Proof-theoretic semantics and constructivity

Takuro Onishi
takuro.onishi@gmail.com
(JSPS, Kyoto University)

Workshop on Constructive Aspects of
Logic and Mathematics
10 March 2010, Kanazawa

Aim of the talk

- An examination of Dummett's idea that some inference rules confer the meanings of logical constants that they govern.
- Justification of logical laws or proof-theoretic semantics.
- An alternative picture of meaningconferring different from his own.

Dummett's picture

Dummett's claim

in The Logical Basis of Metaphysics (199I)

- Intuitionistic logic (IL) is based on some selfjustifying inference rules. But classical logic (CL) is not.
- A class of basic inference rules of IL confer the meanings of logical constants, hence they are self-justifying.
\uparrow Other basic rules are justified in terms of such rules.

I-rules and E-rules

$$
\begin{gathered}
\frac{A B}{A \wedge B}(\wedge I) \quad \frac{A_{0} \wedge A_{1}}{A_{i}}(\wedge E) \\
\frac{A_{i}}{A_{0} \vee A_{1}}(\vee I) \quad \frac{A \vee B \quad C}{C}(\vee E) \\
\\
\\
\\
\\
\\
\end{gathered}
$$

Meaning-conferring rules

- First, either I-rules or E-rules are taken to be a "base", that is, meaning-conferring.
- Meaning-rules are regarded as mere stipulations. Hence they are valid by stipulation, that is, self-justifying.
- Let us take I-rules as a base here.

Fundamental Assumption

- Non-meaning rules are justified by the Fundamental Assumption (FA).
- FA: If we have a valid argument for a complex statement, we can construct a valid argument for it which finishes with an application of one of the introduction rules governing its principal operator.

Fundamental Assumption

$$
\begin{array}{cc}
\mathcal{D} \\
A \wedge B
\end{array} \Rightarrow \begin{array}{cc}
\mathcal{D}_{0} & \mathcal{D}_{1} \\
\frac{A}{}+B \\
A \wedge B
\end{array}
$$

Fundamental Assumption

$\vdash A \wedge B \quad \Longleftrightarrow \quad \vdash A$ and $+B$
$\vdash A \vee B$

$\vdash A$ or $\vdash B$

- FA: an assumption that l-rule is invertible.
- The range of direct grounds of the complex statement is fixed.

I-rules and FA jointly embody definitional biconditionals.

Harmony as justification

- Non-meaning rules (E-rules) are justified if harmony obtains.
- Harmony: Any consequence that E-rules entitle us to draw from the complex statement is already a consequence of its direct grounds.

Harmony

reduction \mathcal{D}^{\prime}
A_{i}
\mathcal{D}_{i}
C

the conclusion of E-rule can

 be obtained directly.
FA as a precondition

- Finally, check whether FA holds in the entire system.
\checkmark Justification of E-rules depends on FA.
\checkmark If FA fails in the system as a whole, justification lose its significance.

CL vs IL

$\vdash A \vee B \quad \Longrightarrow \quad \vdash A$ or $\vdash B$

- FA for disjunction holds in the full system of IL (disjunction property), but fails in CL.
- IL: self-justifying l-rules + justified E-rules.
- CL: since FA fails, justification doesn't work.

FA as a global feature

- Failure of FA in CL is caused in part by non-conservative formulation of negation.
- FA as a precondition for justification is a global feature of entire systems.

Stability

Harmony

- Harmony: Any consequence that E-rules entitle us to draw from the complex statement is already a consequence of its direct grounds.

$C n(A) \subset C n(D G[A])$

Stability

$C n(D G[A]) \subset C n(A)$

- Stability: E-rules enable us to draw all consequences that the direct grounds of the statement entitle us to draw.

Stability

$$
\frac{}{} \begin{array}{cc}
& {[A]} \\
& {[B]} \\
C & C \\
C & (\vee E)
\end{array}
$$

- We can see from the form of the rule that stability obtains.
- How about other constants?

Stability

$$
\frac{{ }^{\prime} \wedge^{[A, B]}}{C \quad C}\left(\wedge E_{G}\right)
$$

- General elimination rules (cf. SchroederHeister 1984; Negri 2002, von Plato 2003)
- Equivalent to standard E-rules.
- Stability can be seen from the form of the rules.

Harmony and stability

$\operatorname{Cn}(A)=\operatorname{Cn}(D G[A])$

- Harmony: the inverses of I-rules (FA) justify Erules (through operations on deductions). The former is not weaker than the latter.
- Stability: E-rules are not weaker than the inverses of I-rules.
- H\&S:A symmetry between I-\&E-rules.

Read-off rules

$\frac{A_{0} \wedge A_{1}}{A_{i}}(\wedge E) \Rightarrow \begin{aligned} & \vdash A \wedge B \Rightarrow \\ & \vdash A \text { and } \vdash B\end{aligned}$

- Consider whether E-rules justify the inverses of I-rules.
- Such pairs of I-\&E-rules are equivalent to the definitional biconditionals.
- Let us call such pairs read-off rules.

Read-off rules

- Disjunction: E-rule cannot be taken to justify the inverse of I-rules.
- The rules for disjunction are harmonious and stable, but not read-off rules.

Read-off rules

- "Read-off": a stronger symmetry than H\&S.

D Dummett doesn't mention it.
\Rightarrow An alternative picture of meaningconferring emerges if we consider systems consisting solely of read-off rules.

