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The goal of this talk:

Reverse Mathematics for finitary combinatorics;
Comparison with other Reverse Mathematicses.

We will have the conclusion:
RM for finitary combinatorics 1s quite different!
The framework of our investigation 1s

(Two-sorted) Bounded Arithmetic
(natural numbers and finite binary sequences);

Or, At Y-reducibility
(which is finer than famous A C'-reducibility and
much finer than polynomial time reducibility).

Remark for constructivists (and intuitionists):
We can use LEM, since all objects are finite!
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1. Background
Two-sorted Bounded Arithmetic;
Complexity AC" and reducibility.
2. Observation
Analogy between 2-BA and SOA.
3. Introduction of our frameworks
Base Theory V~ (corresponding to RCA,);

AL _reducibility (corr. to Turing-reducibility).

4. Results
Bounded-reverse-mathematical Results

Comparison
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The term "bounded arithmetic" 1s/was for
(one-sorted) theories below IAj(exp);

Buss’ Bounded Arithmetic established (one-sorted)
theories S5, T for polynomial time hirarchy;

RSUV-1somorphism i1s known between one-sorted
and two-sorted systems;

Cook-Nguyen’s Logical Foundation for Proof
Complexity (2010) established (two-sorted) theories
for complexities below poly-time complexity P

and proposed a new research program called
Bounded Reverse Mathematic (BRM).

I have refined Cook’s results by replacing the base
theory with weaker one and continued BRM. 0
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Systems of 2-sorted BA

The language consists of 0,1, 4, -, | - |, <, =, €.
A formula is AJ iff

® 1t contains no sequence quantifiers; and

m all number quantifiers are bounded.

Cook’s base theory V" consists of
m axioms of discrete-ordered semi-ring;
mne X —->n<|X|, | X|-1€X;
= AJ-bounded comprehension(-bCA):
(AX <t)(Vz<t)(z € X+ p(x)) for AF .
Therefore, 1t can be said that

BRM is a research on AP -reducibility. o
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(defined similarly to PH by alternating TMs).
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Complexity Classes below Poly-time

It is natural to define complexity for subsets of 2<% x w.
The "base complexity" in Cook’s 1s

AC": problems in the finite level of log-time hierarchy
(defined similarly to PH by alternating TMs).

The important fact on AC is
Theorem: A problem is in AC" iff AP-definable.

Other important complexity classes are

TC": those AC'-reducible to the counting problem;
L: those solvable by DTM within log-time

NL: those solvable by NTM within log-time
— those AC"-reducible to the reachability problem.
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Separation of Complexities

It 1s believed that
= AC'C TC"CLCNLCP.
For a complexity class C (= P, NL, L, TC"),

® 0c(z, X,Y) formalizes “Y is the computation
for a chosen C-complete problem with input z, X .

» VC = V' + (VX,2)(3Y)dc(z, X,Y).
= VC’s play the role played in RM by “big five”.

Thm(i) A poly-bdd f : 2% —2%% (|f(X)| < p(|X]))
is Y1-def. prov. total in VC iff “n € f(X)”isin C;
(ii) A predicate on 2<% is prov. Af in VC iff it is in C.

It 1s believed (the separation of complexities implies)
=V C VTC'’ C VL C VNL C VP.
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Analogy between SOA and 2-BA

Analogy b/w formula-class:
¥ (3X)(VXR) - (QX,) (.. 3z.. V...
nt (3X1)(VXp) - (QX0) ( y..)

n-alternation of set qf. Al-formula

M2 (3X, <t (QX, <t,)(.Tz<u..Vy<wv..)
-~

n-alternation of set qf. AOB formula
where (3X < t)p = (FX)(|X| <t A p) etc..

(corresponds to X0 in Buss’ via RSUV-isomorphism.)

The analogy we use 1s:

SOA || unbdd. set gf. | unbdd. number gf. | Aj | X!
2-BA | bdd. setqf. | bdd. number gf. | AF | X5
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The Analogy Leads Us to ...

The analogy guides us to:
Thm(i) ACAj + A}-AC is II3-cons. /ACA,;
(i) V' + AF-REPL is [1¥-cons. /V? (Zambella),
where /'-AC and ['-REPL are
I-AC (Vn)(3X)p(n, X) — (3Y)(Vr)p(n, (Y)n);
['-REPL (Vn < s)(3X <t(n))p(n, X)
— (Y < (5,1(5)))(Vn < s)p(n, (Y)n).

