On the Power of Choice

Vasco Brattka
(University of Cape Town, South Africa)
Matthew de Brecht
(Kyoto University, Japan)
Guido Gherardi
(University Bologna, Italy)
Arno Pauly
(University of Cambridge, UK)

Workshop on Constructive Aspects of Logic and Mathematics Kanazawa, Japan, 11 March 2010

Outline

1 The Weihrauch Lattice

2 Discrete Choice

3 Products and Non-Deterministic Computability

4 Choice on Computable Metric Spaces

5 The Uniform Low Basis Theorem

Realizer

Definition

A multi-valued function $f: \subseteq X \rightrightarrows Y$ on represented spaces $\left(X, \delta_{X}\right)$ and $\left(Y, \delta_{Y}\right)$ is realized by a function $F: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ if

$$
\delta_{Y} F(p) \in f \delta_{X}(p)
$$

for all $p \in \operatorname{dom}\left(f \delta_{X}\right)$. We write $F \vdash f$ in this situation.

Weihrauch Reducibility

Definition

For two multi-valued functions f and g on represented spaces we say that f is Weihrauch reducible to g, in symbols $f \leq_{W} g$, if there are computable functions H and K such that

$$
G \vdash g \Longrightarrow H\langle\mathrm{id}, G K\rangle \vdash f
$$

holds for all G.
That means that there is a uniform way to transform each realizer G of g into a realizer F of f in the given way.
\square Proposition
\qquad
\qquad
\square

Weihrauch Reducibility

Definition

For two multi-valued functions f and g on represented spaces we say that f is Weihrauch reducible to g, in symbols $f \leq_{W} g$, if there are computable functions H and K such that

$$
G \vdash g \Longrightarrow H\langle\mathrm{id}, G K\rangle \vdash f
$$

holds for all G.
That means that there is a uniform way to transform each realizer G of g into a realizer F of f in the given way.

Proposition

Weihrauch reducibility is a preorder on the set of multi-valued
functions (on some given category of represented spaces) and it
induces a partial order.

Weihrauch Reducibility

Definition

For two multi-valued functions f and g on represented spaces we say that f is Weihrauch reducible to g, in symbols $f \leq_{W} g$, if there are computable functions H and K such that

$$
G \vdash g \Longrightarrow H\langle\mathrm{id}, G K\rangle \vdash f
$$

holds for all G.
That means that there is a uniform way to transform each realizer G of g into a realizer F of f in the given way.

Proposition

Weihrauch reducibility is a preorder on the set of multi-valued functions (on some given category of represented spaces) and it induces a partial order.

Algebraic Operations in the Weihrauch Lattice

Definition

Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ be multi-valued maps. Then we consider the natural operations

```
- \(f \times g: \subseteq X \times W \rightrightarrows Y \times Z\)
- \(f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z\)
- \(f \oplus g: \subseteq X \times W \rightrightarrows Y \sqcup Z\)
- \(f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}\)
- \(\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f\)
```

(product)
(coproduct)
(sum)
(star)
(parallelization)

Proposition

M/aihrauch reducibility induces a (bounded) lattice with the sum
as infimum and the coproduct \sqcup as supremum and parallelization
and the star operation are closure operators in this lattice.

Algebraic Operations in the Weihrauch Lattice

Definition

Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ be multi-valued maps. Then we consider the natural operations

```
- \(f \times g: \subseteq X \times W \rightrightarrows Y \times Z\)
- \(f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z\)
- \(f \oplus g: \subseteq X \times W \rightrightarrows Y \sqcup Z\)
- \(f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}\)
- \(\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f\)
```

(product)
(coproduct)
(sum)
(star)
(parallelization)

Proposition

Weihrauch reducibility induces a (bounded) lattice with the sum \oplus as infimum and the coproduct \sqcup as supremum and parallelization and the star operation are closure operators in this lattice.

Definition

We define the choice operation

$$
C_{X}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A
$$

for every represented space X. Here

$$
\mathcal{A}_{-}(X):=\{A \subseteq X: A \text { closed }\}
$$

is the hyperspace of closed subsets with respect to negative information (the upper Fell topology = dual of the Scott topology).

That is, choice C_{X} is an operation that takes as input a description of what does not constitute a solution and has to find a solution. By UC_{X} we denote
singletons.

Definition

We define the choice operation

$$
C_{X}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A
$$

for every represented space X. Here

$$
\mathcal{A}_{-}(X):=\{A \subseteq X: A \text { closed }\}
$$

is the hyperspace of closed subsets with respect to negative information (the upper Fell topology = dual of the Scott topology).

That is, choice C_{X} is an operation that takes as input a description of what does not constitute a solution and has to find a solution.

Definition

We define the choice operation

$$
C_{X}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A
$$

for every represented space X. Here

$$
\mathcal{A}_{-}(X):=\{A \subseteq X: A \text { closed }\}
$$

is the hyperspace of closed subsets with respect to negative information (the upper Fell topology = dual of the Scott topology).

That is, choice C_{X} is an operation that takes as input a description of what does not constitute a solution and has to find a solution. By $U C_{X}$ we denote unique choice, i.e. the restriction of C_{X} to singletons.

Definition

For each natural number $n \in \mathbb{N}$ we write for short

$$
\mathbf{n}:=C_{\{0, \ldots, n-1\}} .
$$

That is \mathbf{n} reflects choice between n alternatives.

