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General framework

Adapt methods of measure theory and functional analysis

- to continuous domains in the sense of D. S. Scott

- to a non Hausdorff setting

Slogan:

asymmetric topology → asymmetric functional analysis
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Why?
Domains as introduced by D.S. Scott for semantics of pro-
gramming languages can be viewed alternatively as order
or as topological structures. This point of view has been
extended to other topologies: Stably compact spaces (A.
Jung et al.), qcb-spaces (A. Simpson et al.)

All these spaces are far from being Hausdorff: They sub-
sume order through the specialisation order (x ≤ y iff
x ∈ cl({y}) which is to be viewed as an order of increasing
information (which introduces ’asymmetry’).

A semantics for systems comprising nondeterministic and
probabilistic features requires the development of power-
domain constructions (hyperspaces, probabilistic powerdo-
mains) for these spaces and to prove that they have the
desired properties.
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Some Basic Ideas
Continuous domains ∼=
an order theoretical abstraction of a situation where all
objects can be approximated from below by their relatively
compact (finitary) parts.

Scott-continuous functions ∼=
functions preserving approximation from below.

Effectivisation through an enumeration of a countable ’ba-
sis’ which allows to approximate ’computable’ objects by a
recursively enumerable set of their relatively compact parts
belonging to the basis.

Methods of topology and analysis based mainly on com-
pactness arguments are likely to carry over to the non-
Hausdorff situation, but not methods being based on com-
pleteness arguments.
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A Case Study: Distribution functions
Fact: For a (positive bounded Borel) measure µ on R its

distribution function F : R→ R+ defined by:

F (x) = µ(]−∞, x[)

has the following properties:

(i) F is strict; infx∈R F (x) = 0
(ii) F is monotone: x ≤ y ⇒ F (x) ≤ F (y)
(iii) F is lower semicontinuous: xi ↗ x⇒ F (xi)↗ F (x)

And every function with (i), (ii), (iii) is the distribution of

a unique measure on R.

Usefulness: Riemann Stieltjes integral∫
fdµ =

∫
fdF = lim∆x→0

∑
i f(xi)

(
F (xi + ∆x)− F (xi)

)
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Choquet’s Theorem 1954
X a locally compact Hausdorff space,
O(X) the lattice of all open subsets U ⊆ X,
K(X) the space of all nonempty compact subsets K ⊆ X

with the Vietoris topology generated by

�U = {K | K ⊆ U} and ♦U = {K | K ∩ U 6= ∅}

For a measure µ on the hyperspace K(X) its distribution
function F : O(X)→ R defined by F (U) = µ(�U)
has the following properties:

(i) F is strict: F (∅) = 0
(ii) F totally monotone: .....
(iii) F lower semicontinuous: Ui ↗ U ⇒ F (Ui)↗ F (U)

And every such function is the distribution of a uniquely
determined measure on K(X).
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Problem

For which spaces L can we characterize measures by their

distribution functions?

There is a long paper by A. Revuz in the Annales de

l’Institut Fourier 1956 dealing with this problem. The

spaces that Revuz is coming up with look very much like

continuous lattices.

Claim The setting of continuous lattices is appropriate to

deal with the above problem.
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Dcpo
= Directed complete partially ordered set

= partially ordered set X in which every directed family xi
has a least upper bound x = supi xi; write xi ↗ x.

A map g : X → Y of dcpos is Scott-continuous if it is

(i) monotone: x ≤ y ⇒ f(x) ≤ f(y)
(ii) lower semicontinuous: xi ↗ x⇒ f(xi)↗ f(x)

This notion of continuity is equivalent to continuity with

respect to the Scott topology:

A subset C of a dcpo X is Scott-closed if

(i) x ≤ y, y ∈ C ⇒ x ∈ C
(ii) (∀i. xi ∈ C) and xi ↗ x ⇒ x ∈ C.
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Continuous dcpos
For elements u and v of a dcpo we say

u� v (u is way-below v or u is relatively compact in v)

if xi ↗ x ≥ v implies xi ≥ u for some i.

A dcpo is said to be continuous if for every v, there is a

directed family ui � v such that ui ↗ v.

Example: R = R ∪ {+∞} is a continuous dcpo;

r � s iff r < s;

the Scott-open sets are the intervals ]r,+∞].

Example: For a locally compact space X,

O(X), the lattice of open subsets, is a continuous dcpo,

U � V iff there is a compact set K such that U ⊆ K ⊆ V .
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Measures and Valuations

Measure: m : B → R+

defined on a Boolean algebra B (of subsets of a set X)

finitely additive: A ∩B = ∅ ⇒ m(A ∪B) = m(A) +m(B)

countably additive: An ↗ A⇒ m(An)↗ m(A)

in addition to finite additivity provided B is a σ-algebra.

Valuation: m : L → R+

defined on a lattice L (of subsets of a set X)

strict: m(∅) = 0
monotone: A ⊆ B ⇒ m(A) ≤ m(B)
modular: m(A ∪B) = m(A) +m(B)−m(A ∩B)

m is Scott-continuous if Ai ↗ A⇒ m(Ai)↗ m(A).

provided L is directed complete.
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Measures and Valuations (ctd)

For Boolean algebras, finitely additive measures and valu-

ations agree.

