A Reverse Mathematics for Feasiblity

SATO Kentaro
kensato@umich.edu.

The Goal

The goal of this talk:

- Reverse Mathematics for finitary combinatorics;

The Goal

The goal of this talk:

- Reverse Mathematics for finitary combinatorics;
- Comparison with other Reverse Mathematicses.

The Goal

The goal of this talk:

- Reverse Mathematics for finitary combinatorics;
\square Comparison with other Reverse Mathematicses.
We will have the conclusion:
\square RM for finitary combinatorics is quite different!

The Goal

The goal of this talk:

- Reverse Mathematics for finitary combinatorics;
- Comparison with other Reverse Mathematicses.

We will have the conclusion:
\square RM for finitary combinatorics is quite different!
The framework of our investigation is

- (Two-sorted) Bounded Arithmetic (natural numbers and finite binary sequences);

The Goal

The goal of this talk:

- Reverse Mathematics for finitary combinatorics;
\square Comparison with other Reverse Mathematicses.
We will have the conclusion:
\square RM for finitary combinatorics is quite different!
The framework of our investigation is
- (Two-sorted) Bounded Arithmetic (natural numbers and finite binary sequences);
- Or, $\Delta_{1}^{P L}$-reducibility
(which is finer than famous $\mathbf{A C}^{0}$-reducibility and much finer than polynomial time reducibility).

The Goal

The goal of this talk:

- Reverse Mathematics for finitary combinatorics;
- Comparison with other Reverse Mathematicses.

We will have the conclusion:
\square RM for finitary combinatorics is quite different!
The framework of our investigation is

- (Two-sorted) Bounded Arithmetic
(natural numbers and finite binary sequences);
- Or, $\Delta_{1}^{P L}$-reducibility
(which is finer than famous $\mathbf{A C}^{0}$-reducibility and much finer than polynomial time reducibility).
Remark for constructivists (and intuitionists):

The Goal

The goal of this talk:
\square Reverse Mathematics for finitary combinatorics;
\square Comparison with other Reverse Mathematicses.
We will have the conclusion:
\square RM for finitary combinatorics is quite different!
The framework of our investigation is

- (Two-sorted) Bounded Arithmetic
(natural numbers and finite binary sequences);
- Or, $\Delta_{1}^{P L}$-reducibility
(which is finer than famous $\mathbf{A C}^{0}$-reducibility and much finer than polynomial time reducibility).
Remark for constructivists (and intuitionists):
We can use LEM, since all objects are finite!

Outline

1. Background

- Two-sorted Bounded Arithmetic;
- Complexity AC^{0} and reducibility.

Outline

1. Background
\square Two-sorted Bounded Arithmetic;
\square Complexity AC^{0} and reducibility.
2. Observation
\square Analogy between 2-BA and SOA.

Outline

1. Background

- Two-sorted Bounded Arithmetic;
- Complexity AC^{0} and reducibility.

2. Observation
\square Analogy between 2-BA and SOA.
3. Introduction of our frameworks

- Base Theory \mathbf{V}^{-}(corresponding to $\mathbf{R C A}_{0}$);
$\square \Delta_{1}^{P L}$-reducibility (corr. to Turing-reducibility).

Outline

1. Background

- Two-sorted Bounded Arithmetic;
\square Complexity AC^{0} and reducibility.

2. Observation
\square Analogy between 2-BA and SOA.
3. Introduction of our frameworks

- Base Theory \mathbf{V}^{-}(corresponding to RCA_{0});
$\square \Delta_{1}^{P L}$-reducibility (corr. to Turing-reducibility).

