On the Bourbaki-Witt and Banach-Tarski Fixed-point Theorems

Andrej Bauer¹ Peter Lumsdaine²

¹University of Ljubljana Ljubljana, Slovenia

²Carnegie Mellon University Pittsburgh, USA

Constructive Aspects of Logic and Mathematics Kanazawa, Japan, March 2010

Peter Lumsdaine

A fixed-point theorem

Theorem: Let (L, \leq) be a complete lattice and $f : L \to L$ a *progressive map*: $x \leq f(x)$ for all $x \in L$. Then f has a fixed point.

Proof. Consider the least $C \subseteq L$ closed under arbitrary suprema and f. (C is the intersection of all subsets that are so closed.) Then $y = \bigvee_{x \in C} f(x)$ is a fixed point because $y \leq f(y) \leq \bigvee_{x \in C} f(x) = y$. QED.

A fixed-point theorem

Theorem: Let (L, \leq) be a complete lattice and $f : L \to L$ a *progressive map*: $x \leq f(x)$ for all $x \in L$. Then f has a fixed point.

Proof. Consider the least $C \subseteq L$ closed under arbitrary suprema and f. (*C* is the intersection of all subsets that are so closed.) Then $y = \bigvee_{x \in C} f(x)$ is a fixed point because $y \leq f(y) \leq \bigvee_{x \in C} f(x) = y$. QED.

Classically, *C* is the chain obtained by iterations of *f*, indexed by a sufficiently large ordinal,

$$\perp \leq f(\perp) \leq f^2(\perp) \leq \cdots \leq f^{\omega}(\perp) \leq f^{\omega+1}(\perp) \leq \cdots$$

so the theorem is classically valid for *chain-complete posets (ccpo)*. (A *chain* is a subset *C* such that $x \le y \lor y \le x$ for all $x, y \in C$.)

Fixed-point theorems for chain-complete posets

Theorem [Bourbaki-Witt, 1949 and 1951]:

A progressive map on a chain-complete poset has a fixed point.

Fixed-point theorems for chain-complete posets

Theorem [Bourbaki-Witt, 1949 and 1951]:

A progressive map on a chain-complete poset has a fixed point.

Not to be confused with:

Theorem (Knaster-Tarski, 1955):

A monotone map on a chain-complete poset has a fixed point.

The intuitionistic status of BW and KT

Let (P, \leq) be a poset and $f : P \rightarrow P$ monotone or progressive. When does it have a fixed point, intuitionistically?

The intuitionistic status of BW and KT

Let (P, \leq) be a poset and $f : P \rightarrow P$ monotone or progressive. When does it have a fixed point, intuitionistically?

Does f have a fixed point?		
	f progressive	<i>f</i> monotone
P complete	yes	yes [Tarski ′55]
<i>P</i> directed-complete	BW ^{dcpo}	yes [Pataraia '97]
P chain-complete	BW	KT

An observation by France Dacar: $BW \Leftrightarrow BW^{dcpo}$ and $BW \Rightarrow KT$. We will show that (1), (2), and (3) may fail.

Versions of Bourbaki-Witt

Theorem: *The following are equivalent:*

- (1) Progressive maps on ccpos have fixed points.
- (2) Ccpos have fixed-point operators for progressive maps.

Versions of Bourbaki-Witt

Theorem: *The following are equivalent:*

- (1) Progressive maps on ccpos have fixed points.
- (2) Ccpos have fixed-point operators for progressive maps.

Proof. $(2) \Rightarrow (1)$ is obvious. For $(1) \Rightarrow (2)$, let (P, \leq) be a ccpo and let

$$Prog(P) = \{f : P \to P \mid f \text{ progressive}\}.$$

The power $Q = P^{\text{Prog}(P)}$ with pointwise order is a ccpo. The map $F : Q \to Q$, defined by F(h)(f) = f(h(f)), is progressive and so has a fixed point *h* by (1). Then *h* is a fixed-point operator on Prog(P) since h(f) = F(h)(f) = f(h(f)). QED.

Versions of anti-Bourbaki-Witt

Theorem: *The following are equivalent:*

- (1) There is a ccpo on which not all progressive maps have fixed points.
- (2) There is a ccpo and a progresive map on it without a fixed point.

