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Introduction
Degrees of co-c.e. closed sets

What are co-c.e. closed sets?
Previous works

.

Motivation

.

.

.

. ..

.

.

.

.
.

1 From viewpoint of Recursion Theory :
Co-c.e. closed sets (lightface Π0

1
classes) in 2ω or ωω are the

first level in the arithmetical hierarchy which can have no
computable points. So, study of Turing degrees of points of
co-c.e. closed sets seems to be significant as that of Turing
degrees of c.e. sets in N.

.

.

.

2 From viewpoint of Reverse Mathematics :
The existence of points of a nonempty co-c.e. closed set is an
instance of WKL . Study of degrees of co-c.e. closed sets
helps us to observe what kind of instance of WKL can occur.
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Degrees of co-c.e. closed sets

What are co-c.e. closed sets?
Previous works

.

Co-c.e. closed sets

.

.

.

. ..

.

.

.

. . 1 S : a computable metric space with a numerated basic open
balls {B i }i∈ω.

.

.
.

2 We say that a closed set C in S is co-c.e. if
C = S −⋃

i∈W B i for some c.e. set W .

.

.

.

3 In 2ω or ωω, co-c.e. closed sets coincide with lightface Π0
1

definable sets.

.

.

.

4 In 2ω or ωω,

.

.

.

1 a co-c.e. closed set is represented by infinite paths of a
computable tree;

.

.

.

2 infinite paths of a computable tree form a co-c.e. closed set.

.

.

.

5 Degrees of points of co-c.e. closed sets (Π0
1

classes) are first
studied by Kleene (1943).
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Degrees of co-c.e. closed sets

What are co-c.e. closed sets?
Previous works

.

Examples of co-c.e. closed sets

.

.

.

. ..

.

.

.

.
.

1 The set of all complete consistent extensions of a c.e. theory
is co-c.e. closed in 2ω.

.

.

.

2 The set of all diagonally noncomputable 0-1 functions.
DNC2 = {f : f (e) , Φe(e)}.

is co-c.e. closed in 2ω.

.

.

.

3 The set of all zeros of computable function on R is co-c.e.
closed in R.

.

.

.

4 The Mandelbrot set is co-c.e. closed in C.
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Degrees of co-c.e. closed sets

What are co-c.e. closed sets?
Previous works

A closed set in a computable metric space is special if it is
nonempty and contains no computable points.

.

Special closed sets

.

.

.

. ..

.

.

.

.
.

1 Krisel (1953): A special co-c.e. closed set exists in 2ω.

.

.

.

2 Lacombe (1956): A special co-c.e. closed set exists in R.

.

.

.

3 Shoenfield (1960): The set of all complete consistent
extensions of a c.e. theory forms a co-c.e. closed set in 2ω.

.

.

.

4 So the existence of special co-c.e. closed sets is also derived
from the following two theorems:

.

.

.

1 (Gödel’s incompleteness theorem) Elementary arithmetic has
no complete consistent c.e. extensions.

.

.

.

2 (Lindenbaum’s lemma) Every consistent theory has a
complete consistent extension.
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Degrees of co-c.e. closed sets

What are co-c.e. closed sets?
Previous works

Some nonempty co-c.e. closed sets contain no computable points,
but in certain space, they must contain some points of
low-complexity.

.

Definition

.

.

.

. ..

.

.

A is limit-computable if A ≤T 0′.
A is low if A ′ ≡T 0′.

(where A ′ denotes the Turing jump of A , and 0′ denotes the
halting problem.)
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What are co-c.e. closed sets?
Previous works

.

Basis Theorems

.

.

.

. ..

.

.

.

. . 1 Kreisel (1958): every nonempty co-c.e. closed set in 2ω

contains a limit-computable point.

.

.
.

2 Shoenfield (1960): every nonempty co-c.e. closed set in 2ω

contains a point <T 0′.

.

Low Basis Theorems

.

.

.

. ..

.

.

.

.

.

1 Jockusch/Soare (1972): every nonempty co-c.e. closed set in
2ω contains a low point.

.

.

.

2 Brattka/de Brecht/Pauly (2010): every nonempty co-c.e.
closed set in a computable σ-compact space contains a low
point. (For example, every nonempty co-c.e. closed set in R
has a low point.)
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Degrees of co-c.e. closed sets

What are co-c.e. closed sets?
Previous works

We now define main tools to analyze degrees of points of closed
sets.

.

Definition

.

.

.

. ..

.

.

.

.
.

