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Realizer

Definition

A multi-valued function f :⊆ X ⇒ Y on represented spaces
(X , δX ) and (Y , δY ) is realized by a function F :⊆ NN → NN if

δY F (p) ∈ f δX (p)

for all p ∈ dom(f δX ). We write F ` f in this situation.
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Weihrauch Reducibility

Definition

For two multi-valued functions f and g on represented spaces we
say that f is Weihrauch reducible to g , in symbols f ≤W g , if there
are computable functions H and K such that

G ` g =⇒ H〈id,GK 〉 ` f

holds for all G .

That means that there is a uniform way to transform each realizer
G of g into a realizer F of f in the given way.

Proposition

Weihrauch reducibility is a preorder on the set of multi-valued
functions (on some given category of represented spaces) and it
induces a partial order.



Weihrauch Reducibility

Definition

For two multi-valued functions f and g on represented spaces we
say that f is Weihrauch reducible to g , in symbols f ≤W g , if there
are computable functions H and K such that

G ` g =⇒ H〈id,GK 〉 ` f

holds for all G .

That means that there is a uniform way to transform each realizer
G of g into a realizer F of f in the given way.

Proposition

Weihrauch reducibility is a preorder on the set of multi-valued
functions (on some given category of represented spaces) and it
induces a partial order.



Weihrauch Reducibility

Definition

For two multi-valued functions f and g on represented spaces we
say that f is Weihrauch reducible to g , in symbols f ≤W g , if there
are computable functions H and K such that

G ` g =⇒ H〈id,GK 〉 ` f

holds for all G .

That means that there is a uniform way to transform each realizer
G of g into a realizer F of f in the given way.

Proposition

Weihrauch reducibility is a preorder on the set of multi-valued
functions (on some given category of represented spaces) and it
induces a partial order.



Algebraic Operations in the Weihrauch Lattice

Definition

Let f :⊆ X ⇒ Y and g :⊆W ⇒ Z be multi-valued maps. Then
we consider the natural operations

I f × g :⊆ X ×W ⇒ Y × Z (product)

I f t g :⊆ X tW ⇒ Y t Z (coproduct)

I f ⊕ g :⊆ X ×W ⇒ Y t Z (sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f i (star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (parallelization)

Proposition

Weihrauch reducibility induces a (bounded) lattice with the sum ⊕
as infimum and the coproduct t as supremum and parallelization
and the star operation are closure operators in this lattice.
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The Choice Operation

Definition

We define the choice operation

CX :⊆ A−(X )⇒ X ,A 7→ A

for every represented space X . Here

A−(X ) := {A ⊆ X : A closed}

is the hyperspace of closed subsets with respect to negative
information (the upper Fell topology = dual of the Scott topology).

That is, choice CX is an operation that takes as input a description
of what does not constitute a solution and has to find a solution.
By UCX we denote unique choice, i.e. the restriction of CX to
singletons.
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Finite Choice

Definition

For each natural number n ∈ N we write for short

n := C{0,...,n−1}.

That is n reflects choice between n alternatives.

Proposition

I 0 = C∅ is a neutral element with respect to the coproduct t
and acts like a zero with respect to products ×

I 0≤W f for all f , i.e. 0 is the bottom element

I 1 = C{0}≡W 0∗ is a neutral element with respect to the
product ×

The Weihrauch lattice together with t,×,∗ , 0, 1 forms a
commutative semiring and a continuous Kleene algebra.
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Characterization of Computability

Theorem

For all f the following statements are equivalent:

I f ≤W 1

I f is computable.

1 = C{0}≡W 0∗

0 = C∅
computable
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Theorem

The entire Turing semi-lattice can be embedded inbetween 0 and 1
(with order reversed).
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Idempotency and Pointedness

Definition

I f is called pointed if 1≤W f ,

I f is called idempotent if f ≡W f × f .

Proposition

For pointed f , g are pointed and f t g is idempotent, then

f t g ≡W f × g .

Proposition

A pointed f is idempotent if and only if f ∗≡W f .
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Binary Choice and LLPO

Example

I Binary choice 2 = C{0,1} could receive as a potential input:

⊥,⊥,⊥, 1, 1,⊥, 1, 1, 1, ...

I Here ⊥ stands for “no information”. As soon as the
information 1 appears, it is clear that the only possible
remaining choice is 0.

I This is similar to the “lesser limited principle of omniscience”
LLPO.

Proposition

LLPO≡W 2.
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Coproducts, Products and Compositional Products

Definition

For f and g we define the compositional product f ∗ g by

f ∗ g = sup{f0 ◦ g0 : f0≤W f and g0≤W g}.

Proposition

For pointed f , g we obtain

f ⊕ g ≤W f t g ≤W f × g ≤W f ∗ g .

