
Locally Scott formal topologies and constructive
interval analysis

Workshop on Constructive Aspects of Logic and Mathematics
Kanazawa, 8-12 March 2010

Anton Hedin
hedin@math.uu.se

Uppsala University, Department of Mathematics



Background

Formal topology provides a constructive framework for the theory of
domains.

L (Sambin, 1987): The formal space Pt�A� of a unary (or Scott)
formal topology A is a Scott domain, and every Scott domain is
isomorphic to the formal space of a Scott formal topology.

L (Negri, 2002): extended to include the more general notion of
continuous domain. The corresponding class of formal topologies
being the (stable) locally Scott formal topologies.
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Background

L Any formal topology A continuously embeds in a Scott formal
topology AS and any morphism F � A� B lifts to a morphism
FS � AS � BS such that the following diagram commutes

AS
FS // BS

A
?�

EA

OO

F // B
?�

EB

OO

(Maietti & Valentini, 2004). Cf. domain representations of
topological spaces (and lifting of continuous functions) (Blanck,
2000).

L We give a similar embedding and lifting result for the class of locally
Scott formal topologies.
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Background

Such extensions and liftings of morphisms provide a context in which to
compute with partial elements of a space.

E.g. the formal reals R embeds in the stable locally Scott formal
topology RP of partial reals (Negri, 2002). Points of RP include
non-computable reals and partially determined reals (intervals), a similar
extension of the real numbers is given in (Richman, 1998).

Classically the formal space Pt�RP� corresponds to the interval domain
IR, central in the domain theoretic framework for differential calculus as
developed by Edalat et al.
We show that some of the work in this area can be done constructively
by using the embedding R0RP and the extension of morphisms.
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Formal spaces

A formal topology A � �A,D,R�, consists of a pre-ordered set �A,D�
together with a cover relation R satisfying, for all a > A and U b A

(Ref) a > U � aRU, (Ext) a D b � aR �b�,
(Tra) aRU & U RV � aRV , (Loc) aRU & aRV � aRU ,V .

Here U ,V denotes the formal intersection of U and V

�x > X � �§u > U��§v > V �x B u & y B v�.
A � �A,D,R� is called overt if there is a subset PosA b A satisfying

(Mon) aRU & a > PosA � §u > U 9 PosA,

(Pos) aR �a� 9 PosA.

Intuitively a > PosA iff  �aRg�.
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Formal spaces

A point of a formal topology A � �A,D,R� is a subset α b A satisfying

(P1) §a > α,

(P2) a,b > α� �§c > α�c D a & c D b,

(P3) a > α & aRU � §b > α 9U.

We denote by Pt�A� the collection of points of A and call it the formal
space of A. Its topology is given by the open neighborhoods �a��, a > A,
where for any U b A

U�
� �α > Pt�A� � �§u > U�u > α�.

We call this the spatial topology on Pt�A�.
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Formal spaces

A continuous relation F � A� B between formal topologies
A � �A,DA,RB� and B � �B,DB,RB� is a relation F b A �B satisfying

(A1) aFb, b RB V � aRA F�1�V �,
(A2) aRA U, xFb for all x > U � aFb

(A3) ARA F�1�B�,
(A4) aFb, aFc � aRA F�1�b ,B c�.
Here F�1�Z � def

� �x > A � �§z > Z�xFz�.

A continuous relation F � A� B induces a continuous function
Pt�F � � Pt�A�� Pt�B� given by Pt�F ��α� � �b > B � �§a > α�aFb�.
The identity IA � A� A is given by aIAb � aRA �b� and composition
of F � A� B and G � B � C is given by

a�G X F �c � aRA F�1�G�1�c��.
Let FTop be the category of formal topologies and continuous relations.
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Formal spaces
The ordered structure �Pt�A�,b� is always a directed complete partial
order (dcpo), i.e. closed under directed suprema.

A Scott (or unary) formal topology A satisfies

aRU � �§u > U�aR u.

In this case �Pt�A�,b� is an algebraic dcpo, and if A is consistently
complete, i.e. for all a,b > A

�§c > A�c D a,b � a , b exists in A,

then �Pt�A�,b� is a Scott domain (Sambin, 1987).

Given any A � �A,D,R� we define AS � �A,DS ,RS�: Let
a DS b � aR �b� and aRS U � �§u > U�aR u.
AS is a Scott formal topology and the cover on A yields an embedding
EA � A� AS

aEAb � aR �b�.
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Locally Scott formal topologies

Theorem (Negri, 2002)
The formal space of a stable locally Scott formal topology is a continuous
domain. Moreover, every continuous domain is isomorphic to the formal
space of a stable locally Scott formal topology.

