1. There is a ccpo on which not all progressive maps have fixed points.
2. There is a ccpo and a progressive map on it without a fixed point.

Proof. Only (1) \implies (2) requires proof.

Given P as in (1), let $Q = P^{\text{Prog}(P)}$, ordered pointwise. Then $F : Q \to Q$ defined by $F(h)(f) = f(h(f))$ is progressive and without fixed point. QED.
Anti-Bourbaki-Witt and ordinals

The following are equivalent:
(1) There is a counter-example to Bourbaki-Witt theorem.
(2) Trichotomous ordinals form a set.
Anti-Bourbaki-Witt and ordinals

The following are equivalent:

1. There is a counter-example to Bourbaki-Witt theorem.
2. Trichotomous ordinals form a set.

Remark: $(\alpha, <)$ is a trichotomous ordinal when

1. $<$ is irreflexive and transitive,
2. $x < y \lor x = y \lor y < x$ for all $x, y \in \alpha$, and
3. $<$ is inductive: $(\forall y \in \alpha . (\forall x < y . \phi(x)) \Rightarrow \phi(y)) \Rightarrow \phi(z)$.
The following are equivalent:

1. There is a counter-example to Bourbaki-Witt theorem.
2. Trichotomous ordinals form a set.

Proof. For (2) ⇒ (1) observe that if the class of ordinals \(\text{Ord} \) is a set then the successor map \(+ : \text{Ord} \rightarrow \text{Ord} \) is progressive and has no fixed points. (NB: Successor will *not* be monotone because \(\text{Ord} \) is a dcpo!)

To prove (1) ⇒ (2), suppose \(P \) is a cppo and \(f : P \rightarrow P \) a progressive map without fixed points. We embed \(\text{Ord} \) into \(P \) via \(e : \text{Ord} \rightarrow P \) defined inductively by

\[
e(\alpha) = \bigvee_{\beta < \alpha} f(e(\beta)).
\]

The map \(e \) is injective because \(f \) has no fixed points. QED.
Failure of Bourbaki-Witt in realizability toposes

- In a realizability topos the ordinals form a set (an object).
 - For instance, in the effective topos the trichotomous ordinals are interpreted by the recursive ordinals and go up only to the Church-Kleene ordinal ω_{1}^{CK}.
- Therefore, Bourbaki-Witt fails in realizability toposes.
Failure of Bourbaki-Witt in realizability toposes

- In a realizability topos the ordinals form a set (an object).
 - For instance, in the effective topos the trichotomous ordinals are interpreted by the recursive ordinals and go up only to the Church-Kleene ordinal \(\omega_{1}^{CK} \).
- Therefore, Bourbaki-Witt fails in realizability toposes.
- This does not invalidate Knaster-Tarski, but a related counter example falsifies both Bourbaki-Witt and Knaster-Tarski at the same time.
 - For instance, in the effective topos \(\nabla \omega_{1} \) is chain-complete because all chains in the effective topos are countable. The successor map on \(\nabla \omega_{1} \) is both monotone and progressive, and has no fixed point.
 - Here \(\omega_{1} \) is the least uncountable ordinal in \(\mathsf{Set} \) and \(\nabla \) is the inclusion of sets into the realizability topos as sheaves for the \(\neg \neg \)-coverage.
Theorem: If $(\phi^*, \phi_*) : \mathcal{E} \to \mathcal{F}$ is a geometric morphism between toposes and \mathcal{F} validates Bourbaki-Witt then so does \mathcal{E}.
Transfer of Bourbaki-Witt along geometric morphisms

Theorem: If \((\phi^*, \phi_*) : \mathcal{E} \to \mathcal{F}\) is a geometric morphism between toposes and \(\mathcal{F}\) validates Bourbaki-Witt then so does \(\mathcal{E}\).

Proof. Suppose \(P\) is a ccpo in \(\mathcal{E}\) and \(f : P \to P\) progressive. It turns out that \(\phi_*P\) is a ccpo in \(\mathcal{F}\) and \(\phi_*h : \phi_*P \to \phi_*P\) progressive, therefore \(\mathcal{F}\) validates

\[\exists x \in \phi_*P . (\phi_*h)(x) = x.\]

The inverse image \(\phi^*\) preserves \(\exists\), hence \(\mathcal{E}\) validates

\[\exists y \in \phi^*(\phi_*P) . \phi^*(\phi_*h)(y) = y.\]

By naturality of the counit \(\epsilon_P : \phi^*(\phi_*P) \to P\) it follows that \(\epsilon_P(y)\) is a fixed point of \(h\):

\[h(\epsilon_P(y)) = \epsilon_P(\phi^*(\phi_*h)(y)) = \epsilon_P(y).\]

