A Reverse Mathematics for Feasiblity

SATO Kentaro

kensato@umich.edu.

The goal of this talk:

Reverse Mathematics for finitary combinatorics;

The goal of this talk:

Reverse Mathematics for finitary combinatorics;
 Comparison with other Reverse Mathematics*es*.

The goal of this talk:

Reverse Mathematics for finitary combinatorics;
Comparison with other Reverse Mathematics*es*.
We will have the conclusion:

RM for finitary combinatorics is quite different!

The goal of this talk:

Reverse Mathematics for finitary combinatorics;
Comparison with other Reverse Mathematics*es*.
We will have the conclusion:

RM for finitary combinatorics is quite different!
 The framework of our investigation is

(Two-sorted) Bounded Arithmetic (natural numbers and finite binary sequences);

The goal of this talk:

Reverse Mathematics for finitary combinatorics;
Comparison with other Reverse Mathematics*es*.
We will have the conclusion:

RM for finitary combinatorics is quite different!
 The framework of our investigation is

(Two-sorted) Bounded Arithmetic
 (natural numbers and finite binary sequences);
 Or, Δ^{PL}₁-reducibility

(which is finer than famous AC^0 -reducibility and much finer than polynomial time reducibility).

The goal of this talk:

Reverse Mathematics for finitary combinatorics;
Comparison with other Reverse Mathematics*es*.
We will have the conclusion:

RM for finitary combinatorics is quite different!
 The framework of our investigation is

 (Two-sorted) Bounded Arithmetic (natural numbers and finite binary sequences);
 Or, Δ^{PL}₁-reducibility

(which is finer than famous AC⁰-reducibility and much finer than polynomial time reducibility).
Remark for constructivists (and intuitionists):

The goal of this talk:

Reverse Mathematics for finitary combinatorics;
Comparison with other Reverse Mathematics*es*.
We will have the conclusion:

RM for finitary combinatorics is quite different!
 The framework of our investigation is

 (Two-sorted) Bounded Arithmetic (natural numbers and finite binary sequences);
 Or, Δ^{PL}₁-reducibility

(which is finer than famous AC⁰-reducibility and much finer than polynomial time reducibility).
Remark for constructivists (and intuitionists):
We can use LEM, since all objects are finite!

1. Background

- **Two-sorted Bounded Arithmetic;**
- **C**omplexity \mathbf{AC}^0 and reducibility.

- 1. Background
 - **Two-sorted Bounded Arithmetic;**
 - **C**omplexity \mathbf{AC}^0 and reducibility.
- 2. Observation
 - Analogy between 2-BA and SOA.

- 1. Background
 - **Two-sorted Bounded Arithmetic;**
 - **C**omplexity \mathbf{AC}^0 and reducibility.
- 2. Observation
 - Analogy between 2-BA and SOA.
- 3. Introduction of our frameworks
 - Base Theory V^- (corresponding to RCA_0);
 - $\square \Delta_1^{PL}$ -reducibility (corr. to Turing-reducibility).

- 1. Background
 - **Two-sorted Bounded Arithmetic;**
 - **C**omplexity \mathbf{AC}^0 and reducibility.
- 2. Observation
 - Analogy between 2-BA and SOA.
- 3. Introduction of our frameworks
 - Base Theory V^- (corresponding to RCA_0);
 - Δ_1^{PL} -reducibility (corr. to Turing-reducibility).
- 4. Results
 - Bounded-reverse-mathematical Results
 - **C**omparison

1. Background

The term "bounded arithmetic" is/was for (one-sorted) theories below $I\Delta_0(exp)$;

The term "bounded arithmetic" is/was for (one-sorted) theories below $I\Delta_0(exp)$;

Buss' *Bounded Arithmetic* established (one-sorted) theories S_2^i, T_2^i for polynomial time hirarchy;

The term "bounded arithmetic" is/was for (one-sorted) theories below $I\Delta_0(exp)$;

- Buss' *Bounded Arithmetic* established (one-sorted) theories S_2^i, T_2^i for polynomial time hirarchy;
- RSUV-isomorphism is known between one-sorted and two-sorted systems;

- The term "bounded arithmetic" is/was for (one-sorted) theories below $I\Delta_0(exp)$;
- Buss' *Bounded Arithmetic* established (one-sorted) theories S_2^i, T_2^i for polynomial time hirarchy;
- RSUV-isomorphism is known between one-sorted and two-sorted systems;
- Cook-Nguyen's *Logical Foundation for Proof Complexity* (2010) established (two-sorted) theories for complexities below poly-time complexity P and proposed a new research program called Bounded Reverse Mathematic (BRM).