A formal topology A is locally Scott if there is a map i � A� P�A� such
that for all a > A and U b A

(1) a �A i�a�,

(2) aRU � i�a�RS i�U�,

where (2) says aRU � �¦b > i�a���§u > U��§v > i�u��b R v .
A is stable in case i also satisfies

(3) A �AS
i�A�,

(4) i�a� , i�b�RS i�a , b�.
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Locally Scott formal topologies

A formal topology A is stable locally Scott if it is a retract of its Scott
compactification, i.e. if there is a morphism R � AS � A such that
R X EA � IdA.
For i satisfying (1)-(4) a retraction Ri is given by
aRib � �§c > i�b��aR c .

For any a > A we have

�ia � �b > A � aRib� � Pt�Ri��	a� > Pt�A�
and for any α > Pt�A� the collection ��a�a>α is directed and α � �a>α �a.

The way below relation on Pt�A� can be characterized as

β P α� �§a > α�β b �a b α.
Hence we see that α � �βPα β, for all α > Pt�A�.
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Locally Scott formal topologies

Suppose A � �A,D,R� is equipped with a binary relation hb A �A such
that

(i) a �A �b � b h a�,

(ii) a h b R c � �§d h c�aR d ,

(iii) a h b � �§c > A�a h c h b.

Let i�a� � �b � b h a�, then we define ALS � �A,DLS ,RLS� where
a DLS b � aR �b� and

aRLS U � i�a�RS i�U�.
Proposition
If �A,h� satisfies (i)-(iii ), then ALS is locally Scott with respect to
i � a ( �b � b h a�. Moreover, EA is an embedding A� ALS .
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Locally Scott formal topologies

If h satisfies the following two conditions, ALS will be stable,

(iv) �¦a > A��§b > a�a h b,

(v) c R a� h a & c R b� h b � �§d �,d��aR d �
h d R a , b�.

We may always choose hb A �A as a h b iff aR �b�, in which case

ALS � AS .
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Locally Scott formal topologies

Lemma
A morphism F � A� B between locally Scott formal topologies must
satisfy

aFb � iA�a� b F�1iB�b�.
Suppose now, A and B are equipped with relations hA and hB satisfying�i� � �v� and let F � A� B. We define a relation

aFLSb � �x � x hA a� b F�1�y � y hB b�.

Proposition
The relation FLS is a morphism ALS � BLS making the following diagram
commute

ALS
FLS // BLS

A

EA

OO

F // B

EB

OO
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Locally Scott formal topologies

With a h b � aR �b� for both A and B we have FLS � F and the lifting
result is exactly the one for Scott formal topologies, saying that F is also
a continuous relation AS � BS making the following diagram commute

AS
F // BS

A

EA

OO

F // B

EB

OO

14 / 31



Locally compact metric spaces

(Palmgren, 2006) establishes a full and faithful functor M from the
category of locally compact metric spaces and continuous functions into
the category of formal topologies.
A l.c.m.s. �X ,d� is mapped to a formal topology M�X �, whose set of
basic opens MX consist of formal ball symbols b�x , δ� > X �Q�. These
are ordered by inclusion and strict inclusion, respectively,

b�x , δ� D b�y , ε�� d�x , y� B ε � δ
b�x , δ� h b�y , ε�� d�x , y� @ ε � δ

The cover on M�X � is the least cover satisfying the two axioms

(M1) p R �s > M � s h p�,

(M2) M R �b�x , δ� � x > X�, for any δ > Q�

The formal space Pt�M�X �� is a metric completion of �X ,d� (wrt a
metric m induced by d) and when �X ,d� is complete the spaces are
isomorphic.
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Locally compact metric spaces

Lemma
The strict inclusion h between formal ball symbols satisfies �i� � �iv�.

E.g. (ii) (a h b R c � �§d h c�aR d) follows from local compactness.

If aR b � a D b in M�X � then also �v� is satisfied.
This is the case e.g. when X is a normed vector space. From now on we
assume this is the case.

Elements α > Pt�M�X �LS� are of the form

α � �
b�x,δ�>α

�b�x , r�
where in this case �b�x , δ� � �c > MX � b�x , δ� h c� (since aR b h c
implies a h c).

Points �b�x , δ� correspond to closed sets

B�x , δ� � �y > Pt�M�X �� � m�x , y� B δ� b Pt�M�X ��,
in a precise way.
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Locally compact metric spaces

Any α > Pt�M�X �LS� defines a closed subspace �α� of M�X � by letting�α� �M�X � � α�, i.e. �α� � �MX ,D,R�α�� where

aR�α� U � aRU 8 α�

and α� � �b � �§c > α�b , c RM�X� g� is the open complement of α in
M�X �.