QED.
Bourbaki-Witt holds in sheaf toposes

Every sheaf topos \mathcal{E}, in fact every cocomplete topos, has a geometric morphism $(\phi^*, \phi_*) : \mathcal{E} \to \text{Set}$:

$$\phi^*(X) = \bigsqcup_{x \in X} 1 \quad \text{and} \quad \phi_*(A) = \text{Hom}_{\mathcal{E}}(1, A).$$
Bourbaki-Witt holds in sheaf toposes

- Every sheaf topos \mathcal{E}, in fact every cocomplete topos, has a geometric morphism $(\phi^*, \phi_*) : \mathcal{E} \to \text{Set}$:

 $$\phi^*(X) = \coprod_{x \in X} 1 \quad \text{and} \quad \phi_*(A) = \text{Hom}_\mathcal{E}(1, A).$$

- Bourbaki-Witt holds in sheaf toposes.
- Knaster-Tarski holds in sheaf toposes.
Bourbaki-Witt does not hold in the free topos

- The free topos consists of definable objects and validates exactly the intuitionistically provable statements.
Bourbaki-Witt does not hold in the free topos

- The free topos consists of definable objects and validates exactly the intuitionistically provable statements.
- Bourbaki-Witt cannot have a definable counter-example as that would give one in Set.
Bourbaki-Witt does not hold in the free topos

- The free topos consists of definable objects and validates exactly the intuitionistically provable statements.
- Bourbaki-Witt cannot have a definable counter-example as that would give one in Set.
- Perhaps Bourbaki-Witt is valid in the free topos, i.e., for each definable ccppo we can prove that every definable progresive map has a fixed point?
Bourbaki-Witt does not hold in the free topos

Theorem: There is a cpo in the free topos for which the Bourbaki-Witt theorem is not provable.
Bourbaki-Witt does not hold in the free topos

Theorem: There is a ccpo in the free topos for which the Bourbaki-Witt theorem is not provable.

Proof. The idea is to define a ccpo whose interpretation in the effective topos is Ord. Let P consist of ordinals that are $\neg\neg$-stable quotients of $\neg\neg$-stable subsets of \mathbb{N}. This is definable — we just did it — but we cannot prove that it is ccpo, because in Set it is interpreted by ω_1, which is not chain-complete.

Let $S = \{ x \in 1 \mid P \text{ is a ccpo} \}$ and $Q = P^S$. Then Q is a ccpo. Its interpretation in the effective topos is Ord (and in Set it is $P^0 = 1$).

We cannot prove that (the exponent by S of) the successor map $+: Q \to Q$ has a fixed point, otherwise it would have one in the effective topos. QED.
Bourbaki-Witt does not imply existence of ordinals

- A counterexample to BW implies “few ordinals”.
- Perhaps validity of BW implies “many ordinals”?
 - By “many” we mean sufficiently many to reach fixed points of progressive maps by iteration.
Bourbaki-Witt does not imply existence of ordinals

Theorem: There is a topos which validates BW and contains a progressive $f : P \to P$ on a ccpo P for which no amount of iteration along ordinals reaches a fixed point.
Bourbaki-Witt does not imply existence of ordinals

Theorem: There is a topos which validates BW and contains a progresive $f : P \to P$ on a ccpo P for which no amount of iteration along ordinals reaches a fixed point.

Proof. The topos \mathcal{E} in question is the free topos satisfying BW with a generic ccpo P and a generic progressive $f : P \to P$. No ordinal α in \mathcal{E} suffices to reach the fixed point of f. If interested, ask for details.

$$\begin{align*}
\mathcal{E} & \to \text{Set}^{0 \to 1} \\
\alpha, P, f & \to (\lambda_0, \lambda_1), (\{\star\}, L), (\text{id}_{\{\star\}}, s) \\
\lambda_0, \{\star\}, \text{id}_{\{\star\}} & \downarrow
\end{align*}$$

where $L = \lambda_0 + 1$, $s : L \to L$, $s(x) = \min(x + 1, \lambda_0)$. Observe that $\lambda_1 \leq \lambda_0$, hence (λ_0, λ_1)-many iterations are not enough for s to reach a fixed point.
Two questions

1. *Does Knaster-Tarski imply Bourbaki-Witt?*
 - Yes? Give a proof. NB: the proof must work for ccpo’s but fail for dcpo’s.
 - No? Give a model which validates Knaster-Tarski and falsifies Bourbaki-Witt.

2. *Is there a constructive version of the Bourbaki-Witt theorem?*
 - Weaken “chain” or strengthen “progressive”, but how?