- The term "bounded arithmetic" is/was for (one-sorted) theories below $I\Delta_0(exp)$;
- Buss' *Bounded Arithmetic* established (one-sorted) theories S_2^i, T_2^i for polynomial time hirarchy;
- RSUV-isomorphism is known between one-sorted and two-sorted systems;
- Cook-Nguyen's *Logical Foundation for Proof Complexity* (2010) established (two-sorted) theories for complexities below poly-time complexity P and proposed a new research program called Bounded Reverse Mathematic (BRM).
- I have refined Cook's results by replacing the base theory with weaker one and continued BRM.

The language consists of $0, 1, +, \cdot, |-|, <, =, \in$.

The language consists of $0, 1, +, \cdot, |-|, <, =, \in$. A formula is Δ_0^B iff

it contains no sequence quantifiers; and

all number quantifiers are bounded.

The language consists of $0, 1, +, \cdot, |-|, <, =, \in$. A formula is Δ_0^B iff **it** contains no sequence quantifiers; and all number quantifiers are bounded. Cook's base theory \mathbf{V}^0 consists of axioms of discrete-ordered semi-ring; $\blacksquare n \in X \to n < |X|, |X| - 1 \in X;$ $\square \Delta_0^B$ -bounded comprehension(-bCA): $(\exists X \leq t) (\forall x < t) (x \in X \leftrightarrow \varphi(x)) \text{ for } \Delta_0^B \varphi.$

The language consists of $0, 1, +, \cdot, |-|, <, =, \in$. A formula is Δ_0^B iff **it** contains no sequence quantifiers; and all number quantifiers are bounded. Cook's base theory \mathbf{V}^0 consists of axioms of discrete-ordered semi-ring; $\blacksquare n \in X \to n < |X|, |X| - 1 \in X;$ $\square \Delta_0^B$ -bounded comprehension(-bCA): $(\exists X \leq t)(\forall x < t)(x \in X \leftrightarrow \varphi(x))$ for $\Delta_0^B \varphi$. Therefore, it can be said that **BRM** is a research on Δ_0^B -reducibility.

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$.

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is

AC⁰: problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is

AC⁰: problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).

The important fact on AC^0 is

Theorem: A problem is in AC^0 iff Δ_0^B -definable.

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is

AC⁰: problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).

The important fact on AC^0 is

Theorem: A problem is in AC^0 iff Δ_0^B -definable.

Other important complexity classes are

TC⁰: those AC⁰-reducible to the counting problem; ("whether $n = \#\{x : x \in X\}$ or not?")

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is

- AC⁰: problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).
- The important fact on AC^0 is
- **Theorem:** A problem is in AC^0 iff Δ_0^B -definable.

Other important complexity classes are

- \mathbf{TC}^{0} : those \mathbf{AC}^{0} -reducible to the counting problem;
- L: those solvable by DTM within log-time = those AC^0 -reducible to the reachability problem for directed graphs of out-degree ≤ 1 ;

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is

AC⁰: problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).

The important fact on AC^0 is

Theorem: A problem is in AC^0 iff Δ_0^B -definable.

Other important complexity classes are

 \mathbf{TC}^{0} : those \mathbf{AC}^{0} -reducible to the counting problem;

L: those solvable by DTM within log-time

NL: those solvable by NTM within log-time

= those AC^0 -reducible to the reachability problem.

While it is known that ... **A** $\mathbf{C}^0 \subsetneq \mathbf{T}\mathbf{C}^0 \subset \mathbf{L} \subset \mathbf{N}\mathbf{L} \subset \mathbf{P}$.

