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Families of sets and setoids

Families of sets

In set theories such as, ZF or CZF, a family of sets can always be
represented as a function β : B // A. The fibers of β (inverses of
singletons) represent the sets of the family and A is the index set:

Bx = β−1(x) = {b ∈ B : β(b) = x} (x ∈ A)

This representation is possible by the replacement scheme, since any family
given by a set-theoretic formula (F is the set associated with the index x)

(∀x ∈ A)(∃!F )ϕ(x ,F )

can be turned into a family represented by a function.
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Families of sets and setoids

Setoids

In type theories is the notion of set is usually understood in the sense of
Bishop as a type together with an equivalence relation, also called a setoid

A = (|A|,=A)

where |A| is a type and =A is an equivalence relation on |A|.

An extensional function f : A // B between setoids is a function |A|
// |B| which respects the equivalence relations.

Two such functions f and g are extensionally equal (f =ext g) if
(∀x : |A|)(f (x) =B g(x)).
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Families of sets and setoids

Families of setoids

In dependent type theories, such as Martin-Löf type theory, the notion of a
family of types is fundamental.

B(x) type (x : A).

But ...

What do we mean by a family of setoids indexed by a setoid?

A is an index setoid

Bx setoid for each x : |A|
Bx and Bx ′ should be ”equal” if x =A x ′
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family of types is fundamental.

B(x) type (x : A).

But ...

What do we mean by a family of setoids indexed by a setoid?

A is an index setoid

Bx setoid for each x : |A|
Bx and Bx ′ should be ”equal” if x =A x ′

4 / 32



Families of sets and setoids

”Equality” of Bx and B ′x is stated by saying:

φp : Bx
// Bx ′ bijection for each proof-object p : x =A x ′

The bijections should be compatible with the proof objects.

There are then two principal choices:

(I) proof-irrelevant family: φp is independent of p

(R) proof-relevant family: φp may depend on p
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Families of sets and setoids

Proof-irrelevant family

(I) For a proof-irrelevant family we require

(1) φp =ext idBx whenever p : x =A x ,

(2) φq ◦ φp =ext φr , whenever p : x =A y , q : y =A z , r : x =A z . Here
=ext is extensional equality of functions between setoids.

(Compare to definition in Problem 3.2 of Bishop–Bridges 1985.)

From (1) and (2) follows independence of φp on p

φp =ext φr for p, r : x =A y
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Families of sets and setoids

Proof-relevant family

(R) Of a proof relevant family we require only

(a) φref(x) =ext idBx

(b) φtrans(q,p) =ext φq ◦ φp for p : x =A y and q : y =A z

(c) φsym(p) ◦ φp =ext idBx for p : x =A y ,

(d) φp ◦ φsym(p) =ext idBy for p : x =A y .

Here ref(x) : x =A x , a proof object for reflexivity. Moreover the proof
objects associated with symmetry and transitivity are sym(p) : y =A x , for
p : x =A y , and trans(q, p) : x =A z for p : x =A y and q : y =A z .

Note: For p : x =A x , the function φp may be a non-trivial automorphism
on Bx .
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Families of sets and setoids

Consider a function f : B → A between setoids. Define the fiber of f over
x by

f −1(x) =def ((Σz : B)(f (z) =A x),∼),

where (z , p) ∼ (z ′, p′) holds if and only if z =B z ′.

For q : x =A x ′ let f −1(q) : f −1(x)→ f −1(x ′) be given by

f −1(q)(z , p) = (z , trans(q, p)).

This clearly defines a proof-irrelevant family of setoids.
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Families of sets and setoids

Example: category of setoids with equality on objects

Let (B, φ) be a family of setoids indexed by the setoid A.

The collection of objects of the category B is the setoid A.

An arrow of the category is a triple (a, f , b) where a, b : |A| and
f : Ba

// Bb is an extensional function.

