The role of unique choice

in the minimalist foundation

j.w.w. G. Sambin

Maria Emilia Maietti University of Padova Role of unique choice

In our minimalist foundation [MS'05], [M'09]

two distinct notions of function { functional relation operation (or type-theoretic function)

Axiom of unique choice : functional relations = operations

Why NO unique choice: Doing without Turing machines

In our minimalist foundation [MS'05], [M'09]

operation= lawlike function = computable function

 \neq

functional relation = generic function

Why NO unique choice

In our minimalist foundation [MS'05], [M'09]

operation = lawlike function = computable function

 \Rightarrow Op(A,B)=operations from A set to B set

form a SET

functional relation = generic function

 \Rightarrow Funrel(A, B) = functional relations from A set to B set

do NOT form a set

Why no unique choice

our minimalist foundation [MS'05], [M'09]

is compatible with Feferman's theory of explicit mathematics ('79) even with its CLASSICAL PREDICATIVE version.

instead Aczel's CZF+ EM = ZF

Starting issue

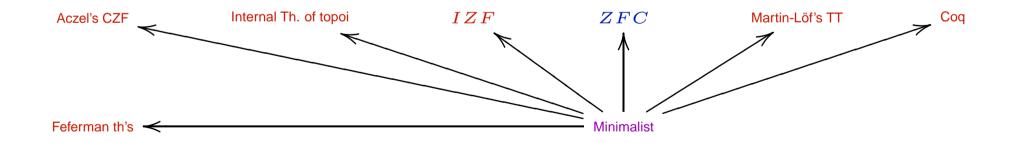
Our minimalist foundation	[MS'05], [M'09]
---------------------------	-----------------

is an answer to:

Is there a minimalist foundation

compatible with the most relevant constructive foundations

and then also with classical set theory?



minimalist foundation must be predicative!

Why not HA^{Ω} as minimalist foundation?

 HA^{Ω} = Heyting arithmetics with finite types

NOT sufficient

to represent predicative power collection of subsets

(and constructive topology)

 \Rightarrow need of two distinct notions: sets/collections (or sets/classes)

What is a constructive foundation?

Informal definition

a theory is **constructive**

= it has a realizability model where to extract programs from proofs.

What is a constructive foundation?

from [MS'05]

Formal Assumption:

a theory is **constructive**,

- called a proofs-as-programs theory -

if consistent

with Axiom of choice AC + formal Church thesis CT

Idea motivating this definition: think of HA^{Ω} realized by

Kleene's realizability interpretation

Axiom of choice

$$(AC) \quad \forall x \in A \ \exists y \in B \ R(x, y) \longrightarrow \exists f \in A \to B \ \forall x \in A \ R(x, f(x))$$

from any total relation we can extract a function

Formal Church thesis

$$(CT) \qquad \begin{array}{l} \forall f \in \mathsf{Nat} \to \mathsf{Nat} \quad \exists e \in \mathsf{Nat} \\ (\forall x \in \mathsf{Nat} \ \exists y \in \mathsf{Nat} \ T(e, x, y) \& U(y) =_{\mathsf{Nat}} f(x)) \end{array}$$

every function from Nat to Nat is internally recursive

Extraction of programs from proofs

Axiom of choice AC + formal Church thesis CT

means

from any specification as total relation we can extract a function that is recursive if from Nat to Nat

Too narrow Definition of constructive theory?

Our Definition of **proofs-as-programs** theory = theory **consistent** with Axiom of choice AC+ formal Church thesis CT

is very technical but no contraexample found yet.....

Problem: Is there a relevant commonly conceived proofs-as-programs theory

NOT CONSISTENT with CT + AC?