It is believed that $\mathbf{A}\mathbf{C}^0 \subsetneq \mathbf{T}\mathbf{C}^0 \subsetneq \mathbf{L} \subsetneq \mathbf{N}\mathbf{L} \subsetneq \mathbf{P}.$

It is believed that $\mathbf{A}\mathbf{C}^0 \subsetneq \mathbf{T}\mathbf{C}^0 \subsetneq \mathbf{L} \subsetneq \mathbf{N}\mathbf{L} \subsetneq \mathbf{P}.$

For a complexity class $C (= P, NL, L, TC^{0})$,

δ_C(x, X, Y) formalizes "Y is the computation for a chosen C-complete problem with input x, X".
VC = V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).

It is believed that $\mathbf{A}\mathbf{C}^0 \subsetneq \mathbf{T}\mathbf{C}^0 \subsetneq \mathbf{L} \subsetneq \mathbf{N}\mathbf{L} \subsetneq \mathbf{P}.$

For a complexity class $C (= P, NL, L, TC^{0})$,

δ_C(x, X, Y) formalizes "Y is the computation for a chosen C-complete problem with input x, X".
VC = V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
VC's play the role played in RM by "big five".

It is believed that $\mathbf{A}\mathbf{C}^0 \subsetneq \mathbf{T}\mathbf{C}^0 \subsetneq \mathbf{L} \subsetneq \mathbf{N}\mathbf{L} \subsetneq \mathbf{P}.$

For a complexity class $C (= P, NL, L, TC^{0})$,

- δ_C(x, X, Y) formalizes "Y is the computation for a chosen C-complete problem with input x, X".
 VC = V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
 VC's play the role played in DM by "big fore"
- VC's play the role played in RM by "big five".

Thm(i) A poly-bdd $f: 2^{<\omega} \to 2^{<\omega} (|f(X)| \le p(|X|))$ is Σ_1^1 -def. prov. total in VC iff " $n \in f(X)$ " is in C; (Thus, BRM can be seen as a generalized theory on provably recursive functions.)

It is believed that $\mathbf{A}\mathbf{C}^0 \subsetneq \mathbf{T}\mathbf{C}^0 \subsetneq \mathbf{L} \subsetneq \mathbf{N}\mathbf{L} \subsetneq \mathbf{P}.$

For a complexity class $C (= P, NL, L, TC^{0})$,

δ_C(x, X, Y) formalizes "Y is the computation for a chosen C-complete problem with input x, X".
VC = V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
VC's play the role played in DM by "big fue"

■ VC's play the role played in RM by "big five".

Thm(i) A poly-bdd $f: 2^{<\omega} \to 2^{<\omega} (|f(X)| \le p(|X|))$ is Σ_1^1 -def. prov. total in VC iff " $n \in f(X)$ " is in C; (ii) A predicate on $2^{<\omega}$ is prov. Δ_1^1 in VC iff it is in C.

It is believed that $\mathbf{AC}^0 \subsetneq \mathbf{TC}^0 \subsetneq \mathbf{L} \subsetneq \mathbf{NL} \subsetneq \mathbf{P}.$

For a complexity class $C (= P, NL, L, TC^{0})$,

- δ_C(x, X, Y) formalizes "Y is the computation for a chosen C-complete problem with input x, X".
 VC = V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
 VC's play the role played in PM by "big five"
- $\mathbf{V}\mathbf{C}$'s play the role played in RM by "big five".

Thm(i) A poly-bdd $f : 2^{<\omega} \to 2^{<\omega} (|f(X)| \le p(|X|))$ is Σ_1^1 -def. prov. total in VC iff " $n \in f(X)$ " is in C; (ii) A predicate on $2^{<\omega}$ is prov. Δ_1^1 in VC iff it is in C.

While it is known that ...

 $\blacksquare \mathbf{V}^0 \subsetneq \mathbf{VTC}^0 \subset \mathbf{VL} \subset \mathbf{VNL} \subset \mathbf{VP}.$

It is believed that $\mathbf{A}\mathbf{C}^0 \subsetneq \mathbf{T}\mathbf{C}^0 \subsetneq \mathbf{L} \subsetneq \mathbf{N}\mathbf{L} \subsetneq \mathbf{P}.$

For a complexity class $C (= P, NL, L, TC^{0})$,

- δ_C(x, X, Y) formalizes "Y is the computation for a chosen C-complete problem with input x, X".
 VC = V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
 VC's play the role played in PM by "big fue"
- \mathbf{V} **C**'s play the role played in RM by "big five".