- The picture is essentially what is presented in Sambin, Battilotti and Faggian (2000).

In merely H\&S systems

I-rules + E-rules \neq definitional biconditionals
I-rules + FA = definitional biconditionals

- One-half of definitional biconditionals are realized only as a global feature (FA).
- E-rules are only justified. The symmetry between the rules doesn't play any role in meaning-conferring.

In "read-off" systems

I-rules + E-rules $=$ definitional biconditionals

- Definitional biconditionals are locally realized.
- The symmetry between the rules has a significance in meaning-conferring.
- FA as a global feature must hold to warrant that the "definitions" realized by rules are correct.

Why harmony and stability?

E-rules as a base

$\mathrm{H} \& \mathrm{~S}: \operatorname{Cn}(A \vee B)=C n(D G[A \vee B])$

$$
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \vee B \vdash C}
$$

- If we take E-rules (L-rules) as the "base", then the rules can be seen as read-off rules.

E-rules as a base

definitional $\quad \Gamma, A \vee B \vdash C$ biconditional: $\quad \Gamma, A \vdash C$ and $\Gamma, B \vdash C$

$$
\frac{\Gamma \vdash A_{i} \frac{A_{0} \vee A_{1} \vdash A_{0} \vee A_{1}}{A_{i} \vdash A_{0} \vee A_{1}}}{\Gamma \vdash A_{0} \vee A_{1}} \underbrace{\begin{array}{c}
\text { The inverse } \\
\text { of L-rule }
\end{array}}
$$

The inverse of L-rule justifies R-rule.

E-rules as a base

Conversely,

$$
(\vee R) \frac{A_{i} \vdash A_{i}}{\frac{A_{i} \vdash A_{0} \vee A_{1}}{\Gamma}, A_{0} \vee A_{1} \vdash C}\left[\Gamma, A_{i} \vdash C\right.
$$

R-rules justifies the inverse of L-rule.

Therefore L-\&R-rules are equivalent to the definitional biconditional.

E-rules as a base

- This feature does not differentiate IL from CL, so has no use for Dummett's purpose.
- It must be always possible to take I-rules as the base.
- The "reading-off" picture is not suitable for him here.

Multiple-conclusion

- How to obtain a pair of read-off rules for disjunction with l-rules as the base?
- A natural way is to allow for multipleconclusion (cf. Read 2000).

$$
\text { (VI) } \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta}
$$

(VE) $\frac{\Gamma \vdash A \vee B, \Delta \quad A, \Sigma \vdash \Pi B, \Sigma \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}$
$\underset{\text { biconditional: }}{\text { Definitonal }} \Gamma \vdash A \vee B, \Delta \Longleftrightarrow \Gamma \vdash A, B, \Delta$

$\Gamma \vdash A, B, \Delta$
$\overline{\Gamma \vdash A \vee B, \Delta} A, \Sigma \vdash \Pi B, \Sigma \vdash \Pi$ $\Gamma, \Sigma \vdash \Delta, \Pi$
reduction

The inverse of I-rule justifies E-rule

$$
\frac{\Gamma \vdash A, B, \Delta \quad A, \Sigma \vdash \Pi}{\frac{\Gamma, \Sigma \vdash B, \Delta, \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}} \text { B, } \Sigma+\Pi
$$

$\underset{\text { biconditional: }}{\text { Defintional }} \Gamma \vdash A \vee B, \Delta \Longleftrightarrow \Gamma \vdash A, B, \Delta$

$$
\begin{gathered}
\Gamma \vdash A \vee B, \Delta \quad A, \Sigma+\Pi B, \Sigma+\Pi \\
\Gamma, \Sigma+\Delta, \Pi \\
母 \quad \Sigma:=\emptyset, \Pi:=\{A, B\} \\
\frac{\Gamma+A \vee B, \Delta A+A, B B+A, B}{\Gamma \vdash A, B, \Delta}
\end{gathered}
$$

E-rule justifies the inverse of l-rule.
Thus, l-\&E-rules are equivalent to the definitional biconditional.

Multiple-conclusion

- Multiple-conclusion rules make possible a "reading-off" formulation of disjunction.
- But they open the way for a formulation of classical logic based on self-justifying (meaning-conferring) rules.
- The "reading-off" picture is not suitable for Dummett's purpose here, too.

Conclusion

Conclusion

- Two different symmetry between the rules: H\&S and reading-off.
- Two different pictures of meaningconferring by inference rules.
- The "reading-off" picture is not suitable for Dummett's intent.
- But it is surely a viable alternative.

References

- Dummett, M. (I99I) The Logical Basis of Metaphysics, Harvard U.P.
- Negri, S. (2002), 'Varieties of linear calculi', Journal of Philosophical Logic, 3I, 569-590.
- Read, S. (2000) 'Harmony and autonomy in classical logic', Journal of Philosophical Logic, 29, I23-I 54.
- Sambin,G., Battilotti,G. and Faggian,C. (2000) 'Basic logic: reflection, symmetry, visibility,' Journal of Symbolic Logic, 970-IOI3.
- Schroeder-Heister, P. (I984) 'A natural extension of natural deduction', Journal of Symbolic Logic, 49, I284-I300.
- von Plato, J. (2003) 'Rereading Gentzen’, Synthese, I73, I95-209.