Usefulness of our proofs-as-programs definition

Our notion of **proofs-as-programs** theory is very useful to discriminate theories:

• constructive versus classical theories

Peano Arithmetics + $CT + AC \vdash 0 = 1$

CT + AC! sufficies for this

 $CT + AC \Rightarrow$ Extended Church thesis

• intensional versus extensional theories

Heyting arithmetics with finite types + CT + AC + extfun $\vdash \perp$

extfun
$$\frac{f(x) =_B g(x) \ true \ [x \in A]}{\lambda x. f(x) =_{A \to B} \lambda x. g(x) \ true}$$
extensionality of functions

Notion of TWO-LEVEL constructive foundation

from [MS'05]

A foundation for constructive mathematics is a two-level theory with

- an **intensional** level that is a **PROOFS-AS-PROGRAMS** theory to be meant as a programming language
- an extensional level ABSTRACTION of the intensional one via Sambin's forget-restore principle including quotients extensionality of operations/functions proof-uniqueness of propositions

current work j.w.w. G. Rosolini:

characterize the link between the levels (categorically).

What language to choose for the foundation?

as an AXIOMATIC SET THEORY: gives global axioms of set existence

(mainly extensional with implicit existence) usefulness: formalization of math proofs as in common practice suitable to descrive extensional level- future work

as a CATEGORY: gives the algebraic structure of models for the intended theory

(mainly extensional via universal properties) usefulness: to single out the same structure in different contexts /unification of structures suitable to describe the link between levels - future work

as a TYPE THEORY: gives computational contents of set constructions

(mainly intensional with explicit existence of sets). *usefulness*: extraction of programs from proofs suitable to describe the intensional level

Our two level minimalist constructive foundation

from [M'09]

- its intensional level= intensional type theory à la Martin-Löf
 - = many sorted logic with propositions + proof-terms

with 4 sorts:

propositions (seen as collections of their proofs)

collections, sets

small propositions (seen as sets of their proofs)

it is a **PREDICATIVE VERSION** of Coquand's Calculus of Constructions (Coq).

- its extensional level= emTT extensional type theory à la Martin-Löf
 - = many sorted logic
 - + proof uniqueness of propositions
 - + effective quotient sets
 - + *extensionality* of typed functions

Bishop's pre-sets = sets in our intensional level

Bishop's sets = setoids in our intensional level= sets in our extensional level

What links the two levels

in [M'09]:

to interpret the extensional level over the intensional one

we built a quotient model over the intensional level

based on Bishop's total setoids...

BENEFIT of two levels: we do NOT develop math proofs WITHIN the setoid model directly !!!

Benefits of our foundation: No unique choice

elimination rule of propositions ONLY toward propositions.

 \Rightarrow NO axiom of unique choice

 \Rightarrow NO axiom of choice

BOTH at our intensional level and extensional level

 \Rightarrow

two distinct notions of functions as Feferman's distinction function/operation

 $\begin{cases} \text{functional relation} & \forall x \in A \exists ! y \in B \ R(x, y) \\ \text{type-theoretic function (=operation)} & f \in A \to B \\ & \text{given by terms } f(x) \in B \ [x \in A] \end{cases}$

Axiom of unique choice

$(\mathsf{AC!}) \quad \forall x \in A \exists ! y \in B \ R(x, y) \longrightarrow \exists f \in A \to B \ \forall x \in A \ R(x, f(x))$

turns a functional relation into a type-theoretic function/operation.

 \Rightarrow identifies the two distinct notions...

Only operations form a set in our foundation

at both levels of our foundation

$\mathsf{Op}(A,B)\,\equiv\,A\to B$

operations from A set to B set form a SET

 $\mathsf{Funrel}(A, B) \equiv \{ R \in \mathcal{P}(A \times B) \mid R \text{ functional relation } \}$

collection of functional relations from A set to B set is NOT generally a set

 \Rightarrow compatibility with Feferman's classical predicative theories.

Different axiom of choices

different axiom of choices:

 AC_{funrel} = from a total relation extract a functional relation

 AC_{λ} = from a total relation extract a type-theoretic function (or operation)

$$AC_{\lambda} \Rightarrow AC_{funrel}$$

 $AC!=AC!_{\lambda}$ = from a functional relation extract a type-theoretic function (or operation)

AC!*funrel*=from a functional relation extract a functional relation tautology!!