Versions of anti-Bourbaki-Witt

Theorem: *The following are equivalent:*

- (1) *There is a ccpo on which not all progressive maps have fixed points.*
- (2) There is a ccpo and a progresive map on it without a fixed point.

Proof. Only $(1) \Rightarrow (2)$ requires proof.

Given *P* as in (1), let $Q = P^{\text{Prog}(P)}$, ordered pointwise. Then $F : Q \to Q$ defined by F(h)(f) = f(h(f)) is progressive and without fixed point. QED.

Anti-Bourbaki-Witt and ordinals

The following are equivalent:

- (1) There is a counter-example to Bourbaki-Witt theorem.
- (2) Trichotomous ordinals form a set.

Anti-Bourbaki-Witt and ordinals

The following are equivalent:

- (1) There is a counter-example to Bourbaki-Witt theorem.
- (2) Trichotomous ordinals form a set.

Remark: $(\alpha, <)$ is a *trichotomous ordinal* when

- 1. < is irreflexive and transitive,
- 2. $x < y \lor x = y \lor y < x$ for all $x, y \in \alpha$, and
- 3. < is inductive: $(\forall y \in \alpha . (\forall x < y . \phi(x)) \Rightarrow \phi(y)) \Rightarrow \phi(z).$

Anti-Bourbaki-Witt and ordinals

The following are equivalent:

- (1) There is a counter-example to Bourbaki-Witt theorem.
- (2) Trichotomous ordinals form a set.

Proof. For $(2) \Rightarrow (1)$ observe that if the class of ordinals Ord is a set then the successor map $^+$: Ord \rightarrow Ord is progressive and has no fixed points. (NB: Successor will *not* be monotone because Ord is a dcpo!)

To prove $(1) \Rightarrow (2)$, suppose *P* is a cppo and $f : P \rightarrow P$ a progressive map without fixed points. We embed Ord into *P* via $e : \text{Ord} \rightarrow P$ defined inductively by

$$e(\alpha) = \bigvee_{\beta < \alpha} f(e(\beta)).$$

The map *e* is injective because *f* has no fixed points. QED.

Failure of Bourbaki-Witt in realizability toposes

- ▶ In a realizability topos the ordinals form a set (an object).
 - For instance, in the effective topos the trichotomous ordinals are interpreted by the recursive ordinals and go up only to the Church-Kleene ordinal ω₁^{CK}.
- ► Therefore, Bourbaki-Witt fails in realizability toposes.

Failure of Bourbaki-Witt in realizability toposes

- ▶ In a realizability topos the ordinals form a set (an object).
 - For instance, in the effective topos the trichotomous ordinals are interpreted by the recursive ordinals and go up only to the Church-Kleene ordinal ω₁^{CK}.
- ► Therefore, Bourbaki-Witt fails in realizability toposes.
- This does not invalidate Knaster-Tarski, but a related counter example falsifies both Bourbaki-Witt and Knaster-Tarski at the same time.
 - For instance, in the effective topos ∇ω₁ is chain-complete because all chains in the effective topos are countable. The successor map on ∇ω₁ is both monotone and progressive, and has no fixed point.
 - Here ω₁ is the least uncountable ordinal in Set and ∇ is the inclusion of sets into the realizability topos as sheaves for the ¬¬-coverage.

Transfer of Bourbaki-Witt along geometric morphisms

Theorem: If $(\phi^*, \phi_*) : \mathcal{E} \to \mathcal{F}$ is a geometric morphism between toposes and \mathcal{F} validates Bourbaki-Witt then so does \mathcal{E} .

Transfer of Bourbaki-Witt along geometric morphisms

Theorem: If $(\phi^*, \phi_*) : \mathcal{E} \to \mathcal{F}$ is a geometric morphism between toposes and \mathcal{F} validates Bourbaki-Witt then so does \mathcal{E} .

Proof. Suppose *P* is a ccpo in \mathcal{E} and $f : P \to P$ progressive. It turns out that ϕ_*P is a ccpo in \mathcal{F} and $\phi_*h : \phi_*P \to \phi_*P$ progressive, therefore \mathcal{F} validates

 $\exists x \in \phi_* P . (\phi_* h)(x) = x.$

The inverse image ϕ^* preserves \exists , hence \mathcal{E} validates

$$\exists y \in \phi^*(\phi_*P) \, . \, \phi^*(\phi_*h)(y) = y.$$

By naturality of the counit $\epsilon_P : \phi^*(\phi_*P) \to P$ it follows that $\epsilon_P(y)$ is a fixed point of *h*:

$$h(\epsilon_P(y)) = \epsilon_P(\phi^*(\phi_*h)(y)) = \epsilon_P(y).$$

QED.

