On constructive operational set theory

Laura Crosilla, Leeds University (Joint work with Andrea Cantini, Florence University)

Workshop on Constructive Aspects of Logic and Mathematics Kanazawa, 8 – 12 March 2010

Motivation: bridging the gap between Feferman's explicit mathematics and Myhill and Aczel's constructive set theory

The bridge: Constructive Operational Set Theory

 Set-theoretic constructions as union, pairing, exponentiation, are perfectly good operations
 They cannot be represented as objects in set theory as their graphs are too large to be expressed by the set-theoretic notion of function

The bridge: Constructive Operational Set Theory

- Set-theoretic constructions as union, pairing, exponentiation, are perfectly good operations
 They cannot be represented as objects in set theory as their graphs are too large to be expressed by the set-theoretic notion of function
- We introduce abstract operations as rules vs. functions as set-theoretic graphs

Intuitionistic set theory with rules, Beeson 1988

(日)

- Intuitionistic set theory with rules, Beeson 1988
- Classical operational set theory, OST, Feferman 2001; 2006; 2009

- Intuitionistic set theory with rules, Beeson 1988
- Classical operational set theory, OST, Feferman 2001; 2006; 2009
- Extensions of **OST**, Jäger 2007; 2009a; 2009b

- Intuitionistic set theory with rules, Beeson 1988
- Classical operational set theory, OST, Feferman 2001; 2006; 2009
- Extensions of **OST**, Jäger 2007; 2009a; 2009b
- Cantini and C. 2008; 2010?; Cantini

Constructive set theory CZF

From a classical point of view, constructive set theory **CZF** can be seen as obtained from **ZF** by:

(日)

Constructive set theory CZF

From a classical point of view, constructive set theory **CZF** can be seen as obtained from **ZF** by:

Logic: Replacing *classical* with *intuitionistic logic*. Thus: foundation is replaced by set–induction and there is no full AC

Constructive set theory CZF

From a classical point of view, constructive set theory **CZF** can be seen as obtained from **ZF** by:

- Logic: Replacing *classical* with *intuitionistic logic*. Thus: foundation is replaced by set–induction and there is no full AC
- Generalised predicativity: Restricting some of the set–theoretic axioms. Powerset is replaced by subset collection, full separation by Δ₀ separation.

Constructive set theory CZF

From a classical point of view, constructive set theory **CZF** can be seen as obtained from **ZF** by:

- Logic: Replacing *classical* with *intuitionistic logic*. Thus: foundation is replaced by set–induction and there is no full AC
- Generalised predicativity: Restricting some of the set–theoretic axioms. Powerset is replaced by subset collection, full separation by Δ₀ separation.

From a constructive point of view, **CZF** has a natural interpretation in Martin–Löf type theory

Explicit Constructive Set Theory (ESTE)

Key features:

Combine a non-extensional notion of operation with an extensional notion of set

Explicit Constructive Set Theory (ESTE)

Key features:

- Combine a non-extensional notion of operation with an extensional notion of set
- We have a notion of application which is partial

Explicit Constructive Set Theory (ESTE)

Key features:

- Combine a non-extensional notion of operation with an extensional notion of set
- We have a notion of application which is partial
- All set-theoretic axioms are explicit

Language: applicative extension, \mathcal{L}^{O} , of the usual first order language of Zermelo-Fraenkel set theory

$$\blacksquare \in , =, \bot, \land, \lor, \rightarrow, \exists, \forall$$

Laura Crosilla On constructive operational set theory

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

$$\blacksquare \in , =, \bot, \land, \lor, \rightarrow, \exists, \forall$$

K and S (combinators)

◆□ > ◆舂 > ◆豆 > ◆豆 > -

$\blacksquare \in , =, \bot, \land, \lor, \rightarrow, \exists, \forall$

- K and S (combinators)
- App (application)

$\blacksquare \in , =, \bot, \land, \lor, \rightarrow, \exists, \forall$

- K and S (combinators)
- App (application)
- **el** (membership)

- $\blacksquare \in , =, \bot, \land, \lor, \rightarrow, \exists, \forall$
- K and S (combinators)
- App (application)
- **el** (membership)
- **pair**, **un**, **im**, **sep**, **exp** (set operations)

$$\blacksquare \in , =, \perp, \land, \lor, \rightarrow, \exists, \forall$$

- K and S (combinators)
- App (application)
- **el** (membership)
- **pair**, **un**, **im**, **sep**, **exp** (set operations)
- \emptyset, ω (set constants)