Proof.

Here the last reduction follows from
f × g = (f × id) ◦ (id× g)≤W f ∗ g .



Coproducts, Products and Compositional Products

Definition

For f and g we define the compositional product f ∗ g by

f ∗ g = sup{f0 ◦ g0 : f0≤W f and g0≤W g}.

Proposition

For pointed f , g we obtain

f ⊕ g ≤W f t g ≤W f × g ≤W f ∗ g .

Proof.

Here the last reduction follows from
f × g = (f × id) ◦ (id× g)≤W f ∗ g .



Coproducts, Products and Compositional Products

Definition

For f and g we define the compositional product f ∗ g by

f ∗ g = sup{f0 ◦ g0 : f0≤W f and g0≤W g}.

Proposition

For pointed f , g we obtain

f ⊕ g ≤W f t g ≤W f × g ≤W f ∗ g .

Proof.

Here the last reduction follows from
f × g = (f × id) ◦ (id× g)≤W f ∗ g .



Products of Choice and Weihrauch Arithmetic

Proposition

For non-empty A,B we obtain

CA t CB ≤W CA × CB ≤W CA×B .

Corollary

n× k≤W n · k
for all n, k ∈ N.

Proposition

2× 2 6≡W 4.
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Natural Choice and Finitely Many Mind Changes

Example

I Natural number choice CN could receive as a potential input:

5, 112, 3, 5, 23, 0, 42, 1, 25, ...

I This is a discontinuous operation, however, it can be
computed with finitely many mind changes.

Theorem

For all f the following statements are equivalent:

I f ≤W CN

I f is computable with finitely many mind changes.
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The Baire Category Theorem

Definition

Let X be a non-empty computable metric space. We define

BCT :⊆ A−(X )N ⇒ N, (Ai )i∈N 7→ {n ∈ N : A◦n 6= ∅}

with dom(BCT) = {(Ai )i∈N : X =
⋃∞

i=0 Ai}.

Theorem

BCT≡W CN≡W UCN.

Other equivalent theorems:

I Banach’s Inverse Mapping Theorem,

I Closed Graph Theorem,

I Open Mapping Theorem.
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Surjections and Idempotency

Proposition

Let A and B be represented spaces and let s : A→ B be a
computable surjection. Then CB ≤W CA.

Corollary

Let A be a represented space. If there is a computable surjection
s : A→ A2, then CA is idempotent, i.e. CA × CA≡W CA×A≡W CA.

Corollary

The choice principles CN, C{0,1}N , CNN and CN×{0,1}N are
idempotent.
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Non-Deterministic Computability

Theorem

Let X and Y be represented spaces, A ⊆ NN and let f :⊆ X ⇒ Y
be a multi-valued function. Then the following are equivalent:

I f ≤W CA,

I f is non-deterministically computable with advice space A.

Definition

A function f :⊆ X ⇒ Y is said to be non-deterministically
computable with advice space A ⊆ NN,

I if there is a suitable advice r ∈ A for each input that leads to
a correct result,

I if unsuitable advices r ∈ A for each input can be recognized in
finite time.
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Independent Choice

Theorem

Let A,B ⊆ NN be non-empty. Then CA ∗ CB ≤W CA×B .

Corollary

Let A ⊆ NN be a subspace of Baire space. If there is a computable
surjection s : A→ A2, then CA is closed under composition and
idemotent, i.e. CA × CA≡W CA ∗ CA≡W CA×A≡W CA.

Corollary

The choice functions CN,C{0,1}N ,CNN ,CN×{0,1}N and hence CR are
closed under composition and idempotent.
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Choice on Computable Metric Spaces

Corollary

Let X be a computable Polish space. Then CX ≤W CNN . If,
additionally, X is computably compact, then CX ≤W C{0,1}N .

Proposition

Let A and B be computable metric spaces and let ι : A→ B be a
computable embedding such that range(ι) is co-c.e. closed in B.
Then CA≤W CB .

Corollary

Let X be a computably compact metric space, which is non-empty
and has no isolated points, then C{0,1}N ≡W CX .

Corollary

C{0,1}N ≡W C[0,1]≡W C[0,1]N .
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Weak Kőnig’s Lemma

Example

I Cantor choice C{0,1}N could receive as a potential input a
sequence of finite words:

0111000, 01000, 010100001111000, ...

I The goal is to find an infinite word that does not have any of
these words as prefix.

Theorem

WKL≡W C{0,1}N ≡W Ĉ{0,1} = 2̂.

Another equivalent theorem is:

I The Hahn-Banach Theorem (Gherardi & Marcone)
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Compact Choice

Theorem

For all f the following statements are equivalent:

I f ≤W C{0,1}N

I f is weakly computable.