Thm(i) A poly-bdd $f: 2^{<\omega} → 2^{<\omega} (|f(X)| ≤ p(|X|))$ is Σ¹₁-def. prov. total in VC iff "n ∈ f(X)" is in C;
(ii) A predicate on 2^{<ω} is prov. Δ¹₁ in VC iff it is in C.
It is believed (the separation of complexities implies)
V⁰ ⊂ VTC⁰ ⊂ VL ⊂ VNL ⊂ VP.
2. Observation

Analogy b/w formula-class:

Analogy b/w formula-class: $\Sigma_n^1: \underbrace{(\exists X_1)(\forall X_2)\cdots(QX_n)}_{n-\text{alternation of set qf.}} \underbrace{(\dots \exists x \dots \forall y \dots)}_{\Delta_0^1-\text{formula}}$

Analogy b/w formula-class:

$$\Sigma_{n}^{1}: \underbrace{(\exists X_{1})(\forall X_{2})\cdots(QX_{n})}_{n-\text{alternation of set qf.}} \underbrace{(\ldots \exists x \ldots \forall y \ldots)}_{\Delta_{0}^{1}-\text{formula}}$$

$$\Sigma_{n}^{B}: \underbrace{(\exists X_{1} \leq t_{1})\cdots(QX_{n} \leq t_{n})}_{n-\text{alternation of set qf.}} \underbrace{(\ldots \exists x < u \ldots \forall y < v \ldots)}_{\Delta_{0}^{B}-\text{formula}}$$
where $(\exists X \leq t)\varphi \equiv (\exists X)(|X| \leq t \land \varphi)$ etc..
(corresponds to Σ_{n}^{b} in Buss' via RSUV-isomorphism.)

 Δ_n^-

 Δ_0^L

The Analogy Leads Us to ...

The analogy guides us to: **Thm**(i) $\mathbf{ACA}_0 + \Delta_0^1 - \mathbf{AC}$ is $\Pi_2^1 - \text{cons.} / \mathbf{ACA}_0$; (ii) $\mathbf{V}^0 + \Delta_0^B - \mathbf{REPL}$ is $\Pi_2^B - \text{cons.} / \mathbf{V}^0$ (Zambella), The analogy guides us to: **Thm(i)** ACA₀ + Δ_0^1 -AC is Π_2^1 -cons. /ACA₀; (ii) $\mathbf{V}^0 + \Delta_0^B$ -**REPL** is Π_2^B -cons. / \mathbf{V}^0 (Zambella), where Γ -AC and Γ -REPL are Γ -AC $(\forall n)(\exists X)\varphi(n,X) \rightarrow (\exists Y)(\forall n)\varphi(n,(Y)_n);$ Γ -REPL $(\forall n < s) (\exists X \leq t(n)) \varphi(n, X)$ $\rightarrow (\exists Y \leq \langle s, t(s) \rangle) (\forall n < s) \varphi(n, (Y)_n).$ The analogy guides us to: **Thm(i)** ACA₀ + Δ_0^1 -AC is Π_2^1 -cons. /ACA₀; (ii) $\mathbf{V}^0 + \Delta_0^B \mathbf{-REPL}$ is $\Pi_2^B \mathbf{-cons.} / \mathbf{V}^0$ (Zambella), where Γ -AC and Γ -REPL are Γ -AC $(\forall n)(\exists X)\varphi(n,X) \rightarrow (\exists Y)(\forall n)\varphi(n,(Y)_n);$ Γ -REPL $(\forall n < s) (\exists X \leq t(n)) \varphi(n, X)$ $\rightarrow (\exists Y \leq \langle s, t(s) \rangle) (\forall n < s) \varphi(n, (Y)_n).$

Note that via the analogy

 \mathbf{V}^0 corresponds to \mathbf{ACA}_0, \dots .

The analogy guides us to: **Thm(i)** ACA₀ + Δ_0^1 -AC is Π_2^1 -cons. /ACA₀; (ii) $\mathbf{V}^0 + \Delta_0^B \mathbf{-REPL}$ is $\Pi_2^B \mathbf{-cons.} / \mathbf{V}^0$ (Zambella), where Γ -AC and Γ -REPL are Γ -AC $(\forall n)(\exists X)\varphi(n,X) \rightarrow (\exists Y)(\forall n)\varphi(n,(Y)_n);$ Γ -REPL $(\forall n < s) (\exists X \leq t(n)) \varphi(n, X)$ $\rightarrow (\exists Y \leq \langle s, t(s) \rangle) (\forall n < s) \varphi(n, (Y)_n).$

Note that via the analogy

 \mathbf{V}^0 corresponds to \mathbf{ACA}_0 , not to \mathbf{RCA}_0 .