(日)

A formula of \mathcal{L}^{O} is Δ_{0} , if (a) all quantifiers occurring in it, if any, are bounded (b) it does not contain *App*

Conventions: application terms

(i) Each variable and constant is an application term

(ii) If *t*, *s* are application terms then *ts* is an application termAbbreviations:

(i)
$$t \simeq x$$
 for $t = x$ when t is a variable or constant
(ii) $ts \simeq x$ for $\exists y \exists z (t \simeq y \land s \simeq z \land App(y, z, x))$
(iii) $t \downarrow$ for $\exists x (t \simeq x)$
(iv) $t \simeq s$ for $\forall x (t \simeq x \leftrightarrow s \simeq x)$
(v) $\varphi(t,...)$ for $\exists x (t \simeq x \land \varphi(x,...))$
(vi) $t_1 t_2 ... t_n$ for $(...(t_1 t_2)...) t_n$

Conventions

 $\top := \{ \varnothing \}$

 $\Omega := \mathcal{P} \top$ (the **class** of truth values or propositions)

Conventions

- $\top := \{\varnothing\}$
- $\Omega := \mathcal{P} \top$ (the **class** of truth values or propositions)
- f, g, \ldots for operations; F, G, \ldots for set-theoretic functions

Conventions

- $\top := \{ \varnothing \}$
- $\Omega := \mathcal{P} \top$ (the **class** of truth values or propositions)
- f, g, \ldots for operations; F, G, \ldots for set-theoretic functions

For a and b sets or classes, write

$$f: a \to b \text{ for } \forall x \in a(fx \in b),$$

•
$$f: \mathbf{V} \to b$$
 for $\forall x (fx \in b)$

•
$$f: a^2 \rightarrow b$$
 for $\forall x \in a \forall y \in a (fxy \in b)$

•
$$f: \mathbf{V}^2 \to b$$
 for $\forall x \forall y (fxy \in b)$ etc.

Axioms of **ESTE**

ESTE is the following \mathcal{L}^{O} theory:

Axioms and rules of first order intuitionistic logic with equality

Extensionality

$$\forall x (x \in a \leftrightarrow x \in b) \rightarrow a = b$$

(日)

Axioms of **ESTE**

ESTE is the following \mathcal{L}^{O} theory:

Axioms and rules of first order intuitionistic logic with equality

Extensionality

$$\forall x (x \in a \leftrightarrow x \in b) \rightarrow a = b$$

General applicative axioms

• App
$$(x,y,z) \land$$
 App $(x,y,w) \rightarrow z = w$

•
$$\mathbf{K}xy = x \land \mathbf{S}xy \downarrow \land \mathbf{S}xyz \simeq xz(yz)$$

Membership operation

• el :
$$\mathbf{V}^2 \to \Omega$$
 and el $xy \simeq \top \leftrightarrow x \in y$

æ

• el : $\mathbf{V}^2 \to \Omega$ and el $xy \simeq \top \leftrightarrow x \in y$

Set constructors

- $\forall x (x \notin \emptyset)$
- **a** pair $xy \downarrow \land \forall z (z \in \text{pair } xy \leftrightarrow z = x \lor z = y)$

э.

• el : $\mathbf{V}^2 \to \Omega$ and el $xy \simeq \top \leftrightarrow x \in y$

Set constructors

- $\forall x (x \notin \emptyset)$
- pair $xy \downarrow \land \forall z (z \in \text{pair } xy \leftrightarrow z = x \lor z = y)$
- un $a \downarrow \land \forall z (z \in un \ a \leftrightarrow \exists y \in a(z \in y))$

• el : $\mathbf{V}^2 \to \Omega$ and el $xy \simeq \top \leftrightarrow x \in y$

Set constructors

- $\forall x (x \notin \emptyset)$
- pair $xy \downarrow \land \forall z (z \in \text{pair } xy \leftrightarrow z = x \lor z = y)$
- un $a \downarrow \land \forall z (z \in un \ a \leftrightarrow \exists y \in a(z \in y))$
- $(f: a \rightarrow \Omega) \rightarrow \operatorname{sep} fa \downarrow \land \forall x (x \in \operatorname{sep} fa \leftrightarrow x \in a \land fx \simeq \top)$