1 (Medvedev, 1955) P ≤s Q if there is a computable map from
Q to P.

.

.

.

2 (Muchnik, 1963) P ≤w Q if every point of Q computes a point
of P.

.

Intuition

.

.

.

. ..

.

.

.

.

.

1 P ≤s Q (via f ): If we get a solution x to Q then we also get a
solution f (x) to P.

.

.

.

2 P ≤w Q: If Q has a solution x then P has more easier
solution y ≤T x .
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What are co-c.e. closed sets?
Previous works

We now define main tools to analyze degrees of points of closed
sets.

.

Definition

.

.

.

. ..

.

.

.

.
.

1 (Medvedev, 1955) P ≤s Q if there is a computable map from
Q to P.

.

.

.

2 (Muchnik, 1963) P ≤w Q if every point of Q computes a point
of P.

.

Intuition

.

.

.

. ..

.

.

.

.

.

1 P ≤s Q: the statement “the tree TQ has a path” is stronger
than “the tree TP has a path”, and this is witnessed by a
computable way.

.

.

.

2 P ≤w Q: the statement “the tree TQ has a path” is stronger
than “the tree TP has a path”.

Takayuki Kihara Degrees of co-c.e. closed sets with specific computability-theoretic properties



Introduction
Degrees of co-c.e. closed sets

What are co-c.e. closed sets?
Previous works

.

.

. ..

.

.

.

.
.

1 Ps = (all nonempty co-c.e. closed sets in 2ω)/ ≡s .

.

. .
2 Pw = (all nonempty co-c.e. closed sets in 2ω)/ ≡w .

We can think of these degree notions as representing the strength
of an instance of WKL .

.

.

. ..

. .

.

.

.

1 the Medvedev degrees is closely related to computable
reverse analysis (Brattka)

Brattka-Gherardi (2009) showed that the Medvedev lattice is
embedded into the Weihrauch lattice.

.

.

.

2 the Muchnik degrees is closely related to classical reverse
mathematics (Friedman-Simpson)

Mummert (2008) get some embedding theorems about the
Lindenbaum algebra L(WKL0,RCA0) of second-order
arithmetic between WKL0 and RCA0 by applying
Binns-Simpson embedding theorem for the Muchnik degrees
of co-c.e. closed sets (2003).
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Previous works
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1

∞
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What are co-c.e. closed sets?
Previous works

.

.

. ..
. .

Previous Works

First we explain our previous research for degrees of co-c.e.
closed sets.
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What are co-c.e. closed sets?
Previous works

Now, we focus on degree structures of co-c.e. closed sets in 2ω.

.

.

. ..

.

.

.

.

.

1 [σ] denotes the clopen set {f ∈ 2N : f ⊃ σ}.

.

.

.

2 Tree representation for a closed set P:
TP = {σ ∈ 2<ω : [σ] ∩ P , ∅}.

.

.

.

3 Let VP be a computable tree for which all paths and a closed
set P coincides, and Vext

P
denotes all extendible nodes of VP .

Then Vext
P

= TP .
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What are co-c.e. closed sets?
Previous works

Our previous works are based on the Medvedev degree structure
of co-c.e. closed sets in 2ω.

.

Theorem by Cole (in PhD thesis, 2009); Kihara (in Master thesis,
2009); Cole-Kihara (2010)

.

.

.

. ..

.

.

The ∀∃-theory of the Medvedev degrees of co-c.e. closed sets in
2ω is decidable in the language L = {≤, 0, 1}.

We also want to decide the structure of Muchnik degrees.
However, the Muchnik degree structure seems to be much harder
to study than the Medvedev degree structure. For example, it is
open whether or not even the following simple ∀∃-sentence is true:

Pw |= (∀a < 1)(∃b < 1) a < b .

In contrast, we have a decision procedure determining the ∀∃-truth
of Ps as described above.
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What are co-c.e. closed sets?
Previous works

.

.
.

1 One of the reason of the difficulty is that a Muchnik reduction
might be heavily discontinuous, whereas a Medvedev
reduction is necessarily continuous.

.

.

.

2 However, we notice that both of these reductions are
computably invariant, in the sense of Brattka (1999).

.

.

.

3 Indeed, for Medvedev reduction or Muchnik reduction f ,
clearly the following holds:

(∀x ∈ dom(f )) f (x) ≤T x .
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What are co-c.e. closed sets?
Previous works

On our previous work, we introduce some computably invariant
reductions between Muchnik reduction and Medvedev reduction to
study degrees of points of co-c.e. closed sets.