Proposition
If α > Pt�M�X �LS� then Pt��α�� � �x > Pt�M�X �� � α b x�
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Locally compact metric spaces

In case α � �b�x , δ� the Proposition implies

Pt��α�� � B�x , δ�.
The same is true for the more general closed ball points

b�α, r� � �b�x , δ� > M � b�x , δ� > α & m�j�x�, α� � β @ δ�
where α > Pt�M�X �� and r > RC0,

An arbitrary α > Pt�M�X �LS� is then a directed intersection of closed
balls:

Pt��α�� � �
b�x,δ�>α

B�x , δ�
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Continuous real valued maps

Theorem (Coquand & Palmgren & Spitters, 2009)
If a closed subspace S �M�X � �U is overt and u > PosS , then there is
α > Pt�S� 9 u�. Moreover, if S is also compact then Pt�S� is complete
and totally bounded.

Lemma
If X is locally compact and γ � b�α, r� > Pt�M�X �LS� for α >M�X � and
r > RC0. Then �γ� defines a compact overt subspace and hence
A � Pt��γ�� is complete and totally bounded.

If F �M�X ��R the quantities infx>A Pt�F ��x� and supx>A Pt�F ��x�
exist (E. Bishop & D. Bridges, 1985).
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Continuous real valued maps

For F �M�X ��R we denote f � Pt�F � and Âf � Pt�FLS�.

Proposition
Let X be a locally compact normed vector space and F �M�X ��R a
continuous relation. Let γ � b�α, r� > Pt�M�X �LS� and let
A � Pt��γ�� b Pt�M�X �� then

Âf �b�α, r�� � �inf
x>A

f �x�, sup
x>A

f �x�	

This determines the function Âf , since the collection of points �b�x , δ� is a
base for the domain �Pt�M�X �LS�,b�.
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Partial reals
The formal reals R is the localic completion M�Q�, wrt to the usual
metric on Q. Equivalently basic opens are pairs �p,q� > Q �Q, such that
p @ q (corresponding to ball symbols b� p�q

2
, q�p

2
�). The pre-order and

strict inclusion are

�p,q� D �r , s�� r B p @ q B s

�p,q� h �r , s�� r @ p @ q @ s

Its points are precisely the (Dedekind) real numbers.

Taking RLS we get precisely the partial reals RP (Negri, 2002). Its
points correspond to the generalized reals in (Richman, 1998). These are
cuts �L,U� of disjoint open subsets of Q with L downwards and U
upwards closed wrt @b Q �Q.

A partial real α is the same as a (bounded) cut

��p � �§q > Q��p,q� > α�,�q � �§p > Q��p,q� > α��
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Partial reals and interval analysis

The closed ball points b�α, r� are now closed intervals �α � r , α � r�.
As a corollary to the previous Proposition the arithmetic operations on R
lift to the ordinary interval arithmetic operations, so e.g.

�x , y� � �z ,w� � �x � z , y �w�
and

�x , y� � �z ,w� � �min�xz , xw , yz , yw�,max�xz , xw , yz , yw��

Proposition
If α > Pt�RP� then α � �x , y� for some reals x B y if and only if �α� is
overt.
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Partial reals and interval analysis

Classically the partial reals are closed intervals ordered under reverse
inclusion, i.e. the interval domain IR, without a bottom element � � R.

We can add a bottom to Pt�RLS� as follows: In R we take basic pairs in�Q 8 ��ª�� � �Q 8 ��ª�� and let

�p,q� h �r , s�� r @ p @ q @ s or �r , s� � ��ª,�ª�.
Then � � ���ª,�ª�� > Pt�RLS� is the least element.

Using (classical) domain theory a lot of work has been done on effective
interval analysis (Edalat et al). A suggestion is then to use the formal
space Pt�RLS� and the above lifting result to develop (parts of) this
theory constructively.
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Partial reals and interval analysis

In (Edalat & Lieutier, 2004) the authors define a derivative for Scott
continuous functions f � IR� IR.

Let a,b > IR. A function f � IR� IR has an interval Lipschitz constant b
in a, if for all x1, x2 Q a

b�x1 � x2� Z f �x1� � f �x2�.
Denote this relation by f > δ�a,b�.