Proposition

> - $0=C_{\emptyset}$ is a neutral element with respect to the coproduct \sqcup and acts like a zero with respect to products
> - $\mathbf{0} \leq_{W} f$ for all f, i.e. $\mathbf{0}$ is the bottom element
> - $1=\mathrm{C}_{\{0\}} \equiv{ }_{\mathrm{W}} 0^{*}$ is a neutral element with respect to the product

\square
The Weihrauch lattice together with \sqcup,
0,1 forms a

commutative semiring and a continuous Kleene algebra

Definition

For each natural number $n \in \mathbb{N}$ we write for short

$$
\mathbf{n}:=C_{\{0, \ldots, n-1\}} .
$$

That is \mathbf{n} reflects choice between n alternatives.
Proposition

- $\mathbf{0}=\mathrm{C}_{\emptyset}$ is a neutral element with respect to the coproduct \sqcup and acts like a zero with respect to products \times
- $\mathbf{0} \leq_{\mathrm{W}} f$ for all f, i.e. $\mathbf{0}$ is the bottom element
- $\mathbf{1}=\mathrm{C}_{\{0\}} \equiv{ }_{\mathrm{W}} \mathbf{0}^{*}$ is a neutral element with respect to the product \times

The Weihrauch lattice together with $\sqcup, \times,{ }^{*}, \mathbf{0}, \mathbf{1}$ forms a commutative semiring and a continuous Kleene algebra.

Definition

For each natural number $n \in \mathbb{N}$ we write for short

$$
\mathbf{n}:=C_{\{0, \ldots, n-1\}} .
$$

That is \mathbf{n} reflects choice between n alternatives.

Proposition

- $\mathbf{0}=\mathrm{C}_{\emptyset}$ is a neutral element with respect to the coproduct \sqcup and acts like a zero with respect to products \times
- $\mathbf{0} \leq_{\mathrm{W}} f$ for all f, i.e. $\mathbf{0}$ is the bottom element
- $\mathbf{1}=\mathrm{C}_{\{0\}} \equiv{ }_{\mathrm{W}} \mathbf{0}^{*}$ is a neutral element with respect to the product \times

The Weihrauch lattice together with $\sqcup, \times,{ }^{*}, \mathbf{0}, \mathbf{1}$ forms a commutative semiring and a continuous Kleene algebra.

Characterization of Computability

Theorem

For all f the following statements are equivalent:

- $f \leq_{W} \mathbf{1}$
- f is computable.

Theorem
The entire Turing semi-lattice can be embedded inbetween 0 and 1
(with order reversed)

Characterization of Computability

Theorem

For all f the following statements are equivalent:

- $f \leq_{W} \mathbf{1}$
- f is computable.

$$
\begin{gathered}
\mathbf{1}=\mathrm{C}_{\{0\}} \equiv{ }_{\mathrm{W}} \mathbf{0}^{*} \\
J^{-1} \\
\mathbf{0}=\mathrm{C}_{\emptyset} \\
\text { computable }
\end{gathered}
$$

Theorem

The entire Turing semi-lattice can be embedded inbetween 0 and 1 (with order reversed).

Characterization of Computability

Theorem

For all f the following statements are equivalent:

- $f \leq_{W} 1$
- f is computable.

$$
\begin{gathered}
\mathbf{1}=\mathrm{C}_{\{0\}} \equiv{ }_{\mathrm{W}} \mathbf{0}^{*} \\
J_{\square}^{-1} \\
\mathbf{0}=\mathrm{C}_{\emptyset} \\
\text { computable }
\end{gathered}
$$

Theorem

The entire Turing semi-lattice can be embedded inbetween 0 and 1 (with order reversed).

Idempotency and Pointedness

Definition

- f is called pointed if $1 \leq_{W} f$,
- f is called idempotent if $f \equiv_{\mathrm{W}} f \times f$.

Proposition

For pointed f, g are pointed and $f \amalg g$ is idempotent, then

$$
f \sqcup g \equiv{ }_{\mathrm{W}} f \times g .
$$

Proposition

1 mointed f is idempotent if and only if f \#W f

Idempotency and Pointedness

Definition

- f is called pointed if $1 \leq_{W} f$,
- f is called idempotent if $f \equiv_{\mathrm{W}} f \times f$.

Proposition

For pointed f, g are pointed and $f \sqcup g$ is idempotent, then

$$
f \sqcup g \equiv \equiv_{\mathrm{W}} f \times g
$$

Proposition
A nointed f is idempotent if and only if f^{*} 三W f

Idempotency and Pointedness

Definition

- f is called pointed if $1 \leq_{W} f$,
- f is called idempotent if $f \equiv_{\mathrm{W}} f \times f$.

Proposition

For pointed f, g are pointed and $f \sqcup g$ is idempotent, then

$$
f \sqcup g \equiv_{\mathrm{W}} f \times g .
$$

Proposition

A pointed f is idempotent if and only if $f^{*} \equiv_{\mathrm{W}} f$.

Binary Choice and LLPO

Example

- Binary choice $2=C_{\{0,1\}}$ could receive as a potential input:
\perp,

Binary Choice and LLPO

Example

- Binary choice $2=C_{\{0,1\}}$ could receive as a potential input:

$$
\perp, \perp,
$$

Binary Choice and LLPO

Example

- Binary choice $2=C_{\{0,1\}}$ could receive as a potential input:

$$
\perp, \perp, \perp, 1,1, \perp, 1,1,1, \ldots
$$

Binary Choice and LLPO

Example

- Binary choice $2=C_{\{0,1\}}$ could receive as a potential input:

$$
\perp, \perp, \perp, 1,1, \perp, 1,1,1, \ldots
$$

- Here \perp stands for "no information". As soon as the information 1 appears, it is clear that the onlv possible remaining choice is 0

Binary Choice and LLPO

Example

- Binary choice $2=\mathrm{C}_{\{0,1\}}$ could receive as a potential input:

$$
\perp, \perp, \perp, 1,1, \perp, 1,1,1, \ldots
$$

- Here \perp stands for "no information". As soon as the information 1 appears, it is clear that the only possible remaining choice is 0 .
This is similar to the "lesser limited principle of omniscience" LLPO.

Binary Choice and LLPO

Example

- Binary choice $2=C_{\{0,1\}}$ could receive as a potential input:

$$
\perp, \perp, \perp, 1,1, \perp, 1,1,1, \ldots
$$

- Here \perp stands for "no information". As soon as the information 1 appears, it is clear that the only possible remaining choice is 0 .
- This is similar to the "lesser limited principle of omniscience" LLPO.