.

.

. ..

.

.

↑ Discontinuous; ↓ Continuous:

Muchnik reduction (Muchnik, 1963),

Learning-reduction by a team,

Learning-reduction, (based on the notion “identifications in
limit” (Gold, 1967); equivalent to ρH-computable function
(Ziegler, and others)),

Learning-reduction with bounded errors,

Learning-reduction with bounded mind-changes,

Para-computable function (Yasugi-Tsujii, 2005; L-sequentially
computable + piecewise effectively continuous),

Medvedev reduction (computable function).
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Degrees of immune closed sets
Degrees of K -trivial closed sets
Degrees of closed sets vs. degrees of its generators

.

.

. ..
.

.

New Works: Degrees of immune closed sets

In this part, we give a new result about degrees of the specific
co-c.e. closed set. We first focus on immunity for closed sets.

This part is included in the joint work with
Douglas Cenzer, Rebecca Weber, and Guohua Wu.
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Degrees of immune closed sets
Degrees of K -trivial closed sets
Degrees of closed sets vs. degrees of its generators

A closed set is immune if its tree representation has no infinite c.e.
subtree.

.

Application of immunity I

.

.

.

. ..

.

.

Demuth-Kucera (1987) used immunity of co-c.e. closed sets in ωω

to study relationship between 1-generic and 1-randomness
(Martin-Löf randomness).

Every 1-generic computes no point in any immune co-c.e.
closed sets in ωω.

The set of all fixed-point-free functions forms an immune
co-c.e. closed set in ωω.

These result implies the following:

Every 1-generic real computes no 1-random real.

Takayuki Kihara Degrees of co-c.e. closed sets with specific computability-theoretic properties



Introduction
Degrees of co-c.e. closed sets

Degrees of immune closed sets
Degrees of K -trivial closed sets
Degrees of closed sets vs. degrees of its generators

.

Application of immunity II

.

.

.

. ..

.

.

It is known that every c.e. closed sets in computable Polish space
is effectively separable (they actually coincides). So it is natural to
ask whether it also holds in any incomplete computable metric
space. By using notions of immunity, Brattka (2002) showed the
following:

In some incomplete computable metric space (e.g. Q), there
exists a c.e. closed which is not effectively separable.
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Degrees of immune closed sets
Degrees of K -trivial closed sets
Degrees of closed sets vs. degrees of its generators

Now, we apply some variant of immunity to resolve an analogy of
Post’s problem. Recall that the original Post’s problem is the
following:

.

Post’s Problem (1944)

.

.

.

. ..

.

.

Find an intermediate c.e. Turing degree!

.

Solutions

.

.

.

. ..

.

.

.

.

.

1 Friedberg (1957), Muchnik (1956) introduced priority
argument, and give an affirmative answer to Post’s problem.

.

.

.

2 (Question) Find a natural solution to Post’s problem!

.

.

.

3 Harrington and Soare (1987) provides a E-definable solution
to Post’s problem.

.

.

.

4 (Question) Find a concrete solution to Post’s problem!
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Solutions

.

.

.

. ..

.

.

.

.

.

1 Friedberg (1957), Muchnik (1956) introduced priority
argument, and give an affirmative answer to Post’s problem.

.

.

.

2 (Question) Find a natural solution to Post’s problem!

.

.

.

3 Harrington and Soare (1987) provides a E-definable solution
to Post’s problem.

.

.

.

4 (Question) Find a concrete solution to Post’s problem!
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.

Analogy of Post’s Problem

.

.

.

. ..

.

.

Find a concrete natural intermediate degree in Pw !

.

Theorem (Simpson)

.

.

.

. ..

.

.

.

.

.

1 (Simpson’s Embeddings Theorem, 2007) For every lightface
Σ0

3
set S ⊆ NN and every co-c.e. closed set P ⊆ 2ω, the

Muchnik degree of P ∪ S belongs to Pw .

.

.

.

2 The Muchnik degree of all diagonally noncomputable
functions DNC is intermediate in Pw .

.

.

.

3 The Muchnik degree of all Martin-Löf random reals MLR is
intermediate in Pw . This degree is characterized by the
greatest Muchnik degree of co-c.e. closed sets of Lebesgue
measure > 0.

We do not mention whether above examples are natural or not.
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intermediate in Pw . This degree is characterized by the
greatest Muchnik degree of co-c.e. closed sets of Lebesgue
measure > 0.

We do not mention whether above examples are natural or not.