Theorem

Any single-valued function f : X → Y on computable metric space
that is weakly computable is already computable.

Corollary

UC{0,1}N ≡W C{0}≡W 1.
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Weak Computability and Finitely Many Mind Changes

weakly computable

Compact Choice

Binary Choice

Discrete Choice

C{0,1} ≡ LLPO

CN ≡ BCT

LPO

C∗{0,1} ≡ LLPO∗ LPO∗

C{0,1}N ≡ C[0,1] ≡ L̂LPO ≡WKL
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Locally Compact Choice

Proposition

Let X be a computable Kσ–space. Then
CX ≤W CN × C{0,1}N ≤W CN×{0,1}N .

Corollary

CRk ≡W CR≡W CN×{0,1}N ≡W CN × C{0,1}N for all k ≥ 1.

Theorem

If f : X → Y is a single-valued function on computable metric
spaces and f ≤W C{0,1}N × CN≡W CR, then f ≤W CN.

Corollary

UCR = CN.
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Choice and Limit Computability

ĈN ≡ lim ≡ J ≡ L̂PO

weakly computable

limit computableCountable Choice

low representation

Compact Choice

Locally Compact Choice

Discrete Choice
CN ≡ BCT

C{0,1}N t CN

L = J−1 ◦ lim

C{0,1}N ≡ C[0,1] ≡ L̂LPO ≡WKL

CR ≡ C{0,1}N × CN
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The Uniform Low Basis Theorem

Theorem

C{0,1}N and CR are low computable.

Corollary (Low Basis Theorem of Jockusch and Soare)

Each co-c.e. closed subset A ⊆ {0, 1}N has a low point p ∈ A, i.e.
a point such that p′≤T ∅′.

Theorem

For all f the following statements are equivalent:

I f ≤sW L = J−1 ◦ lim

I f is low computable.

Corollary

The Brouwer Fixed Point Theorem and the Hahn-Banach Theorem
are low computable.
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Effective Borel Measurability

Corollary

If X is a Polish space, then there is an oracle such that

either CX ≤W CR or CX ≡W CNN

relatively to that oracle (i.e. with continuous reductions).

Theorem

Let X and Y be computable Polish spaces and let f : X → Y be a
function. Then the following are equivalent:

I f ≤W CNN ,

I f is effectively Borel measurable.
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Survey on Choice Classes

ĈN ≡ lim ≡ J ≡ L̂PO

CNN

weakly computable

limit computable

effectively Borel measurable

Countable Choice

Baire Choice

Compact Choice

Discrete Choice
CN ≡ BCT

C{0,1}N ≡ C[0,1] ≡ L̂LPO ≡WKL
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Open Problems

I Another conjecture (with Arno Pauly and Matthew de Brecht)
is that UCNN ≡W CNN , but we have no proof yet.

I Is the Weihrauch lattice a Brouwerian algebra (Heyting
lattice)? The answer is “yes” for total Weihrauch reducibility
but not known for the ordinary reducibility.

I In a current joint project with Arno Pauly and Stephane Le
Roux we are trying to classify the Brouwer Fixed Point
Theorem BFT more precisely.

I It is known that C[0,1]≡W IVT≡W BFT1 <W WKL, i.e. the
one-dimensional Brouwer Fixed Point Theorem is equivalent
to the Intermediate Value Theorem and strictly below Weak
König’s Lemma.

I It is still unclear whether BFT≡W WKL.

I In this context, one would wish to classify connected closed
choice.
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Reverse Computable Analysis
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Weak Kőnig’s Lemma

computable

computable with finitely
many mind changes

?

�� �


'

&

$

%

'

&

$

%

Brouwer Fixed Point Theorem

Intermediate Value Theorem

Banach’s Inverse Mapping
Closed Graph Theorem

Hilbert’s Basis TheoremNash Equilibria
?

Bolzano-Weierstraß Theorem

?

Hahn-Banach Theorem
?

?'

&

$

%

Solving Linear Equations ?�



References

I Vasco Brattka and Guido Gherardi
Weihrauch Degrees, Omniscience Principles and Weak
Computability, Journal of Symbolic Logic (to appear)

http://arxiv.org/abs/0905.4679

I Vasco Brattka and Guido Gherardi
Effective Choice and Boundedness Principles in Computable
Analysis (submitted)

http://arxiv.org/abs/0905.4685

I Vasco Brattka, Matthew de Brecht and Arno Pauly
Closed Choice and a Uniform Low Basis Theorem (submitted)

http://arxiv.org/abs/1002.2800


	Outline
	The Weihrauch Lattice
	Discrete Choice
	Products and Non-Deterministic Computability
	Choice on Computable Metric Spaces
	The Uniform Low Basis Theorem