Proposition

Binary Choice and LLPO

Example

- Binary choice $2=C_{\{0,1\}}$ could receive as a potential input:

$$
\perp, \perp, \perp, 1,1, \perp, 1,1,1, \ldots
$$

- Here \perp stands for "no information". As soon as the information 1 appears, it is clear that the only possible remaining choice is 0 .
- This is similar to the "lesser limited principle of omniscience" LLPO.

Proposition

Binary Choice and LLPO

Example

- Binary choice $2=C_{\{0,1\}}$ could receive as a potential input:

$$
\perp, \perp, \perp, 1,1, \perp, 1,1,1, \ldots
$$

- Here \perp stands for "no information". As soon as the information 1 appears, it is clear that the only possible remaining choice is 0 .
- This is similar to the "lesser limited principle of omniscience" LLPO.

Proposition

$$
\text { LLPO } \equiv_{\mathrm{w}} 2 .
$$

Coproducts, Products and Compositional Products

Definition

For f and g we define the compositional product $f * g$ by

$$
f * g=\sup \left\{f_{0} \circ g_{0}: f_{0} \leq_{\mathrm{W}} f \text { and } g_{0} \leq_{\mathrm{W}} g\right\} .
$$

Proposition

For pointed f, g we obtain

Proof
 Here the last reduction follows from

Coproducts, Products and Compositional Products

Definition

For f and g we define the compositional product $f * g$ by

$$
f * g=\sup \left\{f_{0} \circ g_{0}: f_{0} \leq_{W} f \text { and } g_{0} \leq_{W} g\right\} .
$$

Proposition

For pointed f, g we obtain

$$
f \oplus g \leq_{\mathrm{W}} f \sqcup g \leq_{\mathrm{W}} f \times g \leq_{\mathrm{W}} f * g .
$$

Proof

Here the last reduction follows from

Coproducts, Products and Compositional Products

Definition

For f and g we define the compositional product $f * g$ by

$$
f * g=\sup \left\{f_{0} \circ g_{0}: f_{0} \leq_{\mathrm{W}} f \text { and } g_{0} \leq_{\mathrm{W}} g\right\} .
$$

Proposition
For pointed f, g we obtain

$$
f \oplus g \leq_{\mathrm{W}} f \sqcup g \leq_{\mathrm{W}} f \times g \leq_{\mathrm{W}} f * g .
$$

Proof.

Here the last reduction follows from
$f \times g=(f \times \mathrm{id}) \circ(\mathrm{id} \times g) \leq_{\mathrm{W}} f * g$.

Products of Choice and Weihrauch Arithmetic

Proposition

For non-empty A, B we obtain

$$
\mathrm{C}_{A} \sqcup \mathrm{C}_{B} \leq{ }_{W} \mathrm{C}_{A} \times \mathrm{C}_{B} \leq_{W} \mathrm{C}_{A \times B}
$$

Corollary
for all $n, k \in \mathbb{N}$.

Proposition

Proposition

For non-empty A, B we obtain

$$
\mathrm{C}_{A} \sqcup \mathrm{C}_{B} \leq{ }_{\mathrm{W}} \mathrm{C}_{A} \times \mathrm{C}_{B} \leq_{W} \mathrm{C}_{A \times B}
$$

Corollary

$$
\mathbf{n} \times \mathbf{k} \leq_{W} \mathbf{n} \cdot \mathbf{k}
$$

for all $n, k \in \mathbb{N}$.

Proposition

$$
2 \times 2 \not \equiv{ }_{W} 4 .
$$

Products of Choice and Weihrauch Arithmetic

Proposition

For non-empty A, B we obtain

$$
\mathrm{C}_{A} \sqcup \mathrm{C}_{B} \leq{ }_{\mathrm{W}} \mathrm{C}_{A} \times \mathrm{C}_{B} \leq{ }_{W} \mathrm{C}_{A \times B}
$$

Corollary

$$
\mathbf{n} \times \mathbf{k} \leq_{W} \mathbf{n} \cdot \mathbf{k}
$$

for all $n, k \in \mathbb{N}$.

Proposition

$$
2 \times 2 \not \equiv \mathrm{~W} 4
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $C_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23,0
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23,0,42,1
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23,0,42
$$

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23,0,42,1,25
$$

This is a discontinuous operation, however, it can be
computed with finitely many mind changes.

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $C_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23,0,42,1,25, \ldots
$$

- This is a discontinuous operation, however, it can be computed with finitely many mind changes.

Theorem

For all f the following statements are equivalent

- f is computable with finitely many mind changes.

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $C_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23,0,42,1,25, \ldots
$$

- This is a discontinuous operation, however, it can be computed with finitely many mind changes.

Theorem
For all f the following statements are equivalent:

- f is computable with finitely many mind changes.

Natural Choice and Finitely Many Mind Changes

Example

- Natural number choice $\mathrm{C}_{\mathbb{N}}$ could receive as a potential input:

$$
5,112,3,5,23,0,42,1,25, \ldots
$$

- This is a discontinuous operation, however, it can be computed with finitely many mind changes.

Theorem

For all f the following statements are equivalent:

- $f \leq_{W} C_{\mathbb{N}}$
- f is computable with finitely many mind changes.

The Baire Category Theorem

Definition

Let X be a non-empty computable metric space. We define

$$
\mathrm{BCT}: \subseteq \mathcal{A}_{-}(X)^{\mathbb{N}} \rightrightarrows \mathbb{N},\left(A_{i}\right)_{i \in \mathbb{N}} \mapsto\left\{n \in \mathbb{N}: A_{n}^{\circ} \neq \emptyset\right\}
$$

with $\operatorname{dom}(\mathrm{BCT})=\left\{\left(A_{i}\right)_{i \in \mathbb{N}}: X=\bigcup_{i=0}^{\infty} A_{i}\right\}$.