Bourbaki-Witt holds in sheaf toposes

► Every sheaf topos *E*, in fact every cocomplete topos, has a geometric morphism (φ*, φ*) : *E* → Set:

$$\phi^*(X) = \coprod_{x \in X} 1$$
 and $\phi_*(A) = \operatorname{Hom}_{\mathcal{E}}(1, A).$

Bourbaki-Witt holds in sheaf toposes

► Every sheaf topos *E*, in fact every cocomplete topos, has a geometric morphism (φ*, φ*) : *E* → Set:

 $\phi^*(X) = \coprod_{x \in X} 1$ and $\phi_*(A) = \operatorname{Hom}_{\mathcal{E}}(1, A).$

- Bourbaki-Witt holds in sheaf toposes.
- Knaster-Tarski holds in sheaf toposes.

 The free topos consists of definable objects and validates exactly the intuitionistically provable statements.

- The free topos consists of definable objects and validates exactly the intuitionistically provable statements.
- Bourbaki-Witt cannot have a definable counter-example as that would give one in Set.

- The free topos consists of definable objects and validates exactly the intuitionistically provable statements.
- Bourbaki-Witt cannot have a definable counter-example as that would give one in Set.
- Perhaps Bourbaki-Witt is valid in the free topos, i.e., for each definable ccpo we can prove that every definable progresive map has a fixed point?

Theorem: *There is a ccpo in the free topos for which the Bourbaki-Witt theorem is not provable.*

Theorem: *There is a ccpo in the free topos for which the Bourbaki-Witt theorem is not provable.*

Proof. The idea is to define a ccpo whose interpretation in the effective topos is Ord.

Take *P* to consist of ordinals that are $\neg\neg$ -stable quotients of $\neg\neg$ -stable subsets of \mathbb{N} . This is definable — we just did it — but we cannot prove that it is ccpo, because in **Set** it is interpreted by ω_1 , which is not chain-complete.

Let $S = \{x \in 1 \mid P \text{ is a ccpo}\}$ and $Q = P^S$. Then Q is a ccpo. Its interpretation in the effective topos is Ord (and in Set it is $P^{\emptyset} = 1$).

We cannot prove that (the exponent by *S* of) the successor map $^+: Q \rightarrow Q$ has a fixed point, otherwise it would have one in the effective topos. QED.

Bourbaki-Witt does not imply existence of ordinals

- A counterexample to BW implies "few ordinals".
- Perhaps validity of BW implies "many ordinals"?
 - By "many" we mean sufficiently many to reach fixed points of progressive maps by iteration.

Bourbaki-Witt does not imply existence of ordinals

Theorem: There is a topos which validates BW and contains a progresive $f : P \rightarrow P$ on a ccpo P for which no amount of iteration along ordinals reaches a fixed point.

Bourbaki-Witt does not imply existence of ordinals

Theorem: There is a topos which validates BW and contains a progresive $f : P \rightarrow P$ on a ccpo P for which no amount of iteration along ordinals reaches a fixed point.

Proof. The topos \mathcal{E} in question is the free topos satisfying BW with a generic ccpo *P* and a generic progressive $f : P \to P$. No ordinal α in \mathcal{E} suffices to reach the fixed point of *f*. If interested, ask for details.

where $L = \lambda_0 + 1$, $s : L \to L$, $s(x) = \min(x + 1, \lambda_0)$. Observe that $\lambda_1 \le \lambda_0$, hence (λ_0, λ_1) -many iterations are not enough for s to reach a fixed point.

Two questions

- 1. Does Knaster-Tarski imply Bourbaki-Witt?
 - Yes? Give a proof. NB: the proof must work for ccpo's but fail for dcpo's.
 - No? Give a model which validates Knaster-Tarski and falsifies Bourbaki-Witt.
- 2. Is there a constructive version of the Bourbaki-Witt theorem?
 - Weaken "chain" or strengthen "progressive", but how?