Two arrows (a, f , b) and (a′, f ′, b′) are equal if there are p : a =A a′

and q : b =A b′ so that

Ba′ Bb′f ′
//

Ba

Ba′

φp

��

Ba Bb
f // Bb

Bb′

φq

��

commutes (extensionally).
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Families of sets and setoids

Arrows (a, f , b) and (c , g , d) are composable if there is t : b =A c . Their
composition is (a, g ◦ φt ◦ f , d). Now the problem arises when proving that
composition respects equality of arrows

Ba′ Bb′f ′
//

Ba

Ba′

φp

��

Ba Bb
f // Bb

Bb′

φq

��
Bc ′φt′

//

Bc
φt // Bc

Bc ′

φr

��
Bd ′g ′

//

Bd
g // Bd

Bd ′

φs

��

If we have a proof-irrelevant family the center square commutes, proving
that composition respects equality of arrows. This is impossible in the
proof-relevant version, unless some higher-order structure is required of
categories.
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Identity types and groupoids

Identity types

For any type A and any a, b : A the type I(A, a, b)of proofs that a and b
are identical may be formed.

The introduction rule is
a : A

r(a) : I(A, a, a)
.

The elimination rule for I with respect to the family
C (x , y , z) type (x , y : A, z : I(A, x , y)) is

a, b : A c : I(A, a, b) d(x) : C (x , x , r(x)) (x : A)

JC ,a,b(c , d) : C (a, b, c)
.

The associated computation rule is JC ,a,a(r(a), d) = d(a).
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Identity types and groupoids

Identity types gives projective setoids

For any type A , I(A, ·, ·) is the finest equivalence relation on A. Indeed, if
≈ is an equivalence on relation on A then by I-elimination:

I(A, x , y) =⇒ x ≈ y .

For any type A, define A∗ = (A, I(A, ·, ·)). The setoid A∗ is projective, that
is, if g : B // A∗ is any surjective function between setoids then there is
a function f : A∗ // B such that g ◦ f = idA∗ .

Or in other words, choice functions exists on A∗.
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Identity types and groupoids

Reindexing maps

A typical use of I-elimination is to derive a rule for substituting equals for
equals in a proposition,or equivalently under the propositions-as-types
principle, to derive a reindexing operation for families.

For B(x) type (x : A), define C (x , y , z) = B(x)→ B(y). Then
d(x) = idB(x) = λp : B(x).p : C (x , x , r(x)). Hence for c : I(A, a, b)

JC ,a,b(c , (x)idB(x)) : C (a, b, c) = B(a)→ B(b). (1)

Define
RB,a,b(c , q) = JC ,a,b(c , (x)idB(x))(q) : B(b)

for q : B(a). Clearly RB,a,a(r(a), q) = q.
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Identity types and groupoids

Using the I-elimination rule one constructs operations for proofs of
symmetry and transitivity

ida = r(a) : I(A, a, a)

c−1 : I(A, b, a) (a, b : A, c : I(A, a, b)),

where c−1 = JC ,a,b(c , r) and C (x , y , z) = I(A, y , x),

w ◦ z : I(A, a, u) (a, b, u : A, z : I(A, a, b),w : I(A, b, u)),

where w ◦ z = JC ,a,b(z , d)(w), C (x , y , z ′) = I(A, y , u)→ I(A, x , u) and
d(x) = λs : I(A, x , u).s.
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Identity types and groupoids

Groupoid structure on types

These operations satisfy the groupoid laws with r(x) as identity in the
sense that the following equalities hold:

(G1) II(A,x ,y)(r(y) ◦ z , z),

(G2) II(A,x ,y)(z ◦ r(x), z),

(G3) II(A,x ,x)(z ◦ z−1, r(x)),

(G4) II(A,x ,x)(z−1 ◦ z , r(x)),

(G5) II(A,x ,v)((z ◦ w) ◦ p, z ◦ (w ◦ p)).

M. Hofmann and T. Streicher 1993-1996: The groupoid interpretation of
type theory.
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Identity types and groupoids

The reindexing operation R is functorial in the sense that

(R1) IB(a)(R(r(a),w),w) holds for a : A, w : B(a),

(R2) IB(c)(R(t,R(s,w)),R((t ◦ s),w)) holds for a, b, c : A and
s : I(A, a, b) and t : I(A, b, c) and w : B(a).
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Identity types and groupoids

Proof relevant families of projective setoids

For a family of types B : (A)type we obtain a standard family of setoids as
follows.

Define A∗ = (A, I(A, ·, ·)) and B∗(a) = (B(a), I(B(a), ·, ·)) and define
φp : B∗(a)→ B∗(b), by φp(x) = RB,a,b(p, x) for p : I(A, a, b).