4. Results

- Bounded-reverse-mathematical Results
\square Comparison

1. Background

A Brief History

The term "bounded arithmetic" is/was for (one-sorted) theories below $\mathrm{I} \Delta_{0}(\exp)$;

A Brief History

- The term "bounded arithmetic" is/was for (one-sorted) theories below $\mathrm{I} \Delta_{0}(\exp)$;
\square Buss' Bounded Arithmetic established (one-sorted) theories S_{2}^{i}, T_{2}^{i} for polynomial time hirarchy;

A Brief History

- The term "bounded arithmetic" is/was for (one-sorted) theories below $\mathrm{I} \Delta_{0}(\exp)$;
- Buss' Bounded Arithmetic established (one-sorted) theories S_{2}^{i}, T_{2}^{i} for polynomial time hirarchy;
\square RSUV-isomorphism is known between one-sorted and two-sorted systems;

A Brief History

- The term "bounded arithmetic" is/was for (one-sorted) theories below $\mathbf{I} \Delta_{0}(\exp)$;
- Buss' Bounded Arithmetic established (one-sorted) theories S_{2}^{i}, T_{2}^{i} for polynomial time hirarchy;
- RSUV-isomorphism is known between one-sorted and two-sorted systems;
- Cook-Nguyen's Logical Foundation for Proof Complexity (2010) established (two-sorted) theories for complexities below poly-time complexity \mathbf{P} and proposed a new research program called Bounded Reverse Mathematic (BRM).

A Brief History

- The term "bounded arithmetic" is/was for (one-sorted) theories below $\mathrm{I} \Delta_{0}(\exp)$;
- Buss' Bounded Arithmetic established (one-sorted) theories S_{2}^{i}, T_{2}^{i} for polynomial time hirarchy;
\square RSUV-isomorphism is known between one-sorted and two-sorted systems;
- Cook-Nguyen's Logical Foundation for Proof Complexity (2010) established (two-sorted) theories for complexities below poly-time complexity \mathbf{P} and proposed a new research program called Bounded Reverse Mathematic (BRM).
\square I have refined Cook's results by replacing the base theory with weaker one and continued BRM.

Systems of 2-sorted BA

The language consists of $0,1,+, \cdot,|-|,<,=, \in$.

Systems of 2-sorted BA

The language consists of $0,1,+, \cdot,|-|,<,=, \in$.
A formula is Δ_{0}^{B} iff

- it contains no sequence quantifiers; and
- all number quantifiers are bounded.

Systems of 2-sorted BA

The language consists of $0,1,+, \cdot,|-|,<,=, \in$.
A formula is Δ_{0}^{B} iff

- it contains no sequence quantifiers; and
- all number quantifiers are bounded.

Cook's base theory \mathbf{V}^{0} consists of
\square axioms of discrete-ordered semi-ring;
$\square n \in X \rightarrow n<|X|,|X|-1 \in X$;
$\square \Delta_{0}^{B}$-bounded comprehension(-bCA):
$(\exists X \leq t)(\forall x<t)(x \in X \leftrightarrow \varphi(x))$ for $\Delta_{0}^{B} \varphi$.

Systems of 2-sorted BA

The language consists of $0,1,+, \cdot,|-|,<,=, \in$.
A formula is Δ_{0}^{B} iff

- it contains no sequence quantifiers; and
- all number quantifiers are bounded.

Cook's base theory \mathbf{V}^{0} consists of
\square axioms of discrete-ordered semi-ring;
$\square n \in X \rightarrow n<|X|,|X|-1 \in X$;
$\square \Delta_{0}^{B}$-bounded comprehension(-bCA):
$(\exists X \leq t)(\forall x<t)(x \in X \leftrightarrow \varphi(x))$ for $\Delta_{0}^{B} \varphi$.
Therefore, it can be said that
BRM is a research on Δ_{0}^{B}-reducibility.

Complexity Classes below Poly-time

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$.

Complexity Classes below Poly-time

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is
AC^{0} : problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).

Complexity Classes below Poly-time

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is
AC^{0} : problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).
The important fact on AC^{0} is
Theorem: A problem is in AC^{0} iff Δ_{0}^{B}-definable.

Complexity Classes below Poly-time

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is
AC^{0} : problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).
The important fact on AC^{0} is
Theorem: A problem is in AC^{0} iff Δ_{0}^{B}-definable.
Other important complexity classes are
TC^{0} : those AC^{0}-reducible to the counting problem; ("whether $n=\#\{x: x \in X\}$ or not?")