Theorem

$$
B C T \equiv_{W} C_{\mathbb{N}} \equiv_{W} \cup C_{\mathbb{N}}
$$

Other equivalent theorems:
> - Banach's Inverse Manpin Theorem,

\square
Open Mapping Theorem

The Baire Category Theorem

Definition

Let X be a non-empty computable metric space. We define

$$
\mathrm{BCT}: \subseteq \mathcal{A}_{-}(X)^{\mathbb{N}} \rightrightarrows \mathbb{N},\left(A_{i}\right)_{i \in \mathbb{N}} \mapsto\left\{n \in \mathbb{N}: A_{n}^{\circ} \neq \emptyset\right\}
$$

with $\operatorname{dom}(\mathrm{BCT})=\left\{\left(A_{i}\right)_{i \in \mathbb{N}}: X=\bigcup_{i=0}^{\infty} A_{i}\right\}$.

Theorem

$$
\mathrm{BCT} \equiv_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \cup \mathrm{C}_{\mathbb{N}}
$$

Other equivalent theorems:

- Banach's Inverse Mapping Theorem,
- Closed Graph Theorem,
- Open Mapping Theorem.

The Baire Category Theorem

Definition

Let X be a non-empty computable metric space. We define

$$
\mathrm{BCT}: \subseteq \mathcal{A}_{-}(X)^{\mathbb{N}} \rightrightarrows \mathbb{N},\left(A_{i}\right)_{i \in \mathbb{N}} \mapsto\left\{n \in \mathbb{N}: A_{n}^{\circ} \neq \emptyset\right\}
$$

with $\operatorname{dom}(\mathrm{BCT})=\left\{\left(A_{i}\right)_{i \in \mathbb{N}}: X=\bigcup_{i=0}^{\infty} A_{i}\right\}$.

Theorem

$$
\mathrm{BCT} \equiv_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \cup \mathrm{C}_{\mathbb{N}} .
$$

Other equivalent theorems:

- Banach's Inverse Mapping Theorem,
- Closed Graph Theorem,
- Open Mapping Theorem.

Surjections and Idempotency

Proposition

Let A and B be represented spaces and let $s: A \rightarrow B$ be a computable surjection. Then $\mathrm{C}_{B} \leq{ }_{W} C_{A}$.

Corollary

Let A be a represented space. If there is a computable surjection

Corollary
The choice principles C
idempotent

Surjections and Idempotency

Proposition

Let A and B be represented spaces and let $s: A \rightarrow B$ be a computable surjection. Then $\mathrm{C}_{B} \leq_{W} \mathrm{C}_{A}$.

Corollary

Let A be a represented space. If there is a computable surjection $s: A \rightarrow A^{2}$, then C_{A} is idempotent, i.e. $\mathrm{C}_{A} \times \mathrm{C}_{A} \equiv{ }_{W} \mathrm{C}_{A \times A} \equiv{ }_{W} C_{A}$.

Corollary
The choice principles $\mathrm{C}_{\mathbb{N}}, \mathrm{C}_{\{0,1\} \mathrm{N}}, \mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\mathrm{N} \times\{0,1\} \mathrm{N}}$ are
idempotent.

Surjections and Idempotency

Proposition

Let A and B be represented spaces and let $s: A \rightarrow B$ be a computable surjection. Then $C_{B} \leq{ }_{W} C_{A}$.

Corollary

Let A be a represented space. If there is a computable surjection $s: A \rightarrow A^{2}$, then C_{A} is idempotent, i.e. $\mathrm{C}_{A} \times \mathrm{C}_{A} \equiv{ }_{W} \mathrm{C}_{A \times A} \equiv{ }_{W} C_{A}$.

Corollary

The choice principles $\mathrm{C}_{\mathbb{N}}, \mathrm{C}_{\{0,1\}^{\mathbb{N}}}, \mathrm{C}_{\mathbb{N}^{\mathbb{N}}}$ and $\mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathbb{N}}}$ are idempotent.

Non-Deterministic Computability

Theorem

Let X and Y be represented spaces, $A \subseteq \mathbb{N}^{\mathbb{N}}$ and let $f: \subseteq X \rightrightarrows Y$ be a multi-valued function. Then the following are equivalent:

- $f \leq{ }_{W} C_{A}$,
- f is non-deterministically computable with advice space A.

Definition

A function $f: \subseteq X \exists Y$ is said to be

- if there is a suitable advice $r \in A$ for each input that leads to a correct result,
- if unsuitable advices $r \in A$ for each input can be recognized in finite time.

Non-Deterministic Computability

Theorem

Let X and Y be represented spaces, $A \subseteq \mathbb{N}^{\mathbb{N}}$ and let $f: \subseteq X \rightrightarrows Y$ be a multi-valued function. Then the following are equivalent:

- $f \leq{ }_{W} C_{A}$,
- f is non-deterministically computable with advice space A.

Definition

A function $f: \subseteq X \rightrightarrows Y$ is said to be non-deterministically computable with advice space $A \subseteq \mathbb{N}^{\mathbb{N}}$,

- if there is a suitable advice $r \in A$ for each input that leads to a correct result,
- if unsuitable advices $r \in A$ for each input can be recognized in finite time.

Independent Choice

Theorem
Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$ be non-empty. Then $\mathrm{C}_{A} * \mathrm{C}_{B} \leq{ }_{W} \mathrm{C}_{A \times B}$.

Corollary

let $A \subseteq \mathbb{N}^{\mathbb{N}}$ be a subspace of Baire space. If there is a computable surjection s: $A \rightarrow A^{2}$, then C_{A} is closed under composition and idemotent, i.e. $\mathrm{C}_{A} \times \mathrm{C}_{A} \equiv{ }_{W} C_{A} * \mathrm{C}_{A} \equiv{ }_{W} C_{A \times A} \equiv{ }_{W} C_{A}$.

Corollary
The choice functions $C_{\mathbb{N}}, C_{\{0,1\}^{\mathbb{N}}}, C_{\mathbb{N}^{N}}, C_{\mathbb{N} \times\{0,1\}^{\mathbb{N}}}$ and hence $C_{\mathbb{R}}$ are closed under composition and idempotent.