For f � R� R, we have If > δ��a1, a2�, �b1,b2�� iff f is lipschitz on�a1, a2� and for all u, v > �a1, a2� with v B u we have

b1�u � v� B f �u� � f �v� B b2�u � v�.
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Partial reals and interval analysis

For a,b > IR the single step function a�b is defined by

�a�b��x� � � b, if a P x
�, otherwise

The domain derivative of a function f � IR� IR is then defined as

df

dx
� +

f >δ�a,b�

a�b

Theorem (Edalat & Lieutier, 2004)

Y
df
dx

is well-defined and Scott continuous for each f

Y If f > C 1 then dIf
dx

� I�f ��
Y f > δ�a,b� iff a�b Z df

dx
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Partial reals and interval analysis

The situation for continuous functions f � Pt�RP�� Pt�RP� is similar.

To show that df
dx

is well defined for every f � Pt�RP�� Pt�RP�, i.e. that
the set �a�b � f > δ�a,b�� is consistent, we can describe the supremum
df
dx

as the point function of a continuous relation RP �RP .

Given a continuous relation F �RP �RP we define a new relation
dF b R � R by

�p,q�dF �r , s� def
� �¦�x1, y1�, �x2, y2� h �p,q�� �§�u1, v1�, �u2, v2��

�x1, y1�F �u1, v1� & �x2, y2�F �u2, v2� &

�u1, v1� � �u2, v2� h �r , s���x1, y1� � �x2, y2��.
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Partial reals and interval analysis

Then we define DF b R � R by setting

�p,q�DF �r , s� def
� ��p,q��h b l�1

F ��r , s��h.
Proposition
The relation DF is a continuous relation RP �RP whenever F is.
Moreover, we have �p,q�DF �r , s� if and only if for every �p�,q�� h �p,q�
there is �r �, s �� h �r , s� such that Pt�F � > δ�I �p�,q��, I �r �, s ���.

Corollary
Let F �RP �RP be a continuous relation. Then we have

Pt�DF � � df

dx

where f � Pt�F �.
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Further work

The operator d
dx

is used to give a domain theoretic generalization of the
Picard-Lindelöf Theorem:

The Picard-Lindelöf Theorem guarantees a unique solution to

��� � f ��t� � v�t, f �t��
f �t0� � x0

if v is Lipschitz in the second argument.
The solution is the unique fix-point of P � f ( λt.�x0 � R t

t0
v�s, f �s��ds�.

If we let

Av�f ,g� � �f , λt.v�t, f �t���, U�f ,g� � �λt.�x0 � S
t

t0
g�s�ds�,g�

we have P�f � � π0�U XAv�f ,g�� for any g . The unique fix-point �f ,g�
of U XAv then satisfies f � � g � λt.v�t, f �t��.
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Further work

The domain theoretic Picard operator (corresponding to U XAv ) allows
imprecise initial condition or function v :
Let f0,g0 � IR� IR and v � IR � IR� IR, Scott continuous with
g0 Z λt.v�t, f0�t�� (f0 and g0 also consistent).
The Picard operator then has a (least) fixed point �fs ,gs� [ �f0,g0�. Here
v need only be continuous.

If f is a solution to the classical problem ���, then the domain theoretic
solution fs , computed using the canonical extension of v , satisfies
f �t� > fs�t� for all t in a neighborhood of t0.

If v is computable and continuous but not Lipschitz, ��� might have no
computable solution (O. Aberth, 1971). However, the interval valued
solution fs exists and is computable.
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Further work

Interesting to investigate the same question in the context of partial
reals.

L Starting from imprecise initial data can we get a partial real valued
solution to ��� (similar to the domain theoretic solution)?

L Under what conditions on the initial value and function v can we
estimate the width of the solution? When does it take interval
values?

L Relation to solutions of the classical problem ���?

30 / 31



Some references

(T. Coquand & E. Palmgren & B. Spitters, 2009) Metric
complements of overt closed sets, arXiv:0906.3433v1 [math.LO],
2009.

(A. Edalat & A. Lieutier, 2004) Domain theory and differential
calculus (functions of one variable), Math. Structures Comput.
Sci. 14 (2004), no. 6, 771–802.

(S. Negri, 2002) Continuous domains as formal spaces, Math.
Structures Comput. Sci. 12 (2002), no. 1, 19–52.

(F. Richman, 1998) Generalized real numbers in constructive
mathematics, Indag. Math. (N.S.) 9 (1998), no. 4, 595–606.

(G. Sambin, 1987) Intuitionistic formal spaces, Mathematical logic
and its applications (Druzhba, 1986), 187–204, Plenum, New York,
1987.

31 / 31