WARNING on the two levels

different unique choices:

AC! at our intensional level

 \neq

AC! at our extensional level

different axioms of choice:

 AC_{λ} at our intensional level

 \neq

 AC_{λ} at our extensional level

WARNING on the two levels

 AC_{λ} at our intensional level \Rightarrow AC! at our extensional level

WARNING on the two levels

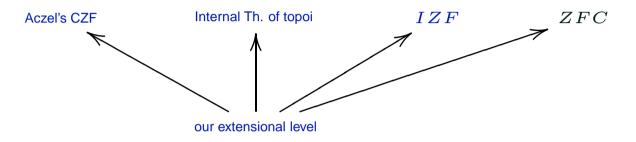
 AC_{λ} at our extensional level \Rightarrow excluded middle is NOT CONSTRUCTIVE

 AC_{λ} at our intensional level \Leftrightarrow Aczel's presentation axiom in our quotient model over the intensional level is CONSTRUCTIVE

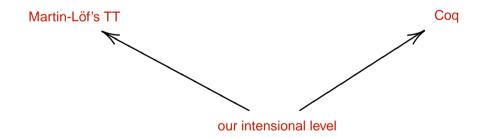
Problem: what is the type-theoretic formulation of Aczel's presentation axiom in our extensional theory??

WARNING on compatibility

• compatibility with extensional theories is with our extensional level



• compatibility with intensional theories is with our intensional level



 \Rightarrow

do NOT compare directly Martin-Löf's TT with Internal Th. of topoi BUT compare the internal theory of its quotient model with it

Benefits of our minimalist foundation

same benefits as Heyting arithmetics ${\rm HA}^\Omega$

our extensional foundation consistent with

AC! +CT Funrel(Nat,Nat)= Op(Nat,Nat)	CT_{λ} + NO AC! Op(Nat,Nat)= recursive functions	NO $CT_{\lambda} + AC!$
all functional relations are recursive	NOT all functional relations are recursive	NOT all operations are recursive
quotient model on extended Kleene's realizability	quotient model on that in [M'10]	usual interpretation in ZFC

Benefits of our minimalist foundation

same benefits as Heyting arithmetics $HA(\Omega)$

our intensional foundation consistent with

AC _入 +CT Funrel(Nat,Nat)= Op(Nat,Nat)	CT_{λ} + NO AC! Op(Nat,Nat)= recursive functions	NO CT_{λ} + AC!
all functional relations are recursive	NOT all functional relations are recursive	NOT all operations are recursive
extension of Kleene's realizability ⇒ ours is a proofs-as-programs theory	model in [M'10]	<i>usual interpretation</i> in ZFC

Benefits of our minimalist foundation

same benefits as Heyting arithmetics HA^Ω

our extensional foundation consistent with

AC! +CT	CT_{λ} + NO AC!	NO CT_{λ} + AC!
NO Bar Induction	+ Bar Induction	+ Bar Induction
Funrel(Nat,Nat)= Op(Nat,Nat)	Op(Nat,Nat)= recursive functions	
all functional relations are recursive	NOT all functional relations are recursive	NOT all operations are recursive
quotient model on	quotient model on	<i>usual interpretation</i>
extended Kleene's realizability	that in [M'10]	in ZFC

Traditional Bar Induction

traditional Bar Induction:

if $Q \subset \text{List(Nat)}$, Q inductive V monotone bar of the empty list nil $V \subset Q$ $\Rightarrow \text{nil} \varepsilon Q$

V is a bar of nil

if every choice sequence goes through an element in ${m V}$

i.e.
$$\forall \alpha$$
 choice sequence $\exists v \in V \ v = \lfloor \alpha(0), \ldots, \alpha(n) \rfloor$

 \Rightarrow DEPENDS on the notion of choice sequence

Bar Induction as spatiality

from [Fourman-Grayson'82, Sambin'87, Gambino-Schuster'07, Sambin'08]

traditional Bar Induction = spatiality of pointfree Baire formal topology called BI(Nat)

traditional Fan theorem Fan = spatiality of pointfree Cantor formal topology called $BI(\{0, 1\})$

if choice sequences = functional relations from Nat to Nat

because

notion of formal point = functional relation

Kleene's result in the literature

from [Troelstra-van Dalen'88]

$$\mathsf{HA}^{\omega} + \mathsf{Fan}_{\lambda} + \mathsf{CT}_{\lambda} \vdash \bot$$