Independent Choice

Theorem
Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$ be non-empty. Then $\mathrm{C}_{A} * \mathrm{C}_{B} \leq{ }_{\mathrm{W}} \mathrm{C}_{A \times B}$.

Corollary

Let $A \subseteq \mathbb{N}^{\mathbb{N}}$ be a subspace of Baire space. If there is a computable surjection s: $A \rightarrow A^{2}$, then C_{A} is closed under composition and idemotent, i.e. $\mathrm{C}_{A} \times \mathrm{C}_{A} \equiv{ }_{W} C_{A} * \mathrm{C}_{A} \equiv{ }_{W} C_{A \times A} \equiv{ }_{W} C_{A}$.

Corollary
The choice functions $\mathrm{C}_{\mathbb{N}}, \mathrm{C}_{\{0,1\}^{N}}, \mathrm{C}_{\mathbb{N}^{N}}, \mathrm{C}_{\mathbb{N} \times\{0,1\}^{N}}$ and hence $\mathrm{C}_{\mathbb{R}}$ are closed under composition and idempotent.

Independent Choice

Theorem

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$ be non-empty. Then $\mathrm{C}_{A} * \mathrm{C}_{B} \leq{ }_{\mathrm{W}} \mathrm{C}_{A \times B}$.

Corollary

Let $A \subseteq \mathbb{N}^{\mathbb{N}}$ be a subspace of Baire space. If there is a computable surjection s: $A \rightarrow A^{2}$, then C_{A} is closed under composition and idemotent, i.e. $\mathrm{C}_{A} \times \mathrm{C}_{A} \equiv{ }_{W} C_{A} * C_{A} \equiv{ }_{W} C_{A \times A} \equiv{ }_{W} C_{A}$.

Corollary

The choice functions $\mathrm{C}_{\mathbb{N}}, \mathrm{C}_{\{0,1\}^{\mathbb{N}}}, \mathrm{C}_{\mathbb{N}^{\mathbb{N}}}, \mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathbb{N}}}$ and hence $\mathrm{C}_{\mathbb{R}}$ are closed under composition and idempotent.

Choice on Computable Metric Spaces

Corollary
Let X be a computable Polish space. Then $\mathrm{C}_{X} \leq{ }_{W} \mathrm{C}_{\mathbb{N}^{N}}$. If, additionally, X is computably compact, then $\mathrm{C}_{X} \leq{ }_{\mathrm{W}} \mathrm{C}_{\{0,1\}^{\mathrm{N}}}$.

Proposition

\squareLet A and B be computable metric spaces and let $\iota: A \rightarrow B$ be acomputable embedding such that range(ι) is co-c.e. closed in BThen $\mathrm{C}_{\mathrm{A}} \leq{ }_{W} \mathrm{C}_{B}$

Choice on Computable Metric Spaces

Abstract

Corollary Let X be a computable Polish space. Then $\mathrm{C}_{X} \leq{ }_{W} \mathrm{C}_{\mathbb{N}^{N}}$. If, additionally, X is computably compact, then $\mathrm{C}_{X} \leq{ }_{\mathrm{W}} \mathrm{C}_{\{0,1\}^{\mathrm{N}}}$.

Proposition

Let A and B be computable metric spaces and let $\iota: A \rightarrow B$ be a computable embedding such that range (ι) is co-c.e. closed in B. Then $\mathrm{C}_{A} \leq{ }_{W} \mathrm{C}_{B}$.

Corollary
Let X be a computably compact metric space, which is non-empty and has no isolated points, then $\mathrm{C}_{\{0,1\}^{\mathrm{N}}} \equiv{ }_{W} \mathrm{C}_{X}$.

Choice on Computable Metric Spaces

Corollary

Let X be a computable Polish space. Then $\mathrm{C}_{X} \leq{ }_{W} \mathrm{C}_{\mathbb{N}^{N}}$. If, additionally, X is computably compact, then $\mathrm{C}_{X} \leq{ }_{\mathrm{W}} \mathrm{C}_{\{0,1\}^{\mathrm{N}}}$.

Proposition

Let A and B be computable metric spaces and let $\iota: A \rightarrow B$ be a computable embedding such that range (ι) is co-c.e. closed in B. Then $\mathrm{C}_{A} \leq{ }_{W} \mathrm{C}_{B}$.

Corollary

Let X be a computably compact metric space, which is non-empty and has no isolated points, then $\mathrm{C}_{\{0,1\}^{\mathrm{N}}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{X}$.

Corollary
$\mathrm{C}_{\{0,1\}^{\mathrm{N}}} \equiv{ }_{\mathrm{wN}} \mathrm{C}_{[0,1]} \equiv \mathrm{W} \mathrm{C}_{[0,1]}$

Choice on Computable Metric Spaces

Corollary

Let X be a computable Polish space. Then $\mathrm{C}_{X} \leq{ }_{W} \mathrm{C}_{\mathbb{N}^{N}}$. If, additionally, X is computably compact, then $\mathrm{C}_{X} \leq{ }_{\mathrm{W}} \mathrm{C}_{\{0,1\}^{\mathrm{N}}}$.

Proposition

Let A and B be computable metric spaces and let $\iota: A \rightarrow B$ be a computable embedding such that range (ι) is co-c.e. closed in B. Then $\mathrm{C}_{A} \leq{ }_{W} \mathrm{C}_{B}$.

Corollary
Let X be a computably compact metric space, which is non-empty and has no isolated points, then $\mathrm{C}_{\{0,1\}^{\mathrm{N}}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{X}$.

