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Motivation

Applying program extraction (modified realizability) to
generating asynchronously communicating programs.
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A standard reference: Reasoning about Knowledge
[Fagin et al., 2003]

Warning: for the speaker, the formalisation below is complicated.

Let us fix
Φ: a set of propositional variables.
Li : a set (of local states) for 1 ¤ i ¤ n.

G � L1 � � � � � Ln (global states).
A run over G is a function N Ñ G.
A system R over G is a set of runs R � GN.

An interpreted system I is a pair pR, πq
� R: a system over G.

� π : G Ñ Φ Ñ tJ,Ku.
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An interpreted system interprets the formulae
(still from [Fagin et al., 2003])

With the natural projection fi � G Ñ Li ,
s �i s 1 iff fi psq � fi ps

1q.
A point: pr ,mq P R� N.

� pr ,mq |ù I iff πpr ,mqpI q � J for I P Φ.

� pr ,mq |ù K never holds.

� pr ,mq |ù Kiϕ
iff pr 1,m1q |ù ϕ for any point pr 1,mq such that
pr ,mq �i pr

1,m1q.

� pr ,mq |ù �ϕ iff pr ,m1q |ù ϕ for all m1 ¥ m.

� pr ,mq |ù �ϕ iff pr ,m1q |ù ϕ for some m1 ¥ m.

� pr ,mq |ù Kiϕ
iff pI, r 1,m1q |ù ϕ for any point pr 1,mq such that
pr ,mq �i pr

1,m1q.

� pr ,mq |ù ϕ � ψ iff pr ,mq �|ù ϕ or pr ,mq |ù ψ.
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Asynchronous communication in [Fagin et al., 2003]
A class Camp

n of interpreted systems called
asynchronous message-passing systems.

A history h over Σi , INTi and MSG is a nonempty finite sequence
with

� h0 P Σi

� hk P tsendpµ, j , iq, receivepµ, j , iq | µ P MSG , 1 ¤ j ¤ nu
Ytintpa, iq | a P INTiu for k ¡ 0.

Let Li p1 ¤ i ¤ nq be a prefix-closed set of histories.

Let R be the set of runs r satisfying
� fi prp0qq is a history of length one.
� fi prpm � 1qq is identical to fi prpmqq

or a history obtained by appending one element to fi prpmqq
� for every receivepµ, j , iq appearing in fi prpmqq,

there exists an event sendpµ, i , jq appearing in fjprpmqq.

I � pR, πq is a.m.p. iff R can be constructed in this way.
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Axiomatisable?
“At this point, we do not even have a candidate for a sound and
complete axiomatization of Camp

n ”. [Fagin et al., 2003, Notes,
Ch. 8]
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An important observation in [Fagin et al., 2003]

� �
The processes can gain or lose knowledge only by sending and
receiving messages.� �

This (ignoring “sending and”) seemed intuitionistic to the speaker.
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Extending Browuer–Heyting–Kolmogorov Interpretation
with Communication

Browuer–Heyting–Kolmogorov interpretation taken
from [Troelstra and van Dalen, 1988]

(H1) A proof of ϕ^ ψ is given by presenting a proof of ϕ and a
proof of ψ.

(H2) A proof of ϕ_ ψ is given by presenting either a proof of ϕ
or a proof of ψ (plus the stipulation that we want to
regard the proof presented as evidence for ϕ_ ψ [plus left
or right information]).

(H3) A proof of ϕ � ψ is a construction which permits us to
transform any proof of ϕ into a proof of ψ.

(H4) Absurdity K (contradiction) has no proof; a proof of  ϕ is

a construction which transforms any hypothetical proof of

ϕ into a proof of a contradiction.
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Extending Browuer–Heyting–Kolmogorov Interpretation
with Communication

(HK) A proof of Kpϕ is a construction that witnesses
agent p’s acknowledgement of a proof of ϕ and also
contains the acknowledged proof.

(H1) A proof of ϕ^ ψ is given by presenting a proof of ϕ and a
proof of ψ.

(H2) A proof of ϕ_ ψ is given by presenting either a proof of ϕ
or a proof of ψ (plus the stipulation that we want to
regard the proof presented as evidence for ϕ_ ψ [plus left
or right information]).

(H3) A proof of ϕ � ψ is a construction which permits us to
transform any proof of ϕ into a proof of ψ.

(H4) Absurdity K (contradiction) has no proof; a proof of  ϕ is

a construction which transforms any hypothetical proof of

ϕ into a proof of a contradiction.
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An Anonymous Refree’s Comment

� �
this is at odds with real life applications, where an agent often
has just disjunctive knowledge, So he can e.g. have a proof
(evidence) that John works for either CIA or FBI, without having
a prooof that he works for CIA or that he works for FBI.� �
� This is not consistent with the BHK-interpretation.