Note that via the analogy

VY corresponds to ACA,, not to RCA,.
To make the comparison precise, we need

the base theory that corresponds to RCA,. pi
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w replacing AP -bCA in V' by ATX-bCA;
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We can consider V—, corresponing to RCA,, by:
replacing AP-bCA in V' by A{X-bCA;

adding > L-induction;
dropping | X| — 1 € X,

because Cook’s

r = length(X) <> x—1€ XA (Vy<

-| should be A¥-definable:

X)yzz = y¢X),

where 25X counts alternations of bc

d number gf’s

(E|$11<t11) SN (3x1k1<t1k1) RN (QSEn1<tn1) .. ( open formula )
—_— e A

bdd d’s same

-type gf’s

-—_
n-alternation of bdd number qf’s 130
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RM based on V~ is a research on A{L-reducibility

in the sense that RM based on RCA, 1s that on
A1 (Turing) reducibility;

where 1t should be kept in mind that
“provably AfL in V=7 £ “AFL_definable”
(as “provably A} in RCA,” # “AY-definable™).

The machine model for Af'’ is unclear:
“YLL(= Af)-definable” = “in LH”
bdd number gf’s in AZZ corr. to alternations in LH
AL does not fit with log-time complexity.

No “robust” machine model for log-time!.

o
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V™~ can play the role of the base theory:
VC =V + (VX,2)3Y)ic(x, X,Y);

where recall the definition of VC:
VC =4t VY + (VX, 2)(3Y )oc(z, X,Y).

As consequences, W.I.t. Af - -reducibility,

T
T

he counting problem is TC"-complete;

ne reachability problem for directed graphs of

out-degree < 1 1s L-complete;

T

T

he reachability problem 1s N L-complete;

ne monotone circuit value problem 1s P-complete.

Moreover, these complete problems are ordered by

AL -many-one-reducibility. pisno
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(V€ <#X —1)((f(&), f(€+1)) € R));

DWE': fora given sequence R, of relations,
there 1s X s.t. n € X iff R,, 1s well-founded;

BISIM: for directed graphs G, F', there is B s.t.
(g, f) € Biff (9,G) and (f, F') are bisimilar.

Le., AB' C|G|x|F| w/ (g, f) € B" s.t. for (¢, f') € B/,
V9" ¢ ¢)3f" «~Fr (", f") € B’) and vice versa.
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We consider the following assertions:

CWO: for given two well-orders R and S, we have the
comparison map R — S or S — R;

DC: if (Vn € X)(dm € X)({n,m) € R)
then (Vn € X)(3f : #X — X)(f(0) =n&k
(V€ <#X —1)((f(&), f(€+1)) € R));

DWE': fora given sequence R, of relations,
there 1s X s.t. n € X iff R,, 1s well-founded;

BISIM: for directed graphs G, F', there is B s.t.
(g, f) € Biff (9,G) and (f, F') are bisimilar.

These can easily be formulated 1n 2-BA
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BISIM: for directed graphs G, F', there is B s.t.
(g, f) € Biff (9,G) and (f, F') are bisimilar.

These can easily be formulated in 2-BA (and in SOA) .
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Results

n proves
TC’ «++ CWO;
L « DC;

NL + DWF;




BRM Results

V™~ can proves

= VTC’ ++ CWO;

= VL « DC;

» VNL <& DWF;

= VP « BISIM < BISIM(rest. to w.f. trees).
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V™~ can proves

VTC' <+ CWO;

VL < DC;

VNL < DWF;

VP < BISIM <« BISIM(rest. to w.f. trees).
This should be compared with the fact: RCA proves

RCAO + DC;
ATR <+ CWO < BISIM(rest. to w.f. trees);

[11-CA, +» DWF > BISIM.

As a conclusion:

Finitary combinatorics 1s quite different from
Iinfinitary combinatorics! w0



Comparison with Other Works

As before, we have results on A{“-reducibility:

= comparability of well-ordering is TC"-complete;
» deciding well-foundedness 1s N L-complete;

m deciding bisimilarity (rest. to w.t.) 1s P-complete.
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Comparison with Other Works

As before, we have results on A{“-reducibility:

= comparability of well-ordering is TC"-complete;

» deciding well-foundedness 1s N L-complete;

m deciding bisimilarity (rest. to w.t.) 1s P-complete.

Moreover, among the solving algorithms of problems,

= we have the same results as in the previous slides

= by Af'f-Weihrauch-reducibility,
Weihrauch-reducibility with “computable functions”
replaced by “Al’l-definable functions”.

m .e., a finite version of computable RM by Brattka.
(Unfortunately/fortunately, no new splitting!)
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NL

TC

“bisimilarity” = “bisimilarity rest. to w.f. trees”

="“monotone circuit problem”

¥
“deciding w.f.-ness” = “reachability problem”
¥

“depending choice”

= “reachability rest. to out-degree < 1”
¥

“comparing well orders” = “counting problem”
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NL “deciding w.f.-ness” :*“reachability problem”
1
“depending choice”
- = “reachability rest. to out-degree < 17
TCY “comparing well orderst’ = “counting problem”

both 1n the formal sense: implication in V—; and
in the computability sense: AiL-Weihrauch degree.
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