Corollary

$$
\mathrm{C}_{\{0,1\}^{\mathrm{N}}} \equiv{ }_{W} \mathrm{C}_{[0,1]} \equiv{ }_{W} \mathrm{C}_{[0,1]^{\mathrm{N}}} .
$$

Weak Kőnig's Lemma

Example

- Cantor choice $\mathrm{C}_{\{0,1\}^{\mathrm{N}}}$ could receive as a potential input a sequence of finite words:

0111000, 01000, 010100001111000

Weak Kőnig's Lemma

Example

- Cantor choice $C_{\{0,1\}^{N}}$ could receive as a potential input a sequence of finite words:

$$
\text { 0111000, 01000, } 010100001111000
$$

Weak Kőnig's Lemma

Example

- Cantor choice $\mathrm{C}_{\{0,1\}^{\mathrm{N}}}$ could receive as a potential input a sequence of finite words:

$0111000,01000,010100001111000, \ldots$

- The goal is to find an infinite word that does not have any of these words as prefix.

Theorem

Weak Kőnig's Lemma

Example

- Cantor choice $\mathrm{C}_{\{0,1\}^{\mathrm{N}}}$ could receive as a potential input a sequence of finite words:

$$
0111000,01000,010100001111000, \ldots
$$

- The goal is to find an infinite word that does not have any of these words as prefix.

Theorem

$$
W K L \equiv{ }_{W} C_{\{0,1\}^{\mathrm{N}}} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{\{0,1\}}}=\widehat{\mathbf{2}}
$$

Another equivalent theorem is:
\square

Weak Kőnig's Lemma

Example

- Cantor choice $\mathrm{C}_{\{0,1\}^{\mathrm{N}}}$ could receive as a potential input a sequence of finite words:

$$
0111000,01000,010100001111000, \ldots
$$

- The goal is to find an infinite word that does not have any of these words as prefix.

Theorem

$$
W K L \equiv_{W} C_{\{0,1\}^{\mathrm{N}}} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{\{0,1\}}}=\widehat{\mathbf{2}}
$$

Another equivalent theorem is:

Weak Kőnig's Lemma

Example

- Cantor choice $\mathrm{C}_{\{0,1\}^{\mathrm{N}}}$ could receive as a potential input a sequence of finite words:

$$
0111000,01000,010100001111000, \ldots
$$

- The goal is to find an infinite word that does not have any of these words as prefix.

Theorem

$$
W K L \equiv_{W} C_{\{0,1\}^{\mathrm{N}}} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{\{0,1\}}}=\widehat{\mathbf{2}}
$$

Another equivalent theorem is:

- The Hahn-Banach Theorem (Gherardi \& Marcone)

Compact Choice

Theorem

For all f the following statements are equivalent:

- $f \leq_{W} C_{\{0,1\}^{\mathrm{N}}}$
- f is weakly computable.

Theorem

Anv single-valued function $f: X \rightarrow Y$ on computable metric space that is weakly computable is already computable.

Compact Choice

Theorem

For all f the following statements are equivalent:

- $f \leq{ }_{W} C_{\{0,1\}^{N}}$
- f is weakly computable.

Theorem

Any single-valued function $f: X \rightarrow Y$ on computable metric space that is weakly computable is already computable.

Corollary

$$
\mathrm{UC}_{\{0,1\}^{\mathbb{N}}} \equiv_{\mathrm{W}} \mathrm{C}_{\{0\}} \equiv_{\mathrm{W}} \mathbf{1}
$$

Compact Choice

Theorem

For all f the following statements are equivalent:

- $f \leq{ }_{W} C_{\{0,1\}^{N}}$
- f is weakly computable.

Theorem

Any single-valued function $f: X \rightarrow Y$ on computable metric space that is weakly computable is already computable.

Corollary

$$
\mathrm{UC}_{\{0,1\}^{\mathrm{N}}} \equiv_{\mathrm{W}} \mathrm{C}_{\{0\}} \equiv_{\mathrm{W}} \mathbf{1}
$$

Weak Computability and Finitely Many Mind Changes

Locally Compact Choice

Proposition

Let X be a computable K_{σ}-space. Then
$\mathrm{C}_{x} \leq{ }_{W} \mathrm{C}_{\mathbb{N}} \times \mathrm{C}_{\{0,1\}^{\mathbb{N}}} \leq{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathrm{N}}}$.

Corollary

$C_{-{ }^{k}}={ }_{W} C_{m}=W C_{N \times\{0,1\}^{W}} \equiv W C_{N} \times C_{\{0,1\}^{W}}$ for all $k \geq 1$

Theorem

If $f: X \rightarrow Y$ is a single-valued function on computable metric
spaces and $f \leq_{W} C_{\{0,1\} \mathbb{N}} \times C_{\mathbb{N}} \equiv{ }_{W} C_{\mathbb{R}}$, then $f \leq_{W} C_{\mathbb{R}}$

Locally Compact Choice

Proposition

Let X be a computable K_{σ}-space. Then
$\mathrm{C}_{X} \leq{ }_{W} C_{\mathbb{N}} \times \mathrm{C}_{\{0,1\}^{\mathbb{N}}} \leq{ }_{W} C_{\mathbb{N} \times\{0,1\}^{\mathrm{N}}}$.
Corollary
$\mathrm{C}_{\mathbb{R}^{k}} \equiv{ }_{W} \mathrm{C}_{\mathbb{R}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathbb{N}}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \times \mathrm{C}_{\{0,1\}^{\mathbb{N}}}$ for all $k \geq 1$.
Theorem
If $f: X \rightarrow Y$ is a single-valued function on computable metric spaces and $f \leq_{W} C_{\{0,1\} \mathbb{N}} \times C_{\mathbb{N}} \equiv{ }_{W} C_{\mathbb{R}}$, then $f \leq_{W} C_{\mathbb{N}}$

Locally Compact Choice

Proposition

Let X be a computable K_{σ}-space. Then
$\mathrm{C}_{X} \leq{ }_{W} \mathrm{C}_{\mathbb{N}} \times \mathrm{C}_{\{0,1\}^{\mathbb{N}}} \leq{ }_{W} \mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathrm{N}}}$.
Corollary
$\mathrm{C}_{\mathbb{R}^{k}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{R}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathbb{N}}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \times \mathrm{C}_{\{0,1\}^{\mathbb{N}}}$ for all $k \geq 1$.