� The author should have explained BHK-interpretation in
detail.

� FBI and CIA have secrets so that they sometimes make
non-constructive proofs?

� Let us take a notion of proof satisfying BHK-interpretation.
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New informal reading of Kpϕ

Formulae ϕ ::� K | I | ϕ^ ϕ | ϕ_ ϕ | ϕ � ϕ | Kpϕ.
all interpretable in classical epistemic logic

(widely attributed to [Hintikka, 1962], writes [Ditmarsch et al., 2007]).

Kpϕ: p knows ϕ. (What does “know” mean?)

Classical In all p’s possible worlds, ϕ is true.

This work p has received a proof of ϕ.

c.f. Plato: Theaetetus.

1. Knowledge is perception

2. Knowledge is a true opinion

3. Knowledge is a true opinion with explanation
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New informal reading of KqKpϕ: COMMUNICATION

KqKpϕ: q knows that p knows ϕ.

Classical In all q’s possible worlds, in all p’s possible worlds,
ϕ is true.
(Maybe useful for a philosopher defending
conventionalism following David Lewis.)

This work q has received a proof of the fact that
p has received a proof of ϕ.
Communication from p to q
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Do we have this: pKppϕ_ ψqq � pKpϕ_ Kpψq

nnnn Analysis of the creative subject by [Dummett, 2000, p.237].

@npp$n Aq ^ p$n Bq Ñ p$n pA^ Bqqq

is “less evident” than

@npp$n Aq _ p$n Bq Ø p$n pA_ Bqqq.

Analogously,
KppA^ Bq � pKppA^ Bqq

is less evident than

KppA_ Bq � pKppA_ Bqq.
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Deduction System

Γ $ Kpϕ
(T)

Γ $ ϕ

Γ $ Kpϕ
(introspection)

Γ $ KpKpϕ

Γ $ ϕ
(necessitation)

KpΓ $ Kpϕ

Γ $ Kppϕ_ ψq
(_K )

Γ $ Kpϕ_ Kpψ

(ax)
ϕ $ ϕ

Γ $ ϕ
(w)

ψ, Γ $ ϕ

ϕ, ϕ, Γ $ ϕ1

(c)
ϕ, Γ $ ϕ1

Γ, ϕ, ψ, Γ1 $ ϕ1

(e)
Γ, ψ, ϕ, Γ1 $ ϕ1

Γ $ ϕ ^ ψ
(^-E0)

Γ $ ϕ

Γ $ ϕ Γ1 $ ψ
(^-I)

Γ, Γ1 $ ϕ ^ ψ

Γ $ ϕ ^ ψ
(^-E1)

Γ $ ψ

Γ $ ϕ
(_-I0)

Γ $ ϕ _ ψ

Γ $ ϕ
(_-I1)

Γ $ ψ _ ϕ

Γ $ ψ0 _ ψ1 Γ, ψ0 $ ϕ Γ, ψ1 $ ϕ
(_-E)

Γ $ ϕ

ϕ, Γ $ ψ
(�-I)

Γ $ ϕ � ψ

Γ $ ψ0 � ψ1 Γ $ ψ0
(�-E)

Γ $ ψ1

Γ $ K
(K-E)

Γ $ ϕ

If we add the double negation elimination, we obtain ϕ � Kpϕ.



. . . . . .

Formal Semantics = Intuitionistic Logic (with Knowledge)

model xW ,¨, pfpqpPPy
fp : W Ñ W : idempotent, decreasing, monotonic

valuation ρ : PVar Ñ PpW q ρpI q: upward-closed

Define w |ù ϕ for a state w P W and a formula ϕ:

w |ù K ô never

w |ù I ô w P ρpI q

w |ù Kpψ ô fppwq |ù ψ

w |ù ψ0 ^ ψ1 ô both w |ù ψ0 and w |ù ψ1 hold

w |ù ψ0 _ ψ1 ô either w |ù ψ0 or w |ù ψ1 holds

w |ù ψ0 � ψ1 ô v |ù ψ0 implies v |ù ψ1 for any v © w .
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Formal Semantics = Intuitionistic Logic (+ Knowledge)

model xW ,¨, pfpqpPPy
fp : W Ñ W : idempotent, decreasing and monotonic

past ¨ future
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Formal Semantics = Intuitionistic Logic (+ Knowledge)

model xW ,¨, pfpqpPPy
fp : W Ñ W : idempotent, decreasing and monotonic

past ¨ future
p’s state. q’s state.
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Soundness and Strong Completeness

Γ |ù ϕ ðñ Γ $ ϕ.