I-elimination gives

I(I(A, a, b), p, q) =⇒ φp =ext φq.

The groupoid laws G1 – G5 gives with ref(x) = r(x), sym(p) = p−1 and
trans(q, p) = q ◦ p the following theorem:

Theorem. For any family of types B : (A)type the standard family of
setoids (A∗,B∗) is proof-relevant.
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The groupoid laws G1 – G5 gives with ref(x) = r(x), sym(p) = p−1 and
trans(q, p) = q ◦ p the following theorem:

Theorem. For any family of types B : (A)type the standard family of
setoids (A∗,B∗) is proof-relevant.
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Identity types and groupoids

Uniqueness of identity proofs?

The identity proofs of A are said to be unique in case

(∀z ,w : I(A, a, b))II(A,a,b)(z ,w) (UIPA)

holds. We say that UIP holds if for each type A satisfies UIPA. Hofmann
and Streicher 1995 showed that this need not hold for general types by
exhibiting a groupoid model of type theory.

Theorem. Let A : type be fixed. Then UIPA holds if and only if the
standard family of setoids (A∗,B∗) is proof-irrelevant, for any family of
types B : (A)type over A.
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Identity types and groupoids

Decidable identity types

Theorem (Hedberg 1995). If (∀x , y : A)(I(A, x , y) ∨ ¬I(A, x , y)), then

(∀x , y : A)(∀u, v : I(A, x , y))I(I(A, x , y), u, v).

Thus UIP is always true in classical extensions of type theory.

Examining the proof one can see that a somewhat stronger result follows:

Theorem. Let x : A be fixed. If (∀y : A)(I(A, x , y) ∨ ¬I(A, x , y)), then

(∀y : A)(∀u, v : I(A, x , y))I(I(A, x , y), u, v).
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Identity types and groupoids

Streicher 1993 suggested to supplement the standard J operator with an
additional elimination operator K given by the rules for
D(x , z) type (x : A, z : I(A, x , x))

c : I(A, a, a) d(x) : D(x , r(x)) (x : A)

KD,a(c , d) : D(a, c)

and where KD,a(r(a), d) = d(a).

It seems possible to justify the rule by following standard meaning
explanations with closed terms.

Theorem (Streicher). Using K the principle UIP can be proved.

20 / 32



Identity types and groupoids

Streicher 1993 suggested to supplement the standard J operator with an
additional elimination operator K given by the rules for
D(x , z) type (x : A, z : I(A, x , x))

c : I(A, a, a) d(x) : D(x , r(x)) (x : A)

KD,a(c , d) : D(a, c)

and where KD,a(r(a), d) = d(a).

It seems possible to justify the rule by following standard meaning
explanations with closed terms.

Theorem (Streicher). Using K the principle UIP can be proved.

20 / 32



Identity types and groupoids

Streicher 1993 suggested to supplement the standard J operator with an
additional elimination operator K given by the rules for
D(x , z) type (x : A, z : I(A, x , x))

c : I(A, a, a) d(x) : D(x , r(x)) (x : A)

KD,a(c , d) : D(a, c)

and where KD,a(r(a), d) = d(a).

It seems possible to justify the rule by following standard meaning
explanations with closed terms.

Theorem (Streicher). Using K the principle UIP can be proved.

20 / 32



Identity types and groupoids

The rules J and K may be combined into a single elimination rule: for
C (x , y , u, v) type (x : A, y : A, u : I(A, x , y), v : I(A, x , y)) we have

c : I(A, a, b) c ′ : I(A, a, b) d(x) : C (x , x , r(x), r(x)) (x : A)

J2
C ,a,b(c , c ′, d) : C (a, b, c , c ′)

with J2
C ,a,a(r(a), r(a), d) = d(a).

Theorem. J2 is equivalent to the combination of J and K.

However neither K nor J2 follow the usual pattern of elimination rules.
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Groupoids as fundamental objects?