• el : $\mathbf{V}^2 \to \Omega$ and el $xy \simeq \top \leftrightarrow x \in y$

Set constructors

- $\forall x (x \notin \emptyset)$
- pair $xy \downarrow \land \forall z (z \in \text{pair } xy \leftrightarrow z = x \lor z = y)$
- un $a \downarrow \land \forall z (z \in un \ a \leftrightarrow \exists y \in a(z \in y))$
- $\blacksquare (f: a \to \Omega) \to \operatorname{sep} fa \downarrow \land \forall x (x \in \operatorname{sep} fa \leftrightarrow x \in a \land fx \simeq \top)$
- $(f: a \to V) \to (\operatorname{im} fa \downarrow) \land \forall x (x \in \operatorname{im} fa \leftrightarrow \exists y \in a(x \simeq fy))$

-

• el : $\mathbf{V}^2 \to \Omega$ and el $xy \simeq \top \leftrightarrow x \in y$

Set constructors

- $\forall x (x \notin \emptyset)$
- pair $xy \downarrow \land \forall z (z \in \text{pair } xy \leftrightarrow z = x \lor z = y)$
- un $a \downarrow \land \forall z (z \in un \ a \leftrightarrow \exists y \in a(z \in y))$
- $(f: a \rightarrow \Omega) \rightarrow \text{sep } fa \downarrow \land \forall x (x \in \text{sep } fa \leftrightarrow x \in a \land fx \simeq \top)$
- $(f: a \to V) \to (\operatorname{im} fa \downarrow) \land \forall x (x \in \operatorname{im} fa \leftrightarrow \exists y \in a(x \simeq fy))$
- exp $ab \downarrow \land \forall x (x \in exp \ ab \leftrightarrow (Fun(x) \land Dom(x) = a \land Ran(x) \subseteq b))$

-

• el : $\mathbf{V}^2 \to \Omega$ and el $xy \simeq \top \leftrightarrow x \in y$

Set constructors

- $\forall x (x \notin \emptyset)$
- pair $xy \downarrow \land \forall z (z \in \text{pair } xy \leftrightarrow z = x \lor z = y)$
- un $a \downarrow \land \forall z (z \in un \ a \leftrightarrow \exists y \in a(z \in y))$
- $(f: a \rightarrow \Omega) \rightarrow \operatorname{sep} fa \downarrow \land \forall x (x \in \operatorname{sep} fa \leftrightarrow x \in a \land fx \simeq \top)$
- $(f: a \to V) \to (\operatorname{im} fa \downarrow) \land \forall x (x \in \operatorname{im} fa \leftrightarrow \exists y \in a(x \simeq fy))$
- exp $ab \downarrow \land \forall x (x \in exp \ ab \leftrightarrow (Fun(x) \land Dom(x) = a \land Ran(x) \subseteq b))$
- $\blacksquare \ \textit{Ind}(\omega) \land \forall z (\textit{Ind}(z) \rightarrow \omega \subseteq z)$

-

Some properties of ESTE

Lemma

(i) For each term t, there exists a term λx .t with free variables those of t other than x and such that

$$\lambda x.t \downarrow \wedge (\lambda x.t)y \simeq t[x := y]$$

(ii) (Second recursion theorem) There exists a term rec with

$$recf \downarrow \land (recf = e \rightarrow ex \simeq fex)$$

Bounded separation

Lemma

For each Δ_0 formula φ with free variables contained in $\{x_1, \ldots, x_k\}$, there is an application term f_{φ} such that $f_{\varphi} \downarrow$, $f_{\varphi} : \mathbf{V}^k \to \Omega$ and

$$f_{\varphi} x_1 \dots x_k \simeq \top \leftrightarrow \varphi(x_1, \dots, x_k)$$

Non-extensionality and partiality of operations

Lemma

ESTE refutes extensionality for operations and totality of application:

$$\neg [\forall x (fx \simeq gx) \rightarrow f = g];$$

$$\neg \forall x \forall y \exists z App(x, y, z)$$

Lemma

ESTE with uniform separation for bounded conditions containing App is inconsistent

