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A fixed-point theorem

Theorem: Let (L,≤) be a complete lattice and f : L→ L a
progressive map: x ≤ f (x) for all x ∈ L. Then f has a fixed point.

Proof. Consider the least C ⊆ L closed under arbitrary suprema and f .
(C is the intersection of all subsets that are so closed.) Then
y =

∨
x∈C f (x) is a fixed point because y ≤ f (y) ≤

∨
x∈C f (x) = y. QED.

Classically, C is the chain obtained by iterations of f , indexed by
a sufficiently large ordinal,

⊥ ≤ f (⊥) ≤ f 2(⊥) ≤ · · · ≤ f ω(⊥) ≤ f ω+1(⊥) ≤ · · ·

so the theorem is classically valid for chain-complete posets (ccpo).

(A chain is a subset C such that x ≤ y ∨ y ≤ x for all x, y ∈ C.)
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Fixed-point theorems for chain-complete posets

Theorem [Bourbaki-Witt, 1949 and 1951]:
A progressive map on a chain-complete poset has a fixed point.

Not to be confused with:

Theorem (Knaster-Tarski, 1955):
A monotone map on a chain-complete poset has a fixed point.
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The intuitionistic status of BW and KT

Let (P,≤) be a poset and f : P→ P monotone or progressive.
When does it have a fixed point, intuitionistically?

Does f have a fixed point?
f progressive f monotone

P complete yes yes [Tarski ’55]
P directed-complete BWdcpo yes [Pataraia ’97]

P chain-complete BW KT

An observation by France Dacar: BW⇔ BWdcpo and BW⇒ KT.

We will show that (1), (2), and (3) may fail.
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Versions of Bourbaki-Witt

Theorem: The following are equivalent:
(1) Progressive maps on ccpos have fixed points.
(2) Ccpos have fixed-point operators for progressive maps.

Proof. (2)⇒ (1) is obvious. For (1)⇒ (2), let (P,≤) be a ccpo and let

Prog(P) = {f : P→ P | f progressive}.

The power Q = PProg(P) with pointwise order is a ccpo. The map
F : Q→ Q, defined by F(h)(f ) = f (h(f )), is progressive and so has a
fixed point h by (1). Then h is a fixed-point operator on Prog(P) since
h(f ) = F(h)(f ) = f (h(f )). QED.
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Versions of anti-Bourbaki-Witt

Theorem: The following are equivalent:
(1) There is a ccpo on which not all progressive maps have fixed

points.
(2) There is a ccpo and a progresive map on it without a fixed point.

Proof. Only (1)⇒ (2) requires proof.

Given P as in (1), let Q = PProg(P), ordered pointwise. Then F : Q→ Q
defined by F(h)(f ) = f (h(f )) is progressive and without fixed point.
QED.

7 / 16



Versions of anti-Bourbaki-Witt

Theorem: The following are equivalent:
(1) There is a ccpo on which not all progressive maps have fixed

points.
(2) There is a ccpo and a progresive map on it without a fixed point.

Proof. Only (1)⇒ (2) requires proof.

Given P as in (1), let Q = PProg(P), ordered pointwise. Then F : Q→ Q
defined by F(h)(f ) = f (h(f )) is progressive and without fixed point.
QED.

7 / 16



Anti-Bourbaki-Witt and ordinals

The following are equivalent:
(1) There is a counter-example to Bourbaki-Witt theorem.
(2) Trichotomous ordinals form a set.
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Anti-Bourbaki-Witt and ordinals

The following are equivalent:
(1) There is a counter-example to Bourbaki-Witt theorem.
(2) Trichotomous ordinals form a set.

Remark: (α,<) is a trichotomous ordinal when

1. < is irreflexive and transitive,

2. x < y ∨ x = y ∨ y < x for all x, y ∈ α, and

3. < is inductive: (∀ y∈α . (∀ x < y . φ(x))⇒ φ(y))⇒ φ(z).
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Anti-Bourbaki-Witt and ordinals

The following are equivalent:
(1) There is a counter-example to Bourbaki-Witt theorem.
(2) Trichotomous ordinals form a set.

Proof. For (2) ⇒ (1) observe that if the class of ordinals Ord is a set
then the successor map + : Ord→ Ord is progressive and has no fixed
points. (NB: Successor will not be monotone because Ord is a dcpo!)

To prove (1) ⇒ (2), suppose P is a cppo and f : P → P a progressive
map without fixed points. We embed Ord into P via e : Ord → P
defined inductively by

e(α) =
∨
β<α f (e(β)).