The Hofmann–Streicher groupoid model of type theory suggests that
groupoids could be used as fundamental objects of mathematics instead of
sets (or setoids). The type-theoretic version of a groupoid is an E-category
where all morphisms are invertible. To be explicit:

A groupoid A = (|A|,Hom, id, ◦, ( )−1) consists of

a type |A|,
a setoid Hom(a, b) of morphisms for any a, b : |A|,
an identity morphism ida ∈ Hom(a, a) for each a : |A|,
a composition operation ◦ : Hom(b, c)×Hom(a, b) // Hom(a, c)
for all a, b, c : |A|,
an inversion ( )−1 : Hom(a, b) // Hom(b, a) for a, b : |A|,

satisfying standard identities.
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Groupoids as fundamental objects?

Any setoid A = (|A|,=A) becomes a (discrete) groupoid by letting
Hom(a, b) = ((a =A b),∼) and p ∼ q hold for all p, q : a =A b.

A type A yields a canonical groupoid A? = (A,Hom, id, ◦, ( )−1) where
Hom(a, b) = (I(A, a, b), II(A,a,b)(·, ·) and id, ◦, ( )−1 are operations
defined on page 15.

Any group may be regarded as a groupoid with one object.

23 / 32



Groupoids as fundamental objects?

Any setoid A = (|A|,=A) becomes a (discrete) groupoid by letting
Hom(a, b) = ((a =A b),∼) and p ∼ q hold for all p, q : a =A b.

A type A yields a canonical groupoid A? = (A,Hom, id, ◦, ( )−1) where
Hom(a, b) = (I(A, a, b), II(A,a,b)(·, ·) and id, ◦, ( )−1 are operations
defined on page 15.

Any group may be regarded as a groupoid with one object.

23 / 32



Groupoids as fundamental objects?

Any setoid A = (|A|,=A) becomes a (discrete) groupoid by letting
Hom(a, b) = ((a =A b),∼) and p ∼ q hold for all p, q : a =A b.

A type A yields a canonical groupoid A? = (A,Hom, id, ◦, ( )−1) where
Hom(a, b) = (I(A, a, b), II(A,a,b)(·, ·) and id, ◦, ( )−1 are operations
defined on page 15.

Any group may be regarded as a groupoid with one object.

23 / 32



Groupoids as fundamental objects?

The notion of functor and natural transformation are defined in the
expected way. We have the following correspondences:

groupoid setoid
functor extensional function
natural transformation proof of equality of functions
equivalence of groupoids proof of isomorphism of setoids
functor G → Groupoids proof-irr. family of setoids
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Groupoids as fundamental objects?

2-pullback and ordinary 1-pullback

A1 X//

P

A1

��

P A2
// A2

X
��

A1 X//

P

A1

��

P A2
// A2

X
��

σ +3
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Groupoids as fundamental objects?

Return to the example category B given by a family
B , φ,A of setoids

For a proof-irrelevant family the composable arrows of B is obtained by a
pullback

Arr Ob
dom

//

Comp

Arr
��

Comp Arr// Arr

Ob

cod

��

Ob, Arr, Comp are setoids.
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Groupoids as fundamental objects?

However for a proof-relevant family the composable arrows of B is
obtained by a 2-pullback

Arr Ob
dom

//

Comp

Arr
��

Comp Arr// Arr

Ob

cod

��

σ +3

Ob, Arr, Comp are groupoids, and cod and dom are functors.
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Groupoids as fundamental objects?

Comp is the groupoid indicated by the previously displayed diagram

Ba′ Bb′f ′
//

Ba

Ba′

φp

��

Ba Bb
f // Bb

Bb′

φq

��
Bc ′φt′

//

Bc
φt // Bc

Bc ′

φr

��
Bd ′g ′

//

Bd
g // Bd

Bd ′

φs

��
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Conclusion

Conclusion

Proof-relevant families of setoids appear in abundance in standard
Martin-Löf type theory. Every family of types B : (A)type gives a
such a family (A∗,B∗). However they seem difficult to use for certain
purposes, e.g. construction of categories with equality on objects.

For such purposes the standard proof-irrelevant families are suitable.
They are not easy to construct in standard type theory. It seems
roughly that we need to construct extensional collapses of the types.
This procedure is familiar from set theory, and indeed, one way of
constructing such families is to use Aczel’s model construction for the
constructive set theory CZF. (But then why use type theory?)

Another possibility is to try to use proof-relevant families, inspired by
the Hofmann-Streicher model. This seems to involve developing some
new ways (or getting used to) thinking of basic mathematical objects
as groupoids.
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