some existence axioms in finite order arithmetic

Shohei Izawa

Mathematical Institute, Tohoku University, Sendai Japan

Workshop on Constructive Aspects of Logic and Mathematics, March 11, 2010

Contents

Introduction.

- What is finite order arithmetic
- F.O.A is between S.O.A. and Set Theory
- Definitions of axiom of finite order arithmetic.
 - The base axiom RCA₀^ω
 - the axiom of comprehension and choice
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension does not collapse.

Finite order arithmetic is a formal system based on λ -culiculus.

sorts

- 2 $\mathcal{M}_{\sigma \to \tau} \longleftrightarrow$ the set of all maps \mathcal{M}_{σ} to \mathcal{M}_{τ}

where σ and τ are given sorts.

In short, $0 \to 0$ is denoted by 1. similarly $n \to 0$ is denoted by n + 1. $\sigma_1 \to (\sigma_2 \to \tau)$ is denoted by $(\sigma_1, \sigma_2) \to \tau$.

terms

- $\lambda x^{\sigma}.t^{\tau}$ (the sort is $\sigma \to \tau$.)
- $t^{\sigma \to \tau}(s^{\sigma})$ (the sort is τ .)

where t and s are given terms, x is a variable symbol.

axiom of λ -caliculus

• (λ -reduction)

$$(\lambda x^{\sigma}.t^{\tau})(s^{\sigma}) = t[s/x].$$

• (extentionality)

$$\forall x^{\sigma \to \tau} \forall y^{\sigma \to \tau} (x = y \leftrightarrow \forall z^{\sigma} (x(z) = y(z)))$$

terms• $\lambda x^{\sigma}.t^{\tau}$ (the sort is $\sigma \to \tau.$)• $t^{\sigma \to \tau}(s^{\sigma})$ (the sort is $\tau.$)

where t and s are given terms, x is a variable symbol.

axiom of λ -caliculus

• (λ -reduction)

$$(\lambda x^{\sigma}.t^{\tau})(s^{\sigma}) = t[s/x].$$

• (extentionality)

$$\forall x^{\sigma \to \tau} \forall y^{\sigma \to \tau} (x = y \leftrightarrow \forall z^{\sigma} (x(z) = y(z))).$$

There is natural translation from the system of second order arithmetic to finite order arithmetic and finite order arithmetic to set theory.

translation from S.O.A. to F.O.A.

 \mathcal{M} : A model of finite order arithmetic. $\longrightarrow (\mathcal{M}_0, \{X \in \mathcal{M}_1 | \forall n \in \mathcal{M}_0(X(n) \in \{0, 1\})\}).$

translation from F.O.A. to set theory

V: A model of set theory.

$$\longrightarrow \begin{cases} \mathcal{M}_0 = \omega^V, \\ \mathcal{M}_{\sigma \to \tau} = \{f : \mathcal{M}_\sigma \to \mathcal{M}_\tau\}^V. \end{cases}$$

There is natural translation from the system of second order arithmetic to finite order arithmetic and finite order arithmetic to set theory.

translation from S.O.A. to F.O.A.

 \mathcal{M} : A model of finite order arithmetic. $\longrightarrow (\mathcal{M}_0, \{X \in \mathcal{M}_1 | \forall n \in \mathcal{M}_0(X(n) \in \{0, 1\})\}).$

translation from F.O.A. to set theory

V: A model of set theory.

$$\longrightarrow \left\{ \begin{array}{rcl} \mathcal{M}_0 &=& \omega^V, \\ \mathcal{M}_{\sigma \to \tau} &=& \{f : \mathcal{M}_\sigma \to \mathcal{M}_\tau\}^V. \end{array} \right.$$

Strength of S.O.A., F.O.A. and set theory is as follows.

relation of axioms of S.O.A. and F.O.A.

- (Kohlenbach, 2005) An axiom RCA₀^ω of F.O.A., our base axiom, is conservative extension of an axiom RCA₀ of S.O.A.
- (Hunter, 2008) RCA₀^ω + (ε₁) is conservative extension of ACA₀.
- (Hunter, 2008) $RCA_0^{\omega} + (\mathcal{E}_2)$ is conservative extension of Z_2 .

relation of axioms of F.O.A. and set theoty

- $ZF \vdash RCA_0^{\omega} + (\mathcal{E}) + Con(RCA_0^{\omega} + (\mathcal{E})).$
- $ZFC \vdash RCA_0^{\omega} + (\mathcal{E}) + AC + Con(RCA_0^{\omega} + (\mathcal{E}) + AC).$

where (\mathcal{E}) and AC are the axiom of comprehension and the axiom of choice of finite order arithmetic respectively.