Complexity Classes below Poly-time

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is
AC^{0} : problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).
The important fact on AC^{0} is
Theorem: A problem is in AC^{0} iff Δ_{0}^{B}-definable.
Other important complexity classes are
TC^{0} : those AC^{0}-reducible to the counting problem;
L : those solvable by DTM within log-time
$=$ those $\mathbf{A C}^{0}$-reducible to the reachability problem for directed graphs of out-degree ≤ 1;

Complexity Classes below Poly-time

It is natural to define complexity for subsets of $2^{<\omega} \times \omega$. The "base complexity" in Cook's is
AC^{0} : problems in the finite level of log-time hierarchy (defined similarly to PH by alternating TMs).
The important fact on AC^{0} is
Theorem: A problem is in AC^{0} iff Δ_{0}^{B}-definable.
Other important complexity classes are
TC^{0} : those AC^{0}-reducible to the counting problem;
L: those solvable by DTM within log-time
NL: those solvable by NTM within log-time
$=$ those $\mathbf{A C}^{0}$-reducible to the reachability problem.

Separation of Complexities

While it is known that ...
$-\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subset \mathrm{~L} \subset \mathrm{NL} \subset \mathrm{P}$.

Separation of Complexities

It is believed that
$\square \mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subsetneq \mathrm{~L} \subsetneq \mathrm{NL} \subsetneq \mathrm{P}$.

Separation of Complexities

It is believed that
$-\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subsetneq \mathrm{~L} \subsetneq \mathrm{NL} \subsetneq \mathrm{P}$.
For a complexity class $\mathrm{C}\left(=\mathrm{P}, \mathrm{NL}, \mathrm{L}, \mathrm{TC}^{0}\right)$,
$\square \delta_{\mathbf{C}}(x, X, Y)$ formalizes " Y is the computation for a chosen C-complete problem with input x, X ".
$-\mathrm{VC}=\mathrm{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.

Separation of Complexities

It is believed that
$-\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subsetneq \mathrm{~L} \subsetneq \mathrm{NL} \subsetneq \mathrm{P}$.
For a complexity class $\mathrm{C}\left(=\mathrm{P}, \mathrm{NL}, \mathrm{L}, \mathrm{TC}^{0}\right)$,
$\square \delta_{\mathbf{C}}(x, X, Y)$ formalizes " Y is the computation for a chosen C-complete problem with input x, X ".
$-\mathrm{VC}=\mathrm{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathrm{C}}(x, X, Y)$.

- VC's play the role played in RM by "big five".

Separation of Complexities

It is believed that
$-\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subsetneq \mathrm{~L} \subsetneq \mathrm{NL} \subsetneq \mathrm{P}$.
For a complexity class $\mathrm{C}\left(=\mathrm{P}, \mathrm{NL}, \mathrm{L}, \mathrm{TC}^{0}\right)$,
$\square \delta_{\mathbf{C}}(x, X, Y)$ formalizes " Y is the computation for a chosen C-complete problem with input x, X ".
$\square \mathrm{VC}=\mathrm{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
\square VC's play the role played in RM by "big five".
Thm(i) A poly-bdd $f: 2^{<\omega} \rightarrow 2^{<\omega}(|f(X)| \leq p(|X|))$ is Σ_{1}^{1}-def. prov. total in VC iff " $n \in f(X)$ " is in C; (Thus, BRM can be seen as a generalized theory on provably recursive functions.)

Separation of Complexities

It is believed that
$-\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subsetneq \mathrm{~L} \subsetneq \mathrm{NL} \subsetneq \mathrm{P}$.
For a complexity class $\mathrm{C}\left(=\mathrm{P}, \mathrm{NL}, \mathrm{L}, \mathrm{TC}^{0}\right)$,
$\square \delta_{\mathbf{C}}(x, X, Y)$ formalizes " Y is the computation for a chosen C-complete problem with input x, X ".
$\square \mathrm{VC}=\mathrm{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
\square VC's play the role played in RM by "big five".
Thm(i) A poly-bdd $f: 2^{<\omega} \rightarrow 2^{<\omega}(|f(X)| \leq p(|X|))$ is Σ_{1}^{1}-def. prov. total in VC iff " $n \in f(X)$ " is in C;
(ii) A predicate on $2^{<\omega}$ is prov. Δ_{1}^{1} in VC iff it is in C.