Theorem

If $f: X \rightarrow Y$ is a single-valued function on computable metric spaces and $f \leq_{W} C_{\{0,1\}^{\mathbb{N}}} \times C_{\mathbb{N}} \equiv{ }_{W} C_{\mathbb{R}}$, then $f \leq_{W} C_{\mathbb{N}}$.

Corollary

$\mathrm{UC}_{\mathbb{T}}=\mathrm{C}_{\mathbb{N}}$

Locally Compact Choice

Proposition

Let X be a computable K_{σ}-space. Then
$\mathrm{C}_{X} \leq{ }_{W} \mathrm{C}_{\mathbb{N}} \times \mathrm{C}_{\{0,1\}^{\mathbb{N}}} \leq{ }_{W} \mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathrm{N}}}$.
Corollary
$\mathrm{C}_{\mathbb{R}^{k}} \equiv{ }_{W} \mathrm{C}_{\mathbb{R}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N} \times\{0,1\}^{\mathbb{N}}} \equiv{ }_{W} \mathrm{C}_{\mathbb{N}} \times \mathrm{C}_{\{0,1\}^{\mathbb{N}}}$ for all $k \geq 1$.

Theorem

If $f: X \rightarrow Y$ is a single-valued function on computable metric spaces and $f \leq_{W} C_{\{0,1\}^{\mathbb{N}}} \times C_{\mathbb{N}} \equiv{ }_{W} C_{\mathbb{R}}$, then $f \leq_{W} C_{\mathbb{N}}$.

Corollary

$U C_{\mathbb{R}}=C_{\mathbb{N}}$.

Choice and Limit Computability

Countable Choice
$\widehat{\mathrm{C}_{\mathbb{N}}} \equiv \lim \equiv J \equiv \widehat{\mathrm{LPO}}$
\dagger
low representation
$\mathrm{L}=J^{-1} \circ \lim$
Locally Compact Choice
$\mathrm{C}_{\mathbb{R}} \equiv \mathrm{C}_{\{0,1\}^{\mathbb{N}}} \times \mathrm{C}_{\mathbb{N}}$

Discrete Choice $\mathrm{C}_{\mathbb{N}} \equiv \mathrm{BCT}$
weakly computable
many mind changes

The Uniform Low Basis Theorem

Theorem

$\mathrm{C}_{\{0,1\}^{\mathbb{N}}}$ and $\mathrm{C}_{\mathbb{R}}$ are low computable.

Corollary (Low Basis Theorem of Jockusch and Soare)

Each co-ce closed subset $A \subseteq\{0,1\}^{\mathbb{N}}$ has a low point $p \in A$, i.e. a point such that $p^{\prime} \leq_{T} \phi^{\prime}$

Theorem

For all f the following statements are equivalent

The Uniform Low Basis Theorem

Theorem

$\mathrm{C}_{\{0,1\}^{\mathrm{N}}}$ and $\mathrm{C}_{\mathbb{R}}$ are low computable.

Corollary (Low Basis Theorem of Jockusch and Soare)

Each co-c.e. closed subset $A \subseteq\{0,1\}^{\mathbb{N}}$ has a low point $p \in A$, i.e. a point such that $p^{\prime} \leq_{\mathrm{T}} \emptyset^{\prime}$.

Theorem

For all f the following statements are equivalent.

- f is low computable.
\square
The Rrommer Fixed Point Thenrem and the Hahn-Ranach Theorem are low computable

The Uniform Low Basis Theorem

Theorem

$\mathrm{C}_{\{0,1\}^{\mathrm{N}}}$ and $\mathrm{C}_{\mathbb{R}}$ are low computable.
Corollary (Low Basis Theorem of Jockusch and Soare)
Each co-c.e. closed subset $A \subseteq\{0,1\}^{\mathbb{N}}$ has a low point $p \in A$, i.e. a point such that $p^{\prime} \leq_{\mathrm{T}} \emptyset^{\prime}$.

Theorem

For all f the following statements are equivalent:

- $f \leq_{\mathrm{sW}} \mathrm{L}=J^{-1} \circ \lim$
- f is low computable.

The Uniform Low Basis Theorem

Theorem

$\mathrm{C}_{\{0,1\}^{\mathbb{N}}}$ and $\mathrm{C}_{\mathbb{R}}$ are low computable.
Corollary (Low Basis Theorem of Jockusch and Soare)
Each co-c.e. closed subset $A \subseteq\{0,1\}^{\mathbb{N}}$ has a low point $p \in A$, i.e. a point such that $p^{\prime} \leq_{\mathrm{T}} \emptyset^{\prime}$.

Theorem

For all f the following statements are equivalent:

- $f \leq_{\mathrm{sW}} \mathrm{L}=J^{-1} \circ \lim$
- f is low computable.

Corollary

The Brouwer Fixed Point Theorem and the Hahn-Banach Theorem are low computable.

Effective Borel Measurability

Corollary

If X is a Polish space, then there is an oracle such that

$$
\text { either } \mathrm{C}_{X} \leq_{W} \mathrm{C}_{\mathbb{R}} \text { or } \mathrm{C}_{X} \equiv_{W} \mathrm{C}_{\mathbb{N}^{N}}
$$

relatively to that oracle (i.e. with continuous reductions).

Theorem
Let X and Y be computable Polish spaces and let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

- f is effectively Borel measurable.

Effective Borel Measurability

Corollary

If X is a Polish space, then there is an oracle such that

$$
\text { either } \mathrm{C}_{X} \leq_{W} \mathrm{C}_{\mathbb{R}} \text { or } \mathrm{C}_{X} \equiv{ }_{W} \mathrm{C}_{\mathbb{N}^{N}}
$$

relatively to that oracle (i.e. with continuous reductions).

Theorem

Let X and Y be computable Polish spaces and let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

- $f \leq{ }_{W} C_{\mathbb{N}^{N}}$,
- f is effectively Borel measurable.