The analogy guides us to: **Thm(i)** ACA₀ + Δ_0^1 -AC is Π_2^1 -cons. /ACA₀; (ii) $\mathbf{V}^0 + \Delta_0^B \mathbf{-REPL}$ is $\Pi_2^B \mathbf{-cons.} / \mathbf{V}^0$ (Zambella), where Γ -AC and Γ -REPL are Γ -AC $(\forall n)(\exists X)\varphi(n,X) \rightarrow (\exists Y)(\forall n)\varphi(n,(Y)_n);$ Γ -REPL $(\forall n < s)(\exists X \leq t(n))\varphi(n, X)$ $\rightarrow (\exists Y \leq \langle s, t(s) \rangle) (\forall n < s) \varphi(n, (Y)_n).$

Note that via the analogy

V⁰ corresponds to ACA₀, not to RCA₀.
To make the comparison precise, we need the base theory that corresponds to RCA₀.

3. Introduction of Our Frameworks

Our New Base Theory V⁻

We can consider V⁻, corresponding to RCA₀, by:
replacing Δ^B₀-bCA in V⁰ by Δ^{PL}₁-bCA;
adding Σ^{PL}₁-induction;

Our New Base Theory V⁻

We can consider V^- , corresponding to RCA_0 , by: • replacing Δ_0^B -**b**CA in V⁰ by Δ_1^{PL} -**b**CA; adding Σ_1^{PL} -induction; dropping $|X| - 1 \in X$, because Cook's |-| should be Δ_0^B -definable: $x = \operatorname{length}(X) \leftrightarrow x - 1 \in X \land (\forall y < |X|) (y \ge x \to y \notin X),$ where Σ_n^{PL} counts alternations of bdd number qf's $\underbrace{(\exists x_{11} < t_{11}) \cdots (\exists x_{1k_1} < t_{1k_1})}_{(\forall x_{11} < t_{1k_1})} \cdots \underbrace{(Qx_{n1} < t_{n1}) \cdots ((Qx_{n1} < t_{n1}))}_{(\forall x_{11} < t_{n1})}$ bdd \exists 's same-type qf's *n*-alternation of bdd number qf's - p.13/20

RM based on V⁻ is a research on Δ_1^{PL} -reducibility in the sense that RM based on RCA₀ is that on Δ_1 (Turing) reducibility;

RM based on V⁻ is a research on Δ₁^{PL}-reducibility
in the sense that RM based on RCA₀ is that on Δ₁(Turing) reducibility;
where it should be kept in mind that "provably Δ₁^{PL} in V⁻" ≠ "Δ₁^{PL}-definable" (as "provably Δ₁⁰ in RCA₀" ≠ "Δ₁⁰-definable").

RM based on V⁻ is a research on Δ₁^{PL}-reducibility
in the sense that RM based on RCA₀ is that on Δ₁(Turing) reducibility;
where it should be kept in mind that "provably Δ₁^{PL} in V⁻" ≠ "Δ₁^{PL}-definable" (as "provably Δ₁⁰ in RCA₀" ≠ "Δ₁⁰-definable").
The machine model for Δ₁^{PL} is unclear:

RM based on \mathbf{V}^- is a research on Δ_1^{PL} -reducibility \blacksquare in the sense that RM based on \mathbf{RCA}_0 is that on Δ_1 (Turing) reducibility; where it should be kept in mind that "provably Δ_1^{PL} in $\mathbf{V}^{-"} \neq \Delta_1^{PL}$ -definable" (as "provably Δ_1^0 in \mathbf{RCA}_0 " \neq " Δ_1^0 -definable"). The machine model for Δ_1^{PL} is unclear: • " $\Sigma_{<\omega}^{PL} (= \Delta_0^B)$ -definable" = "in LH"