Strength of S.O.A., F.O.A. and set theory is as follows.

relation of axioms of S.O.A. and F.O.A.

- (Kohlenbach, 2005) An axiom RCA₀^ω of F.O.A., our base axiom, is conservative extension of an axiom RCA₀ of S.O.A.
- (Hunter, 2008) RCA₀^ω + (ε₁) is conservative extension of ACA₀.
- (Hunter, 2008) $RCA_0^{\omega} + (\mathcal{E}_2)$ is conservative extension of Z_2 .

relation of axioms of F.O.A. and set theoty

- $ZF \vdash RCA_0^{\omega} + (\mathcal{E}) + Con(RCA_0^{\omega} + (\mathcal{E})).$
- $ZFC \vdash RCA_0^{\omega} + (\mathcal{E}) + AC + Con(RCA_0^{\omega} + (\mathcal{E}) + AC).$

where (\mathcal{E}) and AC are the axiom of comprehension and the axiom of choice of finite order arithmetic respectively.

Advantage of finite order arithmetic

- Abstract mathematics can be considerable. (If we do not fix the sort, the mood of arbitrary set could be expressed.)
- Many axioms (e.g. axiom of comprehension, choice, recursion or continuum hypothesis) are different for each sort. Finer analysis than set theory could be done.

Advantage of finite order arithmetic

- Abstract mathematics can be considerable. (If we do not fix the sort, the mood of arbitrary set could be expressed.)
- Many axioms (e.g. axiom of comprehension, choice, recursion or continuum hypothesis) are different for each sort. Finer analysis than set theory could be done.

2. Definitions of axiom of finite order arithmetic.

Introduction.

- What is finite order arithmetic
- F.O.A is between S.O.A. and Set Theory
- Definitions of axiom of finite order arithmetic.
 - The base axiom RCA₀^ω
 - the axiom of comprehension and choice
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension does not collapse.

Definition. RCA_0^{ω} is the axiom consists of the following formulas.

- The axiom of λ -calculus.
- $\forall x^0 (\exists y^0 (x = S(y)) \leftrightarrow x \neq 0), \forall x^0 \forall y^0 (S(x) = S(y) \rightarrow x = y)$

• (Existence of primitive recursion operator.) $\exists \mathcal{R}_0 \forall f^1 \forall n^0 \forall m^0 \begin{bmatrix} \mathcal{R}_0(f, n)(0) = n, \\ \mathcal{R}_0(f, n)(S(m)) = f(m, \mathcal{R}_0(f, n)(m)). \end{bmatrix}$

• (Induction axiom.) $\forall A^1(0 \in A \land \forall n^0 (n \in A \to S(n) \in A) \to \forall n(n \in A)).$

• (Axiom of choice for (1, 0).) $\forall A^{(1,0)\to 0)}[(\forall x^1 \exists y^0(x, y) \in A) \to (\exists F^{1\to 0} \forall x(x, F(x)) \in A)].$

Where 0^0 and S^1 are constant symbols.

Definition

- (Q^{σ}-comprehension): $\exists X^{\tau \to 0} \forall x^{\tau} (x \in X \leftrightarrow \varphi(x))$ where φ is described by =₀, Boolean connections and σ variable quantifier $\exists y^{\sigma}, \forall y^{\sigma}$.
- (AC^{σ,τ}): $\forall A^{(\sigma,\tau)\to 0}(\forall x^{\sigma} \exists y^{\tau}((x,y) \in A) \to \exists F^{\sigma\to\tau}((x,F(x)) \in A)).$
- (\mathcal{E}_{σ}) : $\exists E^{\sigma \to 0} \forall x^{\sigma} (x \in E \leftrightarrow \forall y^{\sigma'} x(y) = 0)$ where $\sigma = \sigma' \to 0$.

Proposition

 Q^{σ} -comprehension is equivalent to $(\mathcal{E}_{\sigma \to 0})$ under RCA_0^{ω} .

Definition

- (Q^{σ}-comprehension): $\exists X^{\tau \to 0} \forall x^{\tau} (x \in X \leftrightarrow \varphi(x))$ where φ is described by =₀, Boolean connections and σ variable quantifier $\exists y^{\sigma}, \forall y^{\sigma}$.
- (AC^{σ,τ}): $\forall A^{(\sigma,\tau)\to 0}(\forall x^{\sigma} \exists y^{\tau}((x,y) \in A) \to \exists F^{\sigma\to\tau}((x,F(x)) \in A)).$
- (\mathcal{E}_{σ}) : $\exists E^{\sigma \to 0} \forall x^{\sigma} (x \in E \leftrightarrow \forall y^{\sigma'} x(y) = 0)$ where $\sigma = \sigma' \to 0$.

