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A fixed-point theorem

Theorem: Let (L, <) be a complete latticeandf : L — La
progressive map: x < f(x) for all x € L. Then f has a fixed point.

Proof. Consider the least C C L closed under arbitrary suprema and f.

(C is the intersection of all subsets that are so closed.) Then

Y = V,ecf(x) is a fixed point because y < f(v) < \/,cf(x) = y. QED.



A fixed-point theorem

Theorem: Let (L, <) be a complete latticeandf : L — La
progressive map: x < f(x) for all x € L. Then f has a fixed point.

Proof. Consider the least C C L closed under arbitrary suprema and f.
(C is the intersection of all subsets that are so closed.) Then

Y = V,ecf(x) is a fixed point because y < f(v) < \/,cf(x) = y. QED.

Classically, C is the chain obtained by iterations of f, indexed by
a sufficiently large ordinal,

L<f) <)< <)<

so the theorem is classically valid for chain-complete posets (ccpo).

(A chain is a subset C such thatx <y Vy <xforall x,y € C.)



Fixed-point theorems for chain-complete posets

Theorem [Bourbaki-Witt, 1949 and 1951]:
A progressive map on a chain-complete poset has a fixed point.



Fixed-point theorems for chain-complete posets

Theorem [Bourbaki-Witt, 1949 and 1951]:
A progressive map on a chain-complete poset has a fixed point.

Not to be confused with:

Theorem (Knaster-Tarski, 1955):
A monotone map on a chain-complete poset has a fixed point.
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The intuitionistic status of BW and KT

Let (P, <) be a poset and f : P — P monotone or progressive.
When does it have a fixed point, intuitionistically?

Does f have a fixed point?
f progressive f monotone
P complete yes yes [Tarski "55]
P directed-complete Bwdcpo yes [Pataraia "97]
P chain-complete BW KT

An observation by France Dacar: BW < BW9P° and BW = KT.

We will show that (1), (2), and (3) may fail.
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Versions of Bourbaki-Witt

Theorem: The following are equivalent:
(1) Progressive maps on ccpos have fixed points.
(2) Ccpos have fixed-point operators for progressive maps.

Proof. (2) = (1) is obvious. For (1) = (2), let (P, <) be a ccpo and let
Prog(P) = {f : P — P | f progressive}.

The power Q = PP8(P) with pointwise order is a ccpo. The map
F:Q — Q, defined by F(h)(f) = f(h(f)), is progressive and so has a
fixed point /1 by (1). Then & is a fixed-point operator on Prog(P) since

h(f) = E(0)(f) = f(h(f)). QED.



Versions of anti-Bourbaki-Witt

Theorem: The following are equivalent:

(1) There is a ccpo on which not all progressive maps have fixed
points.

(2) There is a ccpo and a progresive map on it without a fixed point.
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Versions of anti-Bourbaki-Witt

Theorem: The following are equivalent:

(1) There is a ccpo on which not all progressive maps have fixed
points.

(2) There is a ccpo and a progresive map on it without a fixed point.

Proof. Only (1) = (2) requires proof.

Given P as in (1), let Q = P™8(P) ordered pointwise. Then F : Q — Q
defined by F(h)(f) = f(h(f)) is progressive and without fixed point.
QED.
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Anti-Bourbaki-Witt and ordinals

The following are equivalent:

(1) There is a counter-example to Bourbaki-Witt theorem.

(2) Trichotomous ordinals form a set.

Remark: (o, <) is a trichotomous ordinal when
1. < isirreflexive and transitive,
2. x<yVx=yVy<xforallxyeqand
3. <isinductive: (Vyca.(Vx <y.o(x)) = ¢(y)) = ¢(z).



Anti-Bourbaki-Witt and ordinals

The following are equivalent:
(1) There is a counter-example to Bourbaki-Witt theorem.

(2) Trichotomous ordinals form a set.

Proof. For (2) = (1) observe that if the class of ordinals Ord is a set
then the successor map * : Ord — Ord is progressive and has no fixed
points. (NB: Successor will not be monotone because Ord is a dcpo!)

To prove (1) = (2), suppose P is a cppo and f : P — P a progressive
map without fixed points. We embed Ord into P viae : Ord — P
defined inductively by

e(@) = Vo f(e(B))-

The map e is injective because f has no fixed points. QED.



Failure of Bourbaki-Witt in realizability toposes

» In a realizability topos the ordinals form a set (an object).

» For instance, in the effective topos the trichotomous
ordinals are interpreted by the recursive ordinals and go up
only to the Church-Kleene ordinal wX.

» Therefore, Bourbaki-Witt fails in realizability toposes.
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Failure of Bourbaki-Witt in realizability toposes

» In a realizability topos the ordinals form a set (an object).

» For instance, in the effective topos the trichotomous
ordinals are interpreted by the recursive ordinals and go up
only to the Church-Kleene ordinal wX.

» Therefore, Bourbaki-Witt fails in realizability toposes.