RM based on \mathbf{V}^- is a research on Δ_1^{PL} -reducibility \blacksquare in the sense that RM based on \mathbf{RCA}_0 is that on Δ_1 (Turing) reducibility; where it should be kept in mind that "provably Δ_1^{PL} in $\mathbf{V}^{-"} \neq \Delta_1^{PL}$ -definable" (as "provably Δ_1^0 in \mathbf{RCA}_0 " \neq " Δ_1^0 -definable"). The machine model for Δ_1^{PL} is unclear: • " $\Sigma_{<\omega}^{PL}(=\Delta_0^B)$ -definable" = "in LH" **bd**d number qf's in $\Delta_{<\omega}^{PL}$ corr. to alternations in LH;

RM based on \mathbf{V}^- is a research on Δ_1^{PL} -reducibility \blacksquare in the sense that RM based on \mathbf{RCA}_0 is that on Δ_1 (Turing) reducibility; where it should be kept in mind that "provably Δ_1^{PL} in $\mathbf{V}^{-"} \neq \Delta_1^{PL}$ -definable" (as "provably Δ_1^0 in \mathbf{RCA}_0 " \neq " Δ_1^0 -definable"). The machine model for Δ_1^{PL} is unclear: • " $\Sigma_{<\omega}^{PL}(=\Delta_0^B)$ -definable" = "in LH" **bd** number qf's in $\Delta_{<\omega}^{PL}$ corr. to alternations in LH; $\square \Delta_1^{PL}$ does not fit with log-time complexity.

RM based on \mathbf{V}^- is a research on Δ_1^{PL} -reducibility \blacksquare in the sense that RM based on \mathbf{RCA}_0 is that on Δ_1 (Turing) reducibility; where it should be kept in mind that "provably Δ_1^{PL} in $\mathbf{V}^{-"} \neq \Delta_1^{PL}$ -definable" (as "provably Δ_1^0 in \mathbf{RCA}_0 " \neq " Δ_1^0 -definable"). The machine model for Δ_1^{PL} is unclear: • " $\Sigma_{<\omega}^{PL} (= \Delta_0^B)$ -definable" = "in LH" **bdd** number qf's in $\Delta_{<\omega}^{PL}$ corr. to alternations in LH; $\square \Delta_1^{PL}$ does not fit with log-time complexity. No "robust" machine model for log-time!.

\mathbf{V}^- as Base Theory

V⁻ can play the role of the base theory: VC = V⁻ + $(\forall X, x)(\exists Y)\delta_{\mathbf{C}}(x, X, Y);$ where recall the definition of VC: VC = def V⁰ + $(\forall X, x)(\exists Y)\delta_{\mathbf{C}}(x, X, Y).$ V⁻ can play the role of the base theory:
VC = V⁻ + (∀X, x)(∃Y)δ_C(x, X, Y);
where recall the definition of VC: VC =_{def} V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
As consequences, w.r.t. Δ^{PL}₁-reducibility,
The counting problem is TC⁰-complete; V^- can play the role of the base theory: $\bullet \mathbf{VC} = \mathbf{V}^- + (\forall X, x) (\exists Y) \delta_{\mathbf{C}}(x, X, Y);$ where recall the definition of VC: $\mathbf{V}\mathbf{C} =_{\text{def}} \mathbf{V}^0 + (\forall X, x)(\exists Y)\delta_{\mathbf{C}}(x, X, Y).$ As consequences, w.r.t. Δ_1^{PL} -reducibility, **The counting problem is \mathbf{TC}^{0}-complete;** The reachability problem for directed graphs of out-degree < 1 is L-complete;

V⁻ can play the role of the base theory:
VC = V⁻ + (∀X, x)(∃Y)δ_C(x, X, Y);
where recall the definition of VC: VC =_{def} V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
As consequences, w.r.t. Δ^{PL}₁-reducibility,
The counting problem is TC⁰-complete;

The reachability problem for directed graphs of out-degree ≤ 1 is L-complete;
 The reachability problem is NL-complete;

V⁻ can play the role of the base theory:
VC = V⁻ + (∀X, x)(∃Y)δ_C(x, X, Y);
where recall the definition of VC: VC =_{def} V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
As consequences, w.r.t. Δ^{PL}₁-reducibility,

The counting problem is TC⁰-complete;
The reachability problem for directed graphs of out-degree ≤ 1 is L-complete;