Takayuki Kihara Degrees of co-c.e. closed sets with specific computability-theoretic properties



Introduction
Degrees of co-c.e. closed sets

Degrees of immune closed sets
Degrees of K -trivial closed sets
Degrees of closed sets vs. degrees of its generators

.

Analogy of Post’s Problem

.

.

.

. ..

.

.

Find a concrete natural intermediate degree in Pw !

.

Theorem (Simpson)

.

.

.

. ..

.

.

.

.

.

1 (Simpson’s Embeddings Theorem, 2007) For every lightface
Σ0

3
set S ⊆ NN and every co-c.e. closed set P ⊆ 2ω, the

Muchnik degree of P ∪ S belongs to Pw .

.

.

.

2 The Muchnik degree of all diagonally noncomputable
functions DNC is intermediate in Pw .

.

.

.

3 The Muchnik degree of all Martin-Löf random reals MLR is
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Empty

SOSOA

RCA

WKL

⊥
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.

Analogy of Post’s Problem

.

.

.

. ..

.

.

Find a concrete natural intermediate degree in Ps !

.

.

.

1 MLR is Fσ but not closed.

.

.

.

2 DNC is co-c.e. closed in ωω but not in 2ω.

.

.

.

3 (Terwijn, 2006) Their Muchnik degrees are contained in Pw ,
but neither of them is contained in Ps .
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.

Definition (Cenzer-Kihara-Weber-Wu)

.

.

.

. ..

.

.

A closed set P is tree-immune if there is no infinite computable tree
VP (which might have dead ends) such that VP ⊆ TP .

.

Theorem (Cenzer-Kihara-Weber-Wu)

.

.

.

. ..

.

.

The greatest Medvedev degrees without tree-immune co-c.e. set
exists, and it has an intermediate degree in Ps .

.

Lemma

.

.

.

. ..

.

.

.

.

.

1 If a contains no tree-immune set, then a is noncuppable.

.

.

.

2 If a contains a non-tree-immune set, then a contains no
tree-immune set.

.

.

.

3 Let TIM ⊆ Ps denote all degrees containing no tree-immune

co-c.e. closed sets, then max TIM exists.
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The following notion is important to conclude the first lemma.

.

.

. ..

. .

.

.

.

1 A set H ⊆ 2ω is homogeneous if H =
∏

n Fn for some
sequence {Fn}, where Fn ⊆ {0, 1} for any n.

.

.

.

2 Clearly, a homogeneous set is co-c.e. closed.

.

.

.

3 DNC2 is a homogeneous set of Medvedev degree 1.
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.

Lemma

.

.

.

. ..

.

.

If a contains no tree-immune set, then a is noncuppable,
that is, Ps |= (∀b < 1) a ∨ b < 1.

.

.

. ..

. .

Proof.

Pick a homogeneous set H =
∏

n Fn ∈ 1.

Every P ∈ a is non-tree-immune, so we have VP ⊆ TP .

Assume H ≤s P ∨ Q ∈ a ∨ b via a computable map Φ.

For given n and f ∈ Q, we computes the least σ ∈ VP for
which Φ(σ ⊕ f ; n) ↓= k for some k , and let Ψ(f ; n) = k .

Clearly, Φ(f ; n) ∈ Fn for every n.

Then H =
∏

n Fn ≤s Q via Ψ, i.e. b = 1.
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.

Lemma

.

.

.

. ..

.

.

If a contains a non-tree-immune co-c.e. closed set, then a
contains no tree-immune co-c.e. closed sets.

.

.

. ..

. .

Proof.

Assume P ,Q ∈ a, and P is non-tree-immune.

Φ : P → Q: a computable map.

VP : an infinite computable tree.

Φ(VP) ⊆ TQ is clearly a computable tree.

For f ∈ [VP] ⊆ P, we have Φ(f ) ∈ Q since Q ≤s P.

Thus Φ(VP) has a path Φ(f ), and so Φ(VP) ⊆ TQ is infinite.
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.

Lemma

.

.

.

. ..

.

.

Let TIM ⊆ Ps denote all degrees containing no tree-immune

co-c.e. closed sets, then max TIM exists.

.

.

. ..

.

.

M =
⋃
σ∈L (CPA ) σCPA is a desired one.

P: a non-tree-immune co-c.e. closed set.

By using Φ : CPA → [VP], define Φ∗ : CPA → [VP] s.t.
Φ∗(L (CPA )) ⊆ L (VP).

We need to define a computable map Ψ : M → P.