Proposition

 Q^{σ} -comprehension is equivalent to $(\mathcal{E}_{\sigma \to 0})$ under RCA_0^{ω} .

Definition

- (Q^{σ}-comprehension): $\exists X^{\tau \to 0} \forall x^{\tau} (x \in X \leftrightarrow \varphi(x))$ where φ is described by =₀, Boolean connections and σ variable quantifier $\exists y^{\sigma}, \forall y^{\sigma}$.
- (AC^{σ,τ}): $\forall A^{(\sigma,\tau)\to 0}(\forall x^{\sigma} \exists y^{\tau}((x,y) \in A) \to \exists F^{\sigma\to\tau}((x,F(x)) \in A)).$

•
$$(\mathcal{E}_{\sigma})$$
 : $\exists E^{\sigma \to 0} \forall x^{\sigma} (x \in E \leftrightarrow \forall y^{\sigma'} x(y) = 0)$
where $\sigma = \sigma' \to 0$.

Proposition.

 Q^{σ} -comprehension is equivalent to $(\mathcal{E}_{\sigma \to 0})$ under RCA_0^{ω} .

3. Higher rank axioms imply lower rank axioms.

Introduction.

- What is finite order arithmetic
- F.O.A is between S.O.A. and Set Theory
- Definitions of axiom of finite order arithmetic.
 - The base axiom RCA₀^ω
 - the axiom of comprehension and choice
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension does not collapse.

Definition (the rank of sort)

The rank of sort is defined as follows inductively.

rank(0) := 0 $rank(\sigma \to \tau) := max(rank(\sigma) + 1, rank(\tau))$

Intuitively, rank is corresponded to the cardinality of the set of all elements. rank(0) = 0 means \mathcal{M}_0 is countable, rank = 1 means continuum, rank = 2 is to have cardinality of power set of continuum...

Lemma.

Assume $rank(\sigma) \leq rank(\sigma')$, then the assertion

$$\exists I^{\sigma \to \sigma'} \exists P^{\sigma' \to \sigma} \forall x^{\sigma} (P(I(x)) = x)$$

is provable in RCA_0^{ω} .

Proposition.

Let $\sigma, \sigma', \tau, \tau'$ be sorts and assume $rank(\sigma) \le rank(\sigma'), rank(\tau) \le rank(\tau')$. Then the following statements are provable in RCA_0^{ω} .

1
$$(\mathcal{E}_{\sigma'}) \to (\mathcal{E}_{\sigma}).$$

2 $AC^{\sigma',\tau'} \to AC^{\sigma,\tau}$

Lemma.

Assume $rank(\sigma) \leq rank(\sigma')$, then the assertion

$$\exists I^{\sigma \to \sigma'} \exists P^{\sigma' \to \sigma} \forall x^{\sigma} (P(I(x)) = x)$$

is provable in RCA_0^{ω} .

Proposition.

Let $\sigma, \sigma', \tau, \tau'$ be sorts and assume $rank(\sigma) \le rank(\sigma'), rank(\tau) \le rank(\tau')$. Then the following statements are provable in RCA_0^{ω} .

1
$$(\mathcal{E}_{\sigma'}) \to (\mathcal{E}_{\sigma}).$$

2 $AC^{\sigma',\tau'} \to AC^{\sigma,\tau}$

4. The hierarchy of comprehension does not collapse.

Introduction.

- What is finite order arithmetic
- F.O.A is between S.O.A. and Set Theory
- Definitions of axiom of finite order arithmetic.
 - The base axiom RCA₀^ω
 - the axiom of comprehension and choice
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension does not collapse.

Theorem.

Let $n \ge 1, 0 \le k \le n-2$ and $0 \le l \le n-1$. Then the following holds.

$$\operatorname{RCA}_{0}^{\omega} + (\mathcal{E}_{n+1}) + \operatorname{AC}^{k,l} \vdash \operatorname{Con}(\operatorname{RCA}_{0}^{\omega} + (\mathcal{E}_{n}) + \operatorname{AC}^{k,l}).$$

Thus, $\text{RCA}_0^{\omega} + (\mathcal{E}_n)$ does not imply (\mathcal{E}_{n+1}) .

The idea of proof: Fix a model \mathcal{M} of $RCA_0^{\omega} + (\mathcal{E}_{n+1}) + AC^{k,l}$. The theorem is proved by some construction in \mathcal{M} . It is consists of 3 steps.