 Fan_{λ} = Fan theorem with choice sequences as type-theoretic functions

but since

Fan + AC!
$$\Rightarrow$$
 Fan $_{\lambda}$

Kleene's result \Rightarrow our extensional foundation + Fan + AC! + CT_{λ} $\vdash \bot$

Kleene's result in the literature

Kleene's result in an *axiomatic set theory*:

 $CZF + Fan + CT_{funrel} \vdash \bot$

with choice sequences= functional relations $CT_{funrel} = CT$ for functional relations

 \Rightarrow also becomes

our extensional foundation + Fan + AC! + $CT_{\lambda} \vdash \bot$

since

$$AC! + CT_{\lambda} \Rightarrow CT_{funrel}$$

Bar Induction on generic tree

for any ${\rm set}\,A$

BI(A) = Bar Induction on the tree List(A)

choice sequences= functional relations from Nat to A

= spatiality of the formal topology on the tree List(A)

Consistency with Bar Induction + CT_{λ}

supposing ZF+ DC (axiom of dependent choice) consistent

Consistency with Bar Induction + CT_{λ}

it is enough to prove

our INTENSIONAL level is CONSISTENT with $BI(A)^i + CT^i_{\lambda}$

BI(A)^{*i*} = translation of BI(A) at the intensional level CT^{i}_{λ} = translation of CT_{λ} at the intensional level

via a realizability model in ZF+DC :

- interpret our sets as subsets of natural numbers via Kleene realizability
- interpret our propositions as their boolean value
- interpret our proper collections as ZF-sets

No unique choice in our foundation

our extensional level + Fan + CT_{λ} + AC! $\vdash \bot$

CONSISTENCY of our extensional level + Fan + CT_{λ}

\Downarrow

no AC! in our extensional level

Inductively generated Baire formal topology

basic opens indexed by List(Nat)

collection of *formal opens* = fix-points of (stable) closure operator Baire

[Fourman-Grayson'82, Sambin'87]

for subset V of List(Nat)

 $\mathcal{B}aire(V)$ generated from axioms as in [CSSV'03]

$$\frac{l\varepsilon V}{l\varepsilon \mathcal{B}aire(V)} \qquad \frac{s = \lfloor l, t \rfloor \quad l\varepsilon \mathcal{B}aire(V)}{s\varepsilon \mathcal{B}aire(V)}$$
$$\frac{\forall n \in Nat \quad \lfloor l, n \rfloor \varepsilon \mathcal{B}aire(V)}{l\varepsilon \mathcal{B}aire(V)}$$

Three point-free topologies on the tree List(Nat)

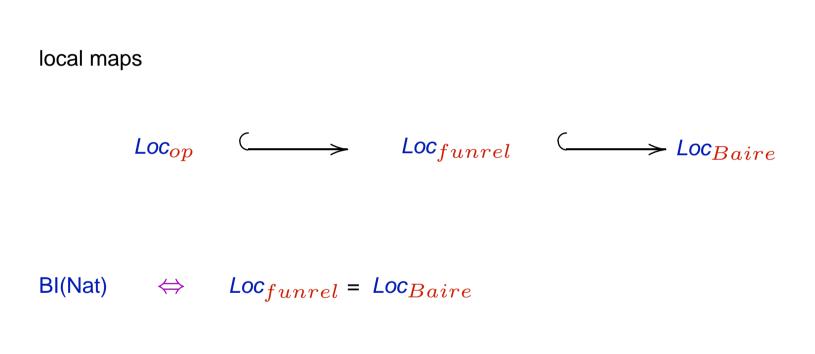
- frame Loc_{Baire} of fixed points of inductively generated formal topology Baire (only point-free)
- 2. frame Loc_{funrel} of the pointwise topology on functional relations from Nat to Nat

$$\mathcal{O}_{l} \equiv \{ R \in \mathsf{Funrel}(\mathsf{Nat},\mathsf{Nat}) \mid R \text{ goes through } l \}$$

 frame Loc_{op} of the pointwise topology on operations from Nat to Nat

$$\mathcal{O}_{l} \equiv \{ f \in \mathsf{Op}(\mathsf{Nat}, \mathsf{Nat}) \mid f \text{ goes through } l \}$$