- The reachability problem is NL-complete;
- **The monotone circuit value problem is P-complete.**

V⁻ can play the role of the base theory:
VC = V⁻ + (∀X, x)(∃Y)δ_C(x, X, Y);
where recall the definition of VC: VC =_{def} V⁰ + (∀X, x)(∃Y)δ_C(x, X, Y).
As consequences, w.r.t. Δ^{PL}₁-reducibility,
The counting problem is TC⁰-complete;

- The reachability problem for directed graphs of out-degree ≤ 1 is L-complete;
- **The reachability problem is NL-complete;**
- The monotone circuit value problem is **P**-complete.

Moreover, these complete problems are ordered by Δ_1^{PL} -many-one-reducibility.

4. Result

We consider the following assertions: **CWO:** for given two well-orders R and S, we have the comparison map $R \rightarrow S$ or $S \rightarrow R$; We consider the following assertions: **CWO:** for given two well-orders R and S, we have the

comparison map $R \to S$ or $S \to R$;

DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m \rangle \in R)$ then $(\forall n \in X)(\exists f : \#X \to X)(f(0) = n \& (\forall \xi < \#X - 1)(\langle f(\xi), f(\xi + 1) \rangle \in R));$

CWO: for given two well-orders R and S, we have the comparison map $R \to S$ or $S \to R$;

DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m \rangle \in R)$ then $(\forall n \in X)(\exists f : \#X \to X)(f(0) = n \& (\forall \xi < \#X - 1)(\langle f(\xi), f(\xi + 1) \rangle \in R));$

DWF: for a given sequence R_n of relations, there is X s.t. $n \in X$ iff R_n is well-founded;

CWO: for given two well-orders R and S, we have the comparison map $R \to S$ or $S \to R$;

DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m \rangle \in R)$ then $(\forall n \in X)(\exists f : \#X \to X)(f(0) = n \& (\forall \xi < \#X - 1)(\langle f(\xi), f(\xi + 1) \rangle \in R));$

DWF: for a given sequence R_n of relations, there is X s.t. $n \in X$ iff R_n is well-founded;

BISIM: for directed graphs G, F, there is B s.t. $\langle g, f \rangle \in B$ iff (g, G) and (f, F) are bisimilar.

I.e., $\exists B' \subset |G| \times |F| \text{ w/ } \langle g, f \rangle \in B' \text{ s.t. for } \langle g', f' \rangle \in B',$ $(\forall g'' \leftarrow_G g') (\exists f'' \leftarrow_F f') (\langle g'', f'' \rangle \in B') \text{ and vice versa.}_{_{-p.17/20}}$

CWO: for given two well-orders R and S, we have the comparison map $R \to S$ or $S \to R$;

DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m \rangle \in R)$ then $(\forall n \in X)(\exists f : \#X \to X)(f(0) = n \& (\forall \xi < \#X - 1)(\langle f(\xi), f(\xi + 1) \rangle \in R));$

DWF: for a given sequence R_n of relations, there is X s.t. $n \in X$ iff R_n is well-founded;

BISIM: for directed graphs G, F, there is B s.t. $\langle g, f \rangle \in B$ iff (g, G) and (f, F) are bisimilar. These can easily be formulated in 2-BA

CWO: for given two well-orders R and S, we have the comparison map $R \to S$ or $S \to R$;

DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m \rangle \in R)$ then $(\forall n \in X)(\exists f : \#X \to X)(f(0) = n \& (\forall \xi < \#X - 1)(\langle f(\xi), f(\xi + 1) \rangle \in R));$

DWF: for a given sequence R_n of relations, there is X s.t. $n \in X$ iff R_n is well-founded;

BISIM: for directed graphs G, F, there is B s.t. $\langle g, f \rangle \in B$ iff (g, G) and (f, F) are bisimilar.

These can easily be formulated in 2-BA (and in SOA).

BRM Results

 V^- can proves ■ $VTC^0 \leftrightarrow CWO;$

BRM Results

V[−] can proves VTC⁰ \leftrightarrow CWO; VL \leftrightarrow DC;
V[−] can proves VTC⁰ \leftrightarrow CWO; VL \leftrightarrow DC; VNL \leftrightarrow DWF;

V[−] can proves VTC⁰ \leftrightarrow CWO; VL \leftrightarrow DC; VNL \leftrightarrow DWF; VP \leftrightarrow BISIM \leftrightarrow BISIM(rest. to w.f. trees).