Separation of Complexities

It is believed that

$$
-\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subsetneq \mathrm{~L} \subsetneq \mathrm{NL} \subsetneq \mathrm{P} .
$$

For a complexity class $\mathbf{C}\left(=\mathbf{P}, \mathbf{N L}, \mathrm{L}, \mathbf{T C}^{0}\right)$,
$\square \delta_{\mathbf{C}}(x, X, Y)$ formalizes " Y is the computation for a chosen C-complete problem with input x, X ".
$\square \mathrm{VC}=\mathrm{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
VC's play the role played in RM by "big five".
Thm(i) A poly-bdd $f: 2^{<\omega} \rightarrow 2^{<\omega}(|f(X)| \leq p(|X|))$ is Σ_{1}^{1}-def. prov. total in VC iff " $n \in f(X)$ " is in C;
(ii) A predicate on $2^{<\omega}$ is prov. Δ_{1}^{1} in VC iff it is in C.

While it is known that ...

$$
\mathbf{V}^{0} \subsetneq \mathrm{VTC}^{0} \subset \mathrm{VL} \subset \mathrm{VNL} \subset \mathrm{VP} .
$$

Separation of Complexities

It is believed that

$$
-\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subsetneq \mathrm{~L} \subsetneq \mathrm{NL} \subsetneq \mathrm{P} .
$$

For a complexity class $\mathbf{C}\left(=\mathbf{P}, \mathbf{N L}, \mathrm{L}, \mathbf{T C}^{0}\right)$,
$\square \delta_{\mathbf{C}}(x, X, Y)$ formalizes " Y is the computation for a chosen C-complete problem with input x, X ".
$\square \mathrm{VC}=\mathrm{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
VC's play the role played in RM by "big five".
Thm(i) A poly-bdd $f: 2^{<\omega} \rightarrow 2^{<\omega}(|f(X)| \leq p(|X|))$ is Σ_{1}^{1}-def. prov. total in VC iff " $n \in f(X)$ " is in C;
(ii) A predicate on $2^{<\omega}$ is prov. Δ_{1}^{1} in VC iff it is in C.

It is believed (the separation of complexities implies)

$$
-\mathrm{V}^{0} \subsetneq \mathrm{VTC}^{0} \subsetneq \mathrm{VL} \subsetneq \mathrm{VNL} \subsetneq \mathrm{VP}
$$

2. Observation

Analogy between SOA and 2-BA

Analogy b/w formula-class:

Analogy between SOA and 2-BA

Analogy b/w formula-class:

$$
\Sigma_{n}^{1}: \underbrace{\left(\exists X_{1}\right)\left(\forall X_{2}\right) \cdots\left(Q X_{n}\right)} \underbrace{(\ldots \exists x \ldots \forall y \ldots)}
$$

n-alternation of set qf. $\quad \Delta_{0}^{1}$-formula

Analogy between SOA and 2-BA

Analogy b/w formula-class:

$$
\Sigma_{n}^{1}: \underbrace{\left(\exists X_{1}\right)\left(\forall X_{2}\right) \cdots\left(Q X_{n}\right)} \underbrace{(\ldots \exists x \ldots \forall y \ldots)}
$$

n-alternation of set qf. Δ_{0}^{1}-formula

$$
\begin{gathered}
\Sigma_{n}^{B}: \underbrace{\left(\exists X_{1} \leq t_{1}\right) \cdots\left(Q X_{n} \leq t_{n}\right)}_{n \text {-alternation of set qf. }} \underbrace{(\ldots \exists x<u \ldots \forall y<v \ldots)}_{\Delta_{0}^{B} \text {-formula }} \\
\text { where }(\exists X \leq t) \varphi \equiv(\exists X)(|X| \leq t \wedge \varphi) \text { etc.. }
\end{gathered}
$$

Analogy between SOA and 2-BA

Analogy b/w formula-class:

$$
\Sigma_{n}^{1}: \underbrace{\left(\exists X_{1}\right)\left(\forall X_{2}\right) \cdots\left(Q X_{n}\right)} \underbrace{(\ldots \exists x \ldots \forall y \ldots)}
$$

n-alternation of set qf. Δ_{0}^{1}-formula

$$
\Sigma_{n}^{B}: \underbrace{\left(\exists X_{1} \leq t_{1}\right) \cdots\left(Q X_{n} \leq t_{n}\right)}_{n \text {-alternation of set qf. }} \underbrace{(\ldots \exists x<u \ldots \forall y<v \ldots)}_{\Delta_{0}^{B} \text {-formula }}
$$

where $(\exists X \leq t) \varphi \equiv(\exists X)(|X| \leq t \wedge \varphi)$ etc..
(corresponds to Σ_{n}^{b} in Buss' via RSUV-isomorphism.)

