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Introduction
Definitions

Definition

A Vitali covering of a set E ⊂ Rd is a family of closed balls (Bi )i∈I

such that for all x ∈ E and all δ > 0 there exists i ∈ I with

x ∈ Bi and diam(Bi ) < δ .

Theorem

If V is a Vitali covering, then there exists disjoint (Bn)n>1 in V
such that

µ

(
E \

⋃
n>1
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)
= 0 .
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Introduction
Definitions

Definition

A Vitali covering of a set [0, 1] ⊂ R is a family of closed intervals

(Bi )i∈N such that for all x ∈ E and all δ > 0 there exists i ∈ N with

x ∈ Bi and |Bi | < δ .

Theorem

If V is a Vitali covering, then there exists disjoint (Bn)n>1 in V
such that for all ε > 0 there exists n ∈ N

n∑
i=1

|Bi | > 1− ε .



Measure theory

Completely avoidable! µ is only applied to finite unions of intervals.

Also note that by
∞∑
i=1

| . . . | 6 c ,

we do not imply that the series converges, but merely that the

partial sums are bounded.
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No, because there is a recursive counterexample.
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A recursive counterexample to VCT

In Russian recursive mathematics there exist α-singular covers of

[0, 1] (for every 0 < α < 1). That is a sequence of intervals

(Jn)n>1 (with rational endpoints) such that

• any two Jn are disjoint, or have only an endpoint in common,

• any point belongs to the union of two of these, and

• the partial sums of
∑

n>1 |Jn| are bounded by α.

(This also shows that the Heine Borel theorem is not provable in

RUSS/BISH.)
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A recursive counterexample to VCT

Proof.

Take a 1
6 -singular cover (Jn = [an, bn])n>1.

Triple these in length to In = (2an − bn, 2bn − an). Then

• [0, 1] ⊂
⋃

n>1 In and

•
∑

n>1 |In| = 3
∑

n>1 |Jn| 6
1
2

Let (Imn )m>1 be an enumeration of all intervals with rational

endpoints that are a subset of In. Then (Imn )n,m>1 is a Vitali cover

of [0, 1]. (Let’s call this process “Vitalification”.)
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(
•
∑

n>1 |In| = 3
∑

n>1 |Jn| 6
1
2

)
Now, if VCT holds, then there exist k , n1, . . . , nk und m1, . . . ,mk

such that (Imi
ni

)ki=1 are pairwise disjoint and
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A recursive counterexample to VCT

VCT cannot be proved in BISH.

This example is very robust: even adding more assumptions does

not seem to help. E.g. The Vitali Cover in the counterexample is

totally bounded (using the Hausdorff metric).

What about other varieties of BISH?
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Other frameworks

A good guess is that VCT has something to do with Heine-Borel.



Other frameworks
Simpson’s reverse mathematics

In Simpson’s reverse mathematics

WWKL ⇐⇒ Vitali Covering Theorem
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We are interested in bars, that is sets B ⊂ 2∗ that block every

infinite “path”.

In symbols:

∀α ∈ 2N∃n ∈ N (αn ∈ B).

A bar B is called uniform if

∃n ∈ N∀α ∈ 2N∃m 6 n (αm ∈ B).
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FAN∆: Every decidable bar is uniform.

And consider the weaker

WWKL: For every decidable bar B that is closed

under extensions

lim
n→∞

|{u ∈ B : |u| = n}|
2n

= 0
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Bars
FAN and WWKL

Or equivalently:

WWKL: For every decidable bar B that is closed

under extensions and for every ε > 0 there exists N

|{u ∈ B : |u| = N}| > (1− ε)2N .
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Trivially,

FAN∆ =⇒ WWKL

The reverse implication seems unlikely to be provable.
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Bars
FAN and WWKL

Takako Nemoto has shown that

WWKL ⇐⇒ Every positive, uniformly continuous

function f : [0, 1]→ R satisfies the following property:

For any ε > 0, there exists δ > 0 such that

µ ({x : f (x) < δ}) is defined and

µ ({x : f (x) < δ}) < ε.