The notion of a valuation goes back to G. Birkhoff (1939)

for arbitrary lattices. Valuations and their relation to mea-

sures have been considered by G. Choquet (1955). As a

substitute for measures they are a standard tool in Ge-

ometric Probability Theory (Schneider, McMullen, Klain,

Rota).
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Valuations and Borel Measures

For a topological space X, let O(X) denote the lattice of

open subsets.

The restriction of a Borel measure on X to the open sets is

a valuation on O(X), but not necessarily Scott-continuous.

But: A regular Borel measure on a locally compact Haus-

dorff space restricts to a Scott-continuous valuation on the

opens.

(A Borel measure is inner regular if m(Ki) ↗ m(B) when

the Ki range over the compact subsets of the Borel set B.)
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Valuations and Borel Measures

Conversely, one may ask, whether a given Scott-continuous

valuation on O(X) can be extended to a Borel mesure.

For example, on a locally compact sober space, every Scott-

continuous valuation can be extended to a Borel measure

(Keimel-Lawson 2005).

Scott-continuous valuations on O(X) replace Borel mea-

sures as long as one wants to integrate (semi-) continuous

functions, only.

13



Choquet Domain Theoretically

L a given continuous dcpo which is a ∧-semilattice,

H(L) the lattice of Scott-closed subsets.

m : H(L)→ R+ a Scott-continuous valuation.

The distribution function F : L→ R+ defined by

F (x) = m(cl({x}))

has the following properties:

(i) F is strict: infx∈L F (x) = 0
(ii) F is totally monotone: ....
(iii) F is Scott-continuous: xi ↗ x⇒ F (xi)↗ F (x)

And every F with these properties is the distribution of a

uniquely defined Scott-continuous valuation on H(X).

14



Proof: 1. Discrete step

The closures of finite subsets E ⊆ L form a lattice B:

cl(E) ∪ cl(E′) = cl(E ∪ E′), cl(E) ∩ cl(E′) = cl(E ∧ E′)
Given F : L→ R define m : B → R by:

m
(
cl({u})

)
= F (u)

m
(
cl({u1, . . . .un})

)
=∑

i F (ui) −
∑
i<j F (ui∧uj) +

∑
i<j<k F (ui∧uj∧uk) −+ . . .

Then m is a strict modular map on B. It is monotone,

hence, a valuation if and only if F is totally monotone,

that is, iff

u ≥ u1, . . . , un =⇒ F (u) ≥ m
(
cl({u1, . . . , un})

)
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Proof of Modularity
XA denote the characteristic function of A ⊆ L,

V the real vector space generated by the Xcl({x}), x ∈ L.

These characteristic functions are linearly independent, hence

a basis of the vector space V . Claim: Xcl(E) ∈ V :

cl(E) =
⋃
u∈E

cl({u}) = X \
⋂
u∈E

(X \ cl({u})

Xcl(E) = 1−
∏
u∈E

(1−Xcl({u}))

=
∑
i

Xcl({ui}) −
∑
i<j

Xcl({ui∧uj}) +− . . .

The function x 7→ F (x) has a unique linear extension F ∗ : V →
R. Define m(cl(E)) = F ∗(Xcl(E)). Then m is a valuation

on the lattice B (because F ∗ is linear), and

m(cl(E)) = F ∗(Xcl(E)) =
∑
i F (ui)−

∑
i<j F (ui ∧ uj) +− . . . .
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Proof: 2. Continuous step

Basis of a continuous dcpo L: a subset B such that, for

every v ∈ L, the set {u ∈ B | u� v} is directed and

v = sup
u�v,u∈B

u

Basis Lemma For any monotone map m : B → R, the map

m∗ : L→ R defined by

m∗(v) = sup
u�v,u∈B

m(u)

is Scott-continuous. If m∗(u) = m(u) for all u ∈ B, then

m∗ is the unique Scott-continuous extension of m.
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Proof: Continuous step (ctd)
Lemma For a continuous dcpo L the set H(L) of all closed

subsets is a continuous lattice; the lattice /mathcalB of

closures cl(E) of finite subsets E is a basis B and

cl(E)� C iff for each u ∈ E there is a v ∈ C with u� v.

Applying the Basis Lemma we obtain a Scott-continuous

m∗ : H(L)→ R by putting

m∗(C) = sup{m(cl(E)) | E ⊆ L finite , cl(E)� C}.
A continuitity argument shows that m∗ is a valuation.

Technical Lemma If F : L → R is Scott-continuous, then

m(cl(E)) = m∗(cl(E)) for every finite subset E of L.

This finishes the proof.
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Back to Choquet

X a locally compact space,

L = O(X). Our theorem yields a bijection between

strict, totally monotone Scott-continuous F : O(X) → R
and

Scott-continuous valuations on H(O(X)) ∼= O(K(X)) as is

not difficult to see.

Our result includes locally compact spaces that need not be

Hausdorff provided one chooses the appropriate definition

of local compactness (every point has a neighborhood basis

of compact neighborhoods) and the appropriate class of

compact sets (compact saturated sets).
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Conclusion

I am sure that I have convinced you that domain theoretical

ideas are useful to deal with classical arguments in analysis

as far as they are based on compactness arguments and to

extend them to non Hausdorff situations.

We are just writing down the Choquet type theorems for

the usual powerdomains in semantics: demonic, angelic,

erratic.

The construction contains more potential to be exploited:

- The continuous domains need not be directed complete.

- Integrals of lower semicontinuous functions should be di-

rectly definable by a completion of the vector space V gen-

erated by the characteristic functions.
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