Choice principles for operations

$$(\mathsf{OAC}) \qquad \forall x \in a \exists y \, \varphi(x, y) \to \exists f \, \forall x \in a \, \varphi(x, fx)$$

$$(\mathbf{GAC}) \qquad \forall x (\phi(x) \to \exists y \psi(x, y)) \to \exists f \forall x (\phi(x) \to \psi(x, fx))$$

Let **GAC** ! be **GAC** with the uniqueness restriction on the quantifier $\exists y$

Choice principles for operations

$$(\mathsf{OAC}) \qquad \forall x \in a \exists y \, \varphi(x, y) \to \exists f \, \forall x \in a \, \varphi(x, fx)$$

$$(\mathsf{GAC}) \qquad \forall x \, (\varphi(x) \to \exists y \, \psi(x, y)) \to \exists f \, \forall x \, (\varphi(x) \to \psi(x, fx))$$

Let **GAC** ! be **GAC** with the uniqueness restriction on the quantifier $\exists y$

Lemma

(i) **ESTE** + **OAC** proves $\phi \lor \neg \phi$ for arbitrary bounded formulas

(ii) **ESTE** + **GAC** and **ESTE** + **GAC**! are inconsistent

Unique choice

Summarizing: the axiom of choice is problematic both for set-theoretic functions and for operations

Unique choice

Summarizing: the axiom of choice is problematic both for set-theoretic functions and for operations

For operations: while **GAC** and **GAC**! are inconsistent, a description operator is consistent with **ESTE** (Cantini)

Unique choice

Summarizing: the axiom of choice is problematic both for set-theoretic functions and for operations

For operations: while **GAC** and **GAC**! are inconsistent, a description operator is consistent with **ESTE** (Cantini)

One can then prove the axiom of unique choice for set–theoretic functions (for Δ_0 formulas)

Proof-theoretic strength

ESTE has the same proof theoretic strength as HA

Proof-theoretic strength

ESTE has the same proof theoretic strength as HA

Lower bound

Upper bound

Proof-theoretic strength

ESTE has the same proof theoretic strength as HA

- Lower bound
 - HA is interpretable in ESTE
- Upper bound

(日)

Proof-theoretic strength

ESTE has the same proof theoretic strength as HA

- Lower bound
 - HA is interpretable in ESTE

Upper bound We introduce an auxiliary theory ECST*: Aczel and Rathjen's ECST + Exponentiation

Proof-theoretic strength

ESTE has the same proof theoretic strength as HA

- Lower bound
 - HA is interpretable in ESTE
- Upper bound

We introduce an auxiliary theory **ECST***: Aczel and Rathjen's **ECST** + Exponentiation

- Reduce ESTE to ECST*: by partial cut–elimination and asymmetric interpretation
- Reduce ECST* to PA: the main ingredient is realisability

Extensions by inductive definitions

A. Cantini has recently introduced impredicative extensions of **ESTE** by means of:

unbounded quantifiers

Extensions by inductive definitions

A. Cantini has recently introduced impredicative extensions of **ESTE** by means of:

- unbounded quantifiers
- a least fixed point operator

Extensions by inductive definitions

A. Cantini has recently introduced impredicative extensions of **ESTE** by means of:

- unbounded quantifiers
- a least fixed point operator

Extensions of CZF by inductive definitions: Aczel's REA, Rathjen's GID

Inductive definitions in CZF

An inductive definition Φ is a class of ordered pairs If $(X, a) \in \Phi$, then (X, a) is an inference step of Φ , with set X of premisses and conclusion a

Inductive definitions in CZF

An inductive definition Φ is a class of ordered pairs If $(X, a) \in \Phi$, then (X, a) is an inference step of Φ , with set X of premisses and conclusion *a*

With each inductive definition Φ we can associate an operator Γ_{Φ} s.t. $\Gamma_{\Phi}(Y) = \{a : \exists X \subseteq Y((X, a) \in \Phi)\}$

Inductive definitions in CZF

An inductive definition Φ is a class of ordered pairs If $(X, a) \in \Phi$, then (X, a) is an inference step of Φ , with set X of premisses and conclusion a

With each inductive definition Φ we can associate an operator Γ_{Φ} s.t. $\Gamma_{\Phi}(Y) = \{a : \exists X \subseteq Y((X, a) \in \Phi)\}$