Bars
FAN and WWKL

This is also a nice characterisation:

(For every uniformly continuous map f : [0, 1]→ R+ )

WWKLKS

��

FAN∆
ks

KS

��

∀ε > 0∃c > 0
µ ({x | f (x) > c}) > 1− ε

∃c > 0
f (x) > c



another recursive counterexample

(RUSS): Again using a singular cover construct an open cover of

the interval with rational endpoints such that

• [0, 1] ⊂
⋃

n>1 In and

•
∑

n>1 |In| 6
1
2 .

Now set

f (x) =
∞∑
i=0

2−nd(x ,−In) .

Then f is uniformly continuous and positively valued.
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another recursive counterexample

f (x) =
∞∑
i=0

2−nd(x ,−In) .

Then f is uniformly continuous and positive valued.

But for all m ∈ N

µ
({

x ∈ [0, 1] | f (x) > 2−m
})

6 µ

(
m+1⋃
n=1

In

)
6
∑
n>1

|In| 6
1

2
.



Back to VCT

Again, the researches working within Simpson’s reverse

mathematics have shown that

WWKL ⇐⇒ For any covering of [0, 1] by a sequence of

open intervals with rational endpoints (In)n>1 we have

that for all ε > 0 there is a N ∈ N with

N∑
n=1

|In| > 1− ε .
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Notice also, how this property fails in RUSS.



If we assume WWKL, then for any covering of [0, 1] by a sequence

of open intervals with rational endpoints (In)n>1 we have that for

all ε > 0 there is a N ∈ N with

N∑
n=1

|In| > 1− ε .

With this property it is easy to prove Vitali’s Covering Theorem via

the Baby Vitali Lemma.



Lemma (Baby Vitali)

Given finitely many intervals with rational endpoints I1, . . . , In

there are finitely many indices k1, . . . , km such that Ik1 , . . . , Ikm are

disjoint and

µ

(
n⋃

i=1

Ii

)
6 3µ

(
m⋃
i=1

Iki

)



Together we can prove:

Lemma

Assuming WWKL. If a, b ∈ Q are such that 0 6 a < b 6 1 and

(In)n>1 is a Vitali covering of [0, 1], then there exist n1, . . . , nk

such that

• In1 , . . . , Ink are disjoint,

• Ini ⊂ (a, b), and

•
∑k

i=1 |Ink | > c(b − a).

(For a fixed 1
3 > c > 0)

Iterating this method constructs the desired sequence of VCT,

since

lim
n→∞

(1− c)n = 0 .
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We can also prove the more general result for arbitrary (not

necessarily rational) intervals.



A proof that VCT implies WWKL

Remember

WWKL ⇐⇒ For any covering of [0, 1] by a sequence of

open intervals with rational endpoints (In)n>1 we have

that for all ε > 0 there is a N ∈ N with

N∑
n=1

|In| > 1− ε .

Start with such a cover (In)n>1 and let (Imn )n,m>1 be its

Vitalification. If VCT holds, then for an arbitrary ε > 0 there exist

k , n1, . . . , nk und m1, . . . ,mk , such that (Imi
ni

)ki=1 are pairwise

disjoint and

1− ε <
k∑

i=1

|Imi
ni
| 6

∑
i∈{n1,...,nk}

|Ii | 6
max{n1,...,nk}∑

n=1

|In| .
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Formal topology

Anton Hedin has given a proof of Vitali’s covering theorem in

formal topology. His definition is:

Let V ⊂ R and (p, q) ∈ R, if

1. (p, q) C V , and

2. (r , s) ≤ (p, q) implies (r , s) C V ∩ {(r , s)}≤
we say that V is a Vitali covering of (p, q).

Furthermore, V is a Vitali covering of U ⊂ R, if V is

Vitali covering of every (p, q) ∈ U.

Where R = {(p, q) ∈ Q | p < q}.



Moral of the story

• VCT is not provable in recursive models of BISH.

• It is equivalent to WWKL over BISH. It holds in Brouwer’s

intuitionism and formal topology.

• The basic constructions are similar in all proofs and

counterexamples.

• More equivalencies of WWKL?

• Similarities to Brown, Giusto and Simpson’s work are not

intended and purely incidental.
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Thanks

Many thanks to Anton Hedin, Douglas Bridges, Maarten Jordens

and especially the organisers.

Questions?