 V^- can proves $\mathbf{V}\mathbf{T}\mathbf{C}^0 \leftrightarrow \mathbf{CWO};$ \blacksquare VL \leftrightarrow DC; $\blacksquare VNL \leftrightarrow DWF;$ $\overline{\mathbf{VP}} \leftrightarrow \mathbf{BISIM} \leftrightarrow \mathbf{BISIM}$ (rest. to w.f. trees). This should be compared with the fact: RCA_0 proves **R**CA₀ \leftrightarrow DC; $\blacksquare \mathbf{ATR}_0 \leftrightarrow \mathbf{CWO} \leftrightarrow \mathbf{BISIM}$ (rest. to w.f. trees); $\blacksquare \Pi_1^1 \text{-} \mathbf{CA}_0 \leftrightarrow \mathbf{DWF} \leftrightarrow \mathbf{BISIM}.$

 V^- can proves $\mathbf{V}\mathbf{T}\mathbf{C}^0 \leftrightarrow \mathbf{CWO};$ $\blacksquare VL \leftrightarrow DC;$ \blacksquare VNL \leftrightarrow DWF; $\overline{\mathbf{VP}} \leftrightarrow \mathbf{BISIM} \leftrightarrow \mathbf{BISIM}$ (rest. to w.f. trees). This should be compared with the fact: RCA_0 proves **R**CA₀ \leftrightarrow DC; **ATR**₀ \leftrightarrow **CWO** \leftrightarrow **BISIM**(rest. to w.f. trees); $\blacksquare \Pi_1^1 \text{-} \mathbf{CA}_0 \leftrightarrow \mathbf{DWF} \leftrightarrow \mathbf{BISIM}.$ As a conclusion:

Finitary combinatorics is quite different from infinitary combinatorics!

As before, we have results on Δ_1^{PL} -reducibility:

comparability of well-ordering is TC⁰-complete;
deciding well-foundedness is NL-complete;
deciding bisimilarity (rest. to w.f.) is P-complete.

As before, we have results on Δ_1^{PL} -reducibility: comparability of well-ordering is \mathbf{TC}^{0} -complete; deciding well-foundedness is NL-complete; deciding bisimilarity (rest. to w.f.) is **P**-complete. Moreover, among the solving algorithms of problems, we have the same results as in the previous slides **by** Δ_1^{PL} -Weihrauch-reducibility,

As before, we have results on Δ_1^{PL} -reducibility: comparability of well-ordering is \mathbf{TC}^{0} -complete; deciding well-foundedness is NL-complete; deciding bisimilarity (rest. to w.f.) is **P**-complete. Moreover, among the solving algorithms of problems, we have the same results as in the previous slides by Δ_1^{PL} -Weihrauch-reducibility, Weihrauch-reducibility with "computable functions" replaced by " Δ_1^{PL} -definable functions".

As before, we have results on Δ_1^{PL} -reducibility:

- **comparability of well-ordering is** \mathbf{TC}^{0} **-complete;**
- deciding well-foundedness is NL-complete;
- deciding bisimilarity (rest. to w.f.) is P-complete.

Moreover, among the solving algorithms of problems,

we have the same results as in the previous slides

■ by Δ_1^{PL} -Weihrauch-reducibility,

Weihrauch-reducibility with "computable functions" replaced by " Δ_1^{PL} -definable functions".

I.e., a finite version of computable RM by Brattka.

As before, we have results on Δ_1^{PL} -reducibility:

- comparability of well-ordering is TC⁰-complete;
- deciding well-foundedness is NL-complete;
- deciding bisimilarity (rest. to w.f.) is P-complete.

Moreover, among the solving algorithms of problems,

we have the same results as in the previous slides

by Δ_1^{PL} -Weihrauch-reducibility,

- Weihrauch-reducibility with "computable functions" replaced by " Δ_1^{PL} -definable functions".
- I.e., a finite version of computable RM by Brattka. (Unfortunately/fortunately, no new splitting!)

Question can we have a "robust" machine model for it? p.20/20

Question can we have a "robust" machine model for it?^{p.20/20}