Topological Benefits of no unique choice



AC! \Rightarrow Loc_{op}=Loc_{funrel}

Three formal closed operators on Baire point-free topology

notion of formal closed in [Sambin'03, Sambin'10]

 J_{Baire} maximum associated interior operator to point-free topology Loc_{Baire} (only point-free)

spread on the tree List(Nat) = inhabited formal closed of J_{Baire}

2. J_{funrel} associated to Loc_{funrel}

 $l \varepsilon J_{funrel}$ (V) $\equiv \exists R$ funrel & R goes through list I & "finite pieces of R graph" \subset V 3. J_{op} associated to *Loc_{op}*

$$l \in J_{op}(V) \equiv \exists f \text{ operation } \& f \text{ goes through list I}$$

& "finite pieces of f graph" $\subset V$

Topological Benefits of no unique choice

$$J_{op} \leq J_{funrel} \leq J_{Baire}$$

AC! \Leftrightarrow J_{op}=J_{funrel}

Dependent choice for functional relation \Leftrightarrow J_{funrel} =J_{Baire}

on lists

on lists

any spread is inhabited by a functional relation \Leftrightarrow

Dependent choice for operations \Leftrightarrow J_{op}= J_{Baire}

any spread is inhabited by an operation

 \Leftrightarrow

Coq= Coquand's Calculus of Constructions

- = impredicative version of our intensional level
 - Is Coq consistent with $CT_{\lambda} + AC$??? (\Rightarrow it is a proof-as-programs theory)
 - Is Coq consistent with CT_{λ} + Bar Induction ??? (with choice sequences = functional relations)

Is there a constructive IMPREDICATIVE theory satisfying the above properties?

Relevance of Bar Induction

 $\mathrm{BI}(\mathcal{T})$ = Bar theorem for point-free topology \mathcal{T}

-what is the relevance of Bar Induction (not reduced to Fan theorem) in constructive mathematics?

- classically: all countably generated point-free topologies are spatial from [Fourman-Grayson'82, Valentini'07] i.e. $\operatorname{BI}(\mathcal{T})$ holds for all formal topologies \mathcal{T} generated from a countable set of axioms

for what \mathcal{T} is extended Bar Induction $BI(\mathcal{T})$ constructively acceptable? (beside \mathcal{T} =Cantor, Baire, tree point-free topologies)

References

[CSSV'03] T. Coquand, G. Sambin, J. Smith, and S. Valentini "Inductively generated formal topologies." in Apal 2003

[Feferman'79] "Constructive theories of functions and classes. in Stud. Logic Foundations Math., 1979

[Fourman-Grayson'82] "Formal spaces' in Stud. Logic Found. Math., vol. 110 1982

[Gambino-Schuster'07] "Spatiality for formal topologies." in Math. Structures Comput. Sci. 2007

[M'09] M.E. M. "A minimalist two-level foundation for constructive mathematic", Apal, 2009

[M'10] M.E. M. "Consistency of the minimalist foundation with Church thesis and Bar Induction", submitted, 2010

[MS'05] M.E. M. & G. Sambin "Toward a minimalist foundation for constructive mathematics" in "From sets to types..", L. Crosilla and P. Schuster eds. OUP, 2005

[Sambin'87] "Intuitionistic formal spaces" in Mathematical Logic and its applications, 1987

[Sambin'03] "Some points in formal topology." in TCS, 2003

[Sambin'08] "Two applications of dynamic constructivism: Brouwer's continuity principle and choice sequences in formal topology" in "One Hundred Years of Intuitionism...", M. van Atten and al. eds., 2008

[Sambin'10] "The Basic Picture. Structures for constructive topology." (including two papers with Per Martin-Loef and with Venanzio Capretta), OUP, 2010

[Troelstra-van Dalen'88] "Constructivism in mathematics, an introduction", North-Holland, 1988

[Valentini'07] "Constructive characterization of Bar subsets." in Apal, 2007