Proof strategy
Following [Troelstra and van Dalen, 1988].

For a formula Γ & ϕ,
we construct a model M and a state w P M
so that M,w |ù Γ but not M,w |ù ϕ.

By
W is the set of saturated sets of formulae.
fppΓq � tϕ | Kpϕ P Γu.
Checking fp is actually W Ñ W requires the rule p_K q.
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Disjunction Property

$ ϕ_ ψ ùñ $ ϕ or $ ψ

Proof strategy
By extending Aczel’s slash relation [Troelstra and van Dalen, 1988]
by

Γ | Kpϕðñ fppΓq | ϕ

where fppΓq (agent p’s view on a set of formulae Γ) defined as� �
gppΓq � tϕ P Fml | pKpq

�ϕ P Γ and ϕ does not begin with Kpu,
fppΓq � gppΓq Y KpgppΓq Y tϕ P Fml | Γ $ Ku.� �
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Finite model property

M |ù ϕ for all finite M ðñ$ ϕ.

Proof strategy
For a formula & ϕ,
we construct a finite model M and a state w P M
so that M,w �|ù ϕ.

It does not work:
only looking at the formulae in a subformula-closed set Ω and using one
of the previous fp’s.

Reason: fp : W Ñ W does not hold.

Instead
W to be the set of pairs pΩ, Γq where Γ is Ω-saturated.
(Ω is closed for taking a subformula and replacing KpKp with Kp).

FpppΩ, Γqq � pf 1

ppΩq, fppΓqq where

� fppΓq � gppΓq Y KpgppΓq Y tϕ P Fml | Γ $ Ku.

� f 1

ppΩq � gppΩq Y KpgppΩq.
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meanwhile

Modelling Sequential Consistency
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Need for shared memory consistency

Assumption: full-information

� A message contains all knowledge of its sender.

� Nothing is ever forgotten.

Even under this assumption, no communication is guaranteed
between processes.
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Essence of Sequential Consistency

For two memory states, either ¨ or © holds.
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Essence of Sequential Consistency

For two memory states, either ¨ or © holds.
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Logical Background: logic Lin for linear models

Lin � Intuitionistic logic� pϕ � ψq _ pψ � ϕq:
Intuitionistic logic � Lin � Classical logic

Well-known property:
Lin $ θ ðñ M |ù θ for all linear model M

(Linear model: for any two states, either ¨ or © holds.)
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A logic SC for Sequential Consistency

SC � Int. Epistemic logic� pKmϕ � Kmψq _ pKmψ � Kmϕq:
Intuitionistic epistemic logic � SC � Classical logic

A result:
SC $ θ ðñ M |ù θ for all sequential model M

(Sequential model: for any two memory states, ¨ or © holds.)
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An example theorem under sequential consistency

$ ppKpKmKpI q ^ KqKmKqJq � ppKqKpI q _ KpKqJq

Informal reading

� p sends a proof of I to m, then m replies to p.

� q sends a proof of J to m, then m replies to q.

� then, p’s knowledge I has been transmitted to q,
or q’s knowledge J has been transmitted to p.
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Ongoing work: finite sequential model property of SC

Trying to avoid

� logically possible but computationally impossible schedules like
infinite

hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

t0 ¬ t1 ¬ t2 ¬ � � � ¬ tn ¬ � � � ¬ t 1

� finite but non-sequential schedules.

Revising a proof until the speaker finds a gap.
(Similar construction using fppΓq � tϕ | Γ & pKpϕq � Ku).

If succeeds, a similar method would give an axiomatization for
Halpern’s Camp

n limited to the class of formulae whose every
subformula

� begins with �, or

� is immediately after �.

Def. AMP � Int. Epis. logic� pKpϕ � Kpψq _ pKpψ � Kpϕq.
Speculation. AMP $ ϕðñ Camp

n |ù pϕq�

where pϕq� is obtained by putting � before every subformula of ϕ.
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Future Work

Extending program extraction to concurrent/distributed
computation.

� Making proofs constructive.

� Modelling other memory consistencies: especially
PRAM consistency, cache consistency and processor
consistency

� Typed lambda calculus
� Type-safe Paxos [Lamport, 1997] implimentation

� Quantify agents DxKxϕ for program extraction with mobility.
� Knowledge of π-calculus terms

� Knowledge of forking and merging agents (forking creates
common knowledge).
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A part (soundness, strong completeness and modelling sequential
consistency) of this work has been accepted to LPAR-16 that will
be held in Dakar, Senegal.
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