The map e is injective because f has no fixed points. QED.
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Failure of Bourbaki-Witt in realizability toposes

I In a realizability topos the ordinals form a set (an object).
I For instance, in the effective topos the trichotomous

ordinals are interpreted by the recursive ordinals and go up
only to the Church-Kleene ordinal ωCK

1 .

I Therefore, Bourbaki-Witt fails in realizability toposes.

I This does not invalidate Knaster-Tarski, but a related
counter example falsifies both Bourbaki-Witt and
Knaster-Tarski at the same time.

I For instance, in the effective topos∇ω1 is chain-complete
because all chains in the effective topos are countable. The
successor map on∇ω1 is both monotone and progressive,
and has no fixed point.

I Here ω1 is the least uncountable ordinal in Set and∇ is the
inclusion of sets into the realizability topos as sheaves for
the ¬¬-coverage.
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Transfer of Bourbaki-Witt along geometric morphisms

Theorem: If (φ∗, φ∗) : E → F is a geometric morphism between
toposes and F validates Bourbaki-Witt then so does E .

Proof. Suppose P is a ccpo in E and f : P→ P progressive. It turns out
that φ∗P is a ccpo in F and φ∗h : φ∗P→ φ∗P progressive, therefore F
validates

∃ x∈φ∗P . (φ∗h)(x) = x.

The inverse image φ∗ preserves ∃, hence E validates

∃ y∈φ∗(φ∗P) . φ∗(φ∗h)(y) = y.

By naturality of the counit εP : φ∗(φ∗P)→ P it follows that εP(y) is a
fixed point of h:

h(εP(y)) = εP(φ∗(φ∗h)(y)) = εP(y).

QED.
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Bourbaki-Witt holds in sheaf toposes

I Every sheaf topos E , in fact every cocomplete topos, has a
geometric morphism (φ∗, φ∗) : E → Set:

φ∗(X) =
∐

x∈X 1 and φ∗(A) = HomE(1,A).

I Bourbaki-Witt holds in sheaf toposes.
I Knaster-Tarski holds in sheaf toposes.
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Bourbaki-Witt does not hold in the free topos

I The free topos consists of definable objects and validates
exactly the intuitionistically provable statements.

I Bourbaki-Witt cannot have a definable counter-example as
that would give one in Set.

I Perhaps Bourbaki-Witt is valid in the free topos, i.e., for
each definable ccpo we can prove that every definable
progresive map has a fixed point?
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Bourbaki-Witt does not hold in the free topos

Theorem: There is a ccpo in the free topos for which the
Bourbaki-Witt theorem is not provable.

Proof. The idea is to define a ccpo whose interpretation in the effective
topos is Ord.

Take P to consist of ordinals that are ¬¬-stable quotients of ¬¬-stable
subsets of N. This is definable — we just did it — but we cannot
prove that it is ccpo, because in Set it is interpreted by ω1, which is
not chain-complete.

Let S = {x ∈ 1 | P is a ccpo} and Q = PS. Then Q is a ccpo. Its
interpretation in the effective topos is Ord (and in Set it is P∅ = 1).

We cannot prove that (the exponent by S of) the successor map
+ : Q→ Q has a fixed point, otherwise it would have one in the
effective topos. QED.
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Bourbaki-Witt does not imply existence of ordinals

I A counterexample to BW implies “few ordinals”.
I Perhaps validity of BW implies “many ordinals”?

I By “many” we mean sufficiently many to reach fixed points
of progressive maps by iteration.
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Bourbaki-Witt does not imply existence of ordinals
Theorem: There is a topos which validates BW and contains a
progresive f : P→ P on a ccpo P for which no amount of iteration
along ordinals reaches a fixed point.

Proof. The topos E in question is the free topos satisfying BW with a
generic ccpo P and a generic progressive f : P→ P. No ordinal α in E
suffices to reach the fixed point of f . If interested, ask for details.

E //

P7→{?},f 7→id{?}
""DDDDDDDDDDDD Set0→1

ev0

��
Set

α,P, f � //
�

''PPPPPPPPPPPPPPPPP
(λ0, λ1), ({?},L), (id{?}, s)_

��
λ0, {?}, id{?}

where L = λ0 + 1, s : L→ L, s(x) = min(x + 1, λ0). Observe that
λ1 ≤ λ0, hence (λ0, λ1)-many iterations are not enough for s to reach a
fixed point.
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Two questions

1. Does Knaster-Tarski imply Bourbaki-Witt?
I Yes? Give a proof. NB: the proof must work for ccpo’s but

fail for dcpo’s.
I No? Give a model which validates Knaster-Tarski and

falsifies Bourbaki-Witt.
2. Is there a constructive version of the Bourbaki-Witt theorem?

I Weaken “chain” or strengthen “progressive”, but how?

16 / 16