Ψ(f ) = Φ∗(f ) for f ∈ CPA .
For f < CPA ,

Some ρ ⊂ f belongs to L (CPA ).
So we compute an index e of P(⊇ Φ∗(ρ)).
Ψ(f ) = ∆e(f ), where Pe ≤s CPA via ∆e .
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.

.

. ..

. .

New Works: Degrees of K -trivial closed sets, and
incompletely generated closed sets.
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.

.

. ..

.

.

.

. . 1 Martin-Löf randomness for closed sets is introduced by
Broadhead-Cenzer-Dashti (2006).

.

.

.

2 (Fact) A real z is Martin-Löf random iff K (z � n) ≥ n − O(1),
where K denotes the prefix-free Kolmogorov complexity.

.

.

.

3 Chaitin defined a real z to be K -trivial if
K (z � n) ≤ K (0n) + O(1).

.

.

.

4 K -triviality for closed sets is introduced by
Barmpalias-Cenzer-Remmel-Weber (2009).

.

.

.

5 A closed set A is K -trivial if its tree representation is K -trivial.
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.

Theorem (Barmpalias-Cenzer-Remmel-Weber)

.

.

.

. ..

.

.

Muchnik (Medvedev) degrees of K -trivial co-c.e. closed sets are
upward dense.

.

Theorem (Barmpalias-Cenzer-Remmel-Weber)

.

.

.

. ..

.

.

Medvedev degrees of K -trivial homogeneous sets are dense.

.

Problem (Barmpalias-Cenzer-Remmel-Weber)

.

.

.

. ..

.

.

Are Medvedev degrees of K -trivial co-c.e. closed sets dense?
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.

Theorem

.

.

.

. ..

.

.

Medvedev degrees of K -trivial co-c.e. closed sets are dense.

.

.

. ..

.

.

Idea of the proof.

.

.

.

1 K -triviality is invariant under tt -preserving maps.

.

.

.

2 Every co-c.e. closed set P ⊆ 2ω is Medvedev-bounded by a
homogeneous set H =

∏
n Fn of TP ≡tt ⊕nFn .

(The proof is similar to that of RCA0 ` Σ0
1
-SEP→ WKL .)

.

.

.

3 By applying Binns’ splitting theorem to K -trivial sets, we
obtain an affirmative answer to the above problem.
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.

Upward density problem for Pw

.

.

.

. ..

.

.

Are Muchnik degrees of co-c.e. closed sets upward dense?

As seen before, it is true for K -trivial co-c.e. closed sets.
However, the class of K -trivials are very narrow.
We should consider the above problem for more wider class:

.

Definition

.

.

.

. ..

.

.

A co-c.e. closed set is incompletely generated (i.g.) if its tree
representation is <T ∅′.
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.

proposition

.

.

.

. ..

.

.

Let P be a nonempty co-c.e. closed set in 2ω;

.

. . 1 P is K -trivial⇒ P is incompletely generated.

.

.
.

2 P is incompletely generated⇒ DNC �w P.

Pw

CPA
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.

Theorem

.

.

.

. ..

.

.

There exists a Muchnik (Medvedev) degree such that

it contains an i.g. co-c.e. closed set,

it contains no K -trivial co-c.e. closed set.

.

Key lemmas (we omit the proof in this talk.)

.

.

.

. ..

. .

.

.

.

1 There exists an i.g. co-c.e. closed Medvedev degree bounding
all Medvedev degrees of K -trivial co-c.e. closed sets.

.

.

.

2 For every c.e. set A <T 0′, there exists an i.g. co-c.e. closed
set without A -computable points.

.

Theorem

.

.

.

. ..

.

.

.

.

.

1 Muchnik degrees of i.g. co-c.e. closed sets are upward dense.

.

.

.

2 Medvedev degrees of i.g. co-c.e. closed sets are dense.
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.

Conclusion

.

.

.

. ..

.

.

From viewpoint of Recursion Theory :

.

.
.

1 (An answer to Post’s problem for Ps ) We find an intermediate
co-c.e. closed Medvedev degree which can be defined by
using only a combinatorial property for closed sets.

.

.

.

2 (Partial solution to upward density problem for Pw )
I.g. co-c.e. closed Muchnik degrees are upward dense.

From viewpoints of Reverse Mathematics and Computable
Analysis :

Instances of WKL occurs densely, even if we restrict it to
K -trivial instances, or i.g. instances.

Takayuki Kihara Degrees of co-c.e. closed sets with specific computability-theoretic properties
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Thank you!
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