» This does not invalidate Knaster-Tarski, but a related
counter example falsifies both Bourbaki-Witt and
Knaster-Tarski at the same time.

» For instance, in the effective topos Vw; is chain-complete
because all chains in the effective topos are countable. The
successor map on Vw; is both monotone and progressive,
and has no fixed point.

» Here w; is the least uncountable ordinal in Set and V is the
inclusion of sets into the realizability topos as sheaves for
the ——-coverage.
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Theorem: If (¢*, ¢.) : £ — F is a geometric morphism between
toposes and F validates Bourbaki-Witt then so does £.



Transfer of Bourbaki-Witt along geometric morphisms

Theorem: If (¢*, ¢.) : £ — F is a geometric morphism between
toposes and F validates Bourbaki-Witt then so does £.

Proof. Suppose Pisaccpoin £ and f : P — P progressive. It turns out
that ¢, P is a ccpo in F and ¢.h : ¢..P — ¢.P progressive, therefore 7
validates

Ix € ¢ P.(¢:h)(x) = x.

The inverse image ¢* preserves 3, hence £ validates
Jy €™ (¢.P) . ¢ (o) (y) =y

By naturality of the counit ep : ¢*(¢.P) — P it follows that ep(y) is a
fixed point of h:

h(ep(y)) = ep(¢™(4:h)(y)) = ep(y).-
QED.



Bourbaki-Witt holds in sheaf toposes

» Every sheaf topos &, in fact every cocomplete topos, has a
geometric morphism (¢*, ¢,) : £ — Set:

¢*(X) = [Lyex 1 and d+(A) = Homg(1,A).
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Bourbaki-Witt holds in sheaf toposes

» Every sheaf topos &, in fact every cocomplete topos, has a
geometric morphism (¢*, ¢,) : £ — Set:

¢*(X) = [Lyex 1 and d+(A) = Homg(1,A).

» Bourbaki-Witt holds in sheaf toposes.
» Knaster-Tarski holds in sheaf toposes.
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Bourbaki-Witt does not hold in the free topos

» The free topos consists of definable objects and validates
exactly the intuitionistically provable statements.
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Bourbaki-Witt does not hold in the free topos

> The free topos consists of definable objects and validates
exactly the intuitionistically provable statements.

» Bourbaki-Witt cannot have a definable counter-example as
that would give one in Set.

» Perhaps Bourbaki-Witt is valid in the free topos, i.e., for
each definable ccpo we can prove that every definable
progresive map has a fixed point?
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Theorem: There is a ccpo in the free topos for which the
Bourbaki-Witt theorem is not provable.



Bourbaki-Witt does not hold in the free topos

Theorem: There is a ccpo in the free topos for which the
Bourbaki-Witt theorem is not provable.

Proof. The idea is to define a ccpo whose interpretation in the effective
topos is Ord.

Take P to consist of ordinals that are =—-stable quotients of ——-stable
subsets of N. This is definable — we just did it—but we cannot
prove that it is ccpo, because in Set it is interpreted by wy, which is
not chain-complete.

LetS={x€1 | Pisaccpo}and Q = P5. Then Q is a ccpo. Its
interpretation in the effective topos is Ord (and in Set it is P? = 1).

We cannot prove that (the exponent by S of) the successor map
*: Q — Q has a fixed point, otherwise it would have one in the
effective topos. QED.



Bourbaki-Witt does not imply existence of ordinals

» A counterexample to BW implies “few ordinals”.
» Perhaps validity of BW implies “many ordinals”?

» By “many” we mean sufficiently many to reach fixed points
of progressive maps by iteration.
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Bourbaki-Witt does not imply existence of ordinals

Theorem: There is a topos which validates BW and contains a
progresive f : P — P on a ccpo P for which no amount of iteration
along ordinals reaches a fixed point.
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Bourbaki-Witt does not imply existence of ordinals

Theorem: There is a topos which validates BW and contains a
progresive f : P — P on a ccpo P for which no amount of iteration
along ordinals reaches a fixed point.

Proof. The topos £ in question is the free topos satisfying BW with a
generic ccpo P and a generic progressive f : P — P. No ordinal ain £
suffices to reach the fixed point of f. If interested, ask for details.

E— Seto_>1 a7P7f P ()‘Oa )‘1)7 ({*}71‘)? (ld{*}ﬂ S)

evp
P{x}froid gy

Set Ao, {x},id g

where L =X+ 1,5: L — L,s(x) = min(x + 1, A9). Observe that
A1 < A, hence (A, A1)-many iterations are not enough for s to reach a
fixed point.

15/ 16



Two questions

1. Does Knaster-Tarski imply Bourbaki-Witt?

> Yes? Give a proof. NB: the proof must work for ccpo’s but
fail for dcpo’s.

» No? Give a model which validates Knaster-Tarski and
falsifies Bourbaki-Witt.

2. Is there a constructive version of the Bourbaki-Witt theorem?
» Weaken “chain” or strengthen “progressive”, but how?
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