- To construct a model consists of all "terms" described in some constants.
- To construct the interpretation of lower sorts elements.
- To construct the graph of the truth value function and to check the axioms.

First step: the construction of the term model. We construct the model in \mathcal{M} ; Let \mathcal{N} be the minimum set satisfies

- $\bigcup_{j \le n-1} \mathcal{M}_j \cup \{S, \mathcal{R}_0, E_n\} \cup \{\text{variable symbols}\} \subset \mathcal{N}$
- closed under λ -introduction and application

The element of N can be coded in \mathcal{M}_{n-1} since the existence of embeddings $\mathcal{M}_j \to \mathcal{M}_{n-1}$. $t \in N$ is described as "the construction of *t* is compatible to term construction conditions". So $t \in N$ can be defined by (\mathcal{E}_n) (= comprehension for rank n - 1 quantifier formulas).

Second step: the construction of the interpretation of lower sorts. We construct "the interpretation" \mathcal{N} in \mathcal{M} .

Intuitively, define the graph of interpretation maps $h^{\tau}: \mathcal{N}_{\tau} \to \mathcal{M}_{\tau}$

 $(\tau = 0, \cdots n - 1, 0 \rightarrow (0 \rightarrow 0)). \{h^{\tau}\}_{\tau}$ satisfy suitable conditions, for example,

- If *t* is the code for $a \in \mathcal{M}$ then h(t) = a.
- If $t = \lambda x.s$ then $h(t) = \lambda a.h(s[a'/x])$ where a' is the code for $a \in \mathcal{M}$.
- If $t = E_n(\lambda x^n . s^0)$ and $\mathcal{M} \models \exists a^n(h(s[a'/x]) \neq 0)$ then h(t) = 1.

In the real proof, h is defined by "primitive recursion";

 $h_0 = \{(t, a) | t \text{ is the code for } a\},\$

 $h_{j+1} = h_j \cup \{(\text{described in } h_j \text{ and "the suitable conditions"})\}.$

So $(t, a) \in h$ can be defined by "there exists the construction of h less than depth of t steps". Therefore h is exists by (\mathcal{E}_{n+1}) .

Second step: the construction of the interpretation of lower sorts. We construct "the interpretation" \mathcal{N} in \mathcal{M} .

Intuitively, define the graph of interpretation maps $h^{\tau}: \mathcal{N}_{\tau} \to \mathcal{M}_{\tau}$

 $(\tau = 0, \cdots n - 1, 0 \rightarrow (0 \rightarrow 0)). \{h^{\tau}\}_{\tau}$ satisfy suitable conditions, for example,

- If *t* is the code for $a \in \mathcal{M}$ then h(t) = a.
- If $t = \lambda x.s$ then $h(t) = \lambda a.h(s[a'/x])$ where a' is the code for $a \in \mathcal{M}$.
- If $t = E_n(\lambda x^n . s^0)$ and $\mathcal{M} \models \exists a^n(h(s[a'/x]) \neq 0)$ then h(t) = 1.

In the real proof, *h* is defined by "primitive recursion";

 $h_0 = \{(t, a) | t \text{ is the code for } a\},\ h_{j+1} = h_j \cup \{(\text{described in } h_j \text{ and "the suitable conditions"})\}.$

So $(t, a) \in h$ can be defined by "there exists the construction of h less than depth of t steps". Therefore h is exists by (\mathcal{E}_{n+1}) .

Third step: construction of the graph of the truth value function. We define the truth value of $N \models \varphi$.

•
$$\mathcal{N} \models t^0 = s^0 : \iff h(t) = h(s).$$

•
$$\mathcal{N} \models \neg \varphi$$
 : $\iff \mathcal{N} \not\models \varphi$.

•
$$\mathcal{N} \models (\varphi \land \psi) : \iff (\mathcal{N} \models \varphi) \text{ and } (\mathcal{N} \models \psi).$$

•
$$\mathcal{N} \models \forall x^{\sigma} \varphi(x) :\iff \forall t \in \hat{\mathcal{N}}_{\sigma}(\mathcal{N} \models \varphi(t/x)).$$

Where \hat{N}_{σ} is the set consists of all element of N such that the sort is σ and has no free variables. The existence of the truth value function is proved by (\mathcal{E}_n) .

 $\{\varphi | \mathcal{N} \models \varphi\}$ is exists in \mathcal{M} , it is complete theory and includes $\operatorname{RCA}_{0}^{\omega} + (\mathcal{E}_{n+1}) + \operatorname{AC}^{k,l}$.

Thank you for your attention!