Survey on Choice Classes

Open Problems

- Another conjecture (with Arno Pauly and Matthew de Brecht) is that $U C_{\mathbb{N}^{N}} \equiv{ }_{W} C_{\mathbb{N}^{N}}$, but we have no proof yet.
- Is the Weihrauch lattice a Brouwerian algebra (Heyting lattice)? The answer is "yes" for total Weihrauch reducibility but not known for the ordinary reducibility.
- In a current joint project with Arno Pauly and Stephane Le Roux we are trying to classify the Brouwer Fixed Point Theorem BFT more precisely.

Open Problems

- Another conjecture (with Arno Pauly and Matthew de Brecht) is that $U C_{\mathbb{N}^{N}} \equiv \mathrm{~W} C_{\mathbb{N}^{N}}$, but we have no proof yet.
- Is the Weihrauch lattice a Brouwerian algebra (Heyting lattice)? The answer is "yes" for total Weihrauch reducibility but not known for the ordinary reducibility.
- In a current joint project with Arno Pauly and Stephane Le Roux we are trying to classify the Brouwer Fixed Point Theorem BFT more precisely. one-dimensional Brouwer Fixed Point Theorem is equivalent to the Intermediate Value Theorem and strictly below Weak König's Lemma

Open Problems

- Another conjecture (with Arno Pauly and Matthew de Brecht) is that $U C_{\mathbb{N}^{N}} \equiv{ }_{W} C_{\mathbb{N}^{N}}$, but we have no proof yet.
- Is the Weihrauch lattice a Brouwerian algebra (Heyting lattice)? The answer is "yes" for total Weihrauch reducibility but not known for the ordinary reducibility.
- In a current joint project with Arno Pauly and Stephane Le Roux we are trying to classify the Brouwer Fixed Point Theorem BFT more precisely.
- It is known that $\mathrm{C}_{[0,1]} \equiv_{\mathrm{W}} \mathrm{IVT} \equiv_{\mathrm{W}} \mathrm{BF}_{1}<{ }_{\mathrm{w}} \mathrm{WKL}$, i.e. the one-dimensional Brouwer Fixed Point Theorem is equivalent to the Intermediate Value Theorem and strictly below Weak König's Lemma.
- It is still unclear whether BFT $\equiv_{\mathrm{W}} \mathrm{WKL}$.

Open Problems

- Another conjecture (with Arno Pauly and Matthew de Brecht) is that $U C_{\mathbb{N}^{N}} \equiv \mathrm{~W}_{\mathbb{N}^{N}}$, but we have no proof yet.
- Is the Weihrauch lattice a Brouwerian algebra (Heyting lattice)? The answer is "yes" for total Weihrauch reducibility but not known for the ordinary reducibility.
- In a current joint project with Arno Pauly and Stephane Le Roux we are trying to classify the Brouwer Fixed Point Theorem BFT more precisely.
- It is known that $\mathrm{C}_{[0,1]} \equiv_{\mathrm{W}} \mathrm{IVT} \equiv_{\mathrm{W}} \mathrm{BFT}_{1}<{ }_{\mathrm{W}} \mathrm{WKL}$, i.e. the one-dimensional Brouwer Fixed Point Theorem is equivalent to the Intermediate Value Theorem and strictly below Weak König's Lemma.
- It is still unclear whether BFT \equiv_{W} WKL.
\qquad

Open Problems

- Another conjecture (with Arno Pauly and Matthew de Brecht) is that $U C_{\mathbb{N}^{N}} \equiv \mathrm{~W}_{\mathbb{N}^{N}}$, but we have no proof yet.
- Is the Weihrauch lattice a Brouwerian algebra (Heyting lattice)? The answer is "yes" for total Weihrauch reducibility but not known for the ordinary reducibility.
- In a current joint project with Arno Pauly and Stephane Le Roux we are trying to classify the Brouwer Fixed Point Theorem BFT more precisely.
- It is known that $\mathrm{C}_{[0,1]} \equiv_{\mathrm{W}} \mathrm{IVT} \equiv_{\mathrm{W}} \mathrm{BFT}_{1}<{ }_{\mathrm{W}} \mathrm{WKL}$, i.e. the one-dimensional Brouwer Fixed Point Theorem is equivalent to the Intermediate Value Theorem and strictly below Weak König's Lemma.
- It is still unclear whether BFT $\equiv{ }_{W}$ WKL.
- In this context, one would wish to classify connected closed choice.

Open Problems

- Another conjecture (with Arno Pauly and Matthew de Brecht) is that $U C_{\mathbb{N}^{N}} \equiv \mathrm{~W}_{\mathbb{N}^{N}}$, but we have no proof yet.
- Is the Weihrauch lattice a Brouwerian algebra (Heyting lattice)? The answer is "yes" for total Weihrauch reducibility but not known for the ordinary reducibility.
- In a current joint project with Arno Pauly and Stephane Le Roux we are trying to classify the Brouwer Fixed Point Theorem BFT more precisely.
- It is known that $\mathrm{C}_{[0,1]} \equiv_{\mathrm{W}} \mathrm{IVT} \equiv_{\mathrm{W}} \mathrm{BFT}_{1}<\mathrm{W} W \mathrm{WL}$, i.e. the one-dimensional Brouwer Fixed Point Theorem is equivalent to the Intermediate Value Theorem and strictly below Weak König's Lemma.
- It is still unclear whether BFT \equiv_{W} WKL.
- In this context, one would wish to classify connected closed choice.

Reverse Computable Analysis

Bolzano-Weierstraß Theorem

- Vasco Brattka and Guido Gherardi Weihrauch Degrees, Omniscience Principles and Weak Computability, Journal of Symbolic Logic (to appear) http://arxiv.org/abs/0905.4679
- Vasco Brattka and Guido Gherardi Effective Choice and Boundedness Principles in Computable Analysis (submitted)
http://arxiv.org/abs/0905.4685
- Vasco Brattka, Matthew de Brecht and Arno Pauly Closed Choice and a Uniform Low Basis Theorem (submitted) http://arxiv.org/abs/1002.2800