Note that Γ_{Φ} is monotone; i.e. for classes Y_1, Y_2 , $Y_1 \subseteq Y_2 \Rightarrow \Gamma_{\Phi}(Y_1) \subseteq \Gamma_{\Phi}(Y_2)$

Least fixed points

A class Y is Γ_{Φ} -closed if $\Gamma_{\Phi}(Y) \subseteq Y$

Least fixed points

A class Y is Γ_{Φ} -closed if $\Gamma_{\Phi}(Y) \subseteq Y$

The class inductively defined by Γ_{Φ} is the smallest Γ_{Φ} -closed class

Least fixed points

A class Y is Γ_{Φ} -closed if $\Gamma_{\Phi}(Y) \subseteq Y$

The class inductively defined by Γ_{Φ} is the smallest Γ_{Φ} -closed class

Theorem (Aczel) In **CZF**, for any inductive definition Φ there is a smallest Φ -closed class $I(\Phi)$

General inductive definitions: GID

An inductive definition Φ is *local* if $\Gamma_{\Phi}(X)$ is a set for each set X

General inductive definitions: GID

An inductive definition Φ is *local* if $\Gamma_{\Phi}(X)$ is a set for each set X

An inductive definition is *conclusion bounded* if there is a set *A* such whenever $(X, a) \in \Phi$ then $y \in A$

General inductive definitions: GID

An inductive definition Φ is *local* if $\Gamma_{\Phi}(X)$ is a set for each set X

An inductive definition is *conclusion bounded* if there is a set *A* such whenever $(X, a) \in \Phi$ then $y \in A$

(GID) If Φ is local and conclusion bounded then $I(\Phi)$ is a set

General inductive definitions in ESTE

MonBd(f, a) states that f is monotone and conclusion bounded by a, i.e.

 $\forall x, y (x \subseteq y \to \exists z, w \subseteq a(z \subseteq w \land fx \simeq z \land fy \simeq w))$

General inductive definitions in ESTE

MonBd(f, a) states that *f* is monotone and conclusion bounded by *a*, i.e.

$$\forall x, y (x \subseteq y \to \exists z, w \subseteq a(z \subseteq w \land fx \simeq z \land fy \simeq w))$$

Then (μ) is as follows

 $MonBd(f, a) \rightarrow \mu fa \subseteq a \land (f(\mu fa) \subseteq \mu fa \land \forall y (fy \subseteq y \rightarrow \mu fa \subseteq y))$

イロト (語) (語) (語)

Proof theoretic strength

Rathjen: $|\Pi_2^1 - CA + BR| \le |CZF + GID| \le |\Pi_2^1 - CA + BI|$

Laura Crosilla On constructive operational set theory

Proof theoretic strength

 $\begin{aligned} \text{Rathjen: } |\Pi_2^1 - \mathbf{CA} + \mathbf{BR}| &\leq |\mathbf{CZF} + \mathbf{GID}| \leq |\Pi_2^1 - \mathbf{CA} + \mathbf{BI}| \\ \end{aligned}$ $\begin{aligned} \text{Cantini: } |\Pi_2^1 - \mathbf{CA}_0| &\leq |\mathbf{ESTE} + \mu| \leq |\Pi_2^1 - \mathbf{CA}_0 + \mathbf{BI}| \end{aligned}$

イロト (語) (語) (語)

What happens in the case of general rather than least fixed points?

$$(\hat{\mu})$$
 MonBd $(f, a) \rightarrow \mu fa \subseteq a \wedge f(\mu fa) = \mu fa$

Laura Crosilla On constructive operational set theory

What happens in the case of general rather than least fixed points?

$$(\hat{\mu})$$
 MonBd $(f, a) \rightarrow \mu$ fa $\subseteq a \land f(\mu$ fa) = μ fa

What is the strength of **ESTE** + $\hat{\mu}$?

What happens in the case of general rather than least fixed points?

$$(\hat{\mu})$$
 MonBd $(f, a) \rightarrow \mu fa \subseteq a \wedge f(\mu fa) = \mu fa$

What is the strength of **ESTE** + $\hat{\mu}$?

Conjecture: $|\mathbf{ESTE} + \hat{\mu}| = \Gamma_0$