Analogy between SOA and 2-BA

Analogy b/w formula-class:
$\Sigma_{n}^{1}: \underbrace{\left(\exists X_{1}\right)\left(\forall X_{2}\right) \cdots\left(Q X_{n}\right)} \underbrace{(\ldots \exists x \ldots \forall y \ldots)}$
n-alternation of set qf. Δ_{0}^{1}-formula
$\Sigma_{n}^{B}: \underbrace{\left(\exists X_{1} \leq t_{1}\right) \cdots\left(Q X_{n} \leq t_{n}\right)} \underbrace{(\ldots \exists}_{\left.\Delta^{B} \ldots \exists x<u \ldots \forall y<v \ldots\right)}$ n-alternation of set qf. $\quad \Delta_{0}^{B}$-formula
where $(\exists X \leq t) \varphi \equiv(\exists X)(|X| \leq t \wedge \varphi)$ etc..
(corresponds to Σ_{n}^{b} in Buss' via RSUV-isomorphism.)
The analogy we use is:

SOA	unbdd. set qf.	unbdd. number qf.	Δ_{0}^{1}	Σ_{n}^{1}
2-BA	bdd. set qf.	bdd. number qf.	Δ_{0}^{B}	Σ_{n}^{B}

The Analogy Leads Us to ...

The analogy guides us to:
Thm(i) $\mathbf{A C A}_{0}+\Delta_{0}^{1}$ - $\mathbf{A C}^{\text {is }} \Pi_{2}^{1}$-cons. $/ \mathbf{A C A}_{0}$;
(ii) $\mathrm{V}^{0}+\Delta_{0}^{B}$-REPL is Π_{2}^{B}-cons. $/ \mathbf{V}^{0}$ (Zambella),

The Analogy Leads Us to ...

The analogy guides us to:
Thm(i) $\mathbf{A C A}_{0}+\Delta_{0}^{1}$ - $\mathbf{A C}$ is Π_{2}^{1}-cons. $/ \mathbf{A C A}_{0}$;
(ii) $\mathrm{V}^{0}+\Delta_{0}^{B}$-REPL is Π_{2}^{B}-cons. $/ \mathbf{V}^{0}$ (Zambella),
where Γ-AC and Γ-REPL are
Γ-AC $(\forall n)(\exists X) \varphi(n, X) \rightarrow(\exists Y)(\forall n) \varphi\left(n,(Y)_{n}\right) ;$
Γ-REPL $(\forall n<s)(\exists X \leq t(n)) \varphi(n, X)$

$$
\rightarrow(\exists Y \leq\langle s, t(s)\rangle)(\forall n<s) \varphi\left(n,(Y)_{n}\right) .
$$

The Analogy Leads Us to ...

The analogy guides us to:
Thm(i) $\mathbf{A C A}_{0}+\Delta_{0}^{1}-\mathbf{A C}^{1}$ is Π_{2}^{1}-cons. $/ \mathbf{A C A}_{0}$;
(ii) $\mathrm{V}^{0}+\Delta_{0}^{B}$-REPL is Π_{2}^{B}-cons. $/ \mathrm{V}^{0}$ (Zambella),
where Γ-AC and Γ-REPL are
Γ-AC $(\forall n)(\exists X) \varphi(n, X) \rightarrow(\exists Y)(\forall n) \varphi\left(n,(Y)_{n}\right) ;$
Γ-REPL $(\forall n<s)(\exists X \leq t(n)) \varphi(n, X)$

$$
\rightarrow(\exists Y \leq\langle s, t(s)\rangle)(\forall n<s) \varphi\left(n,(Y)_{n}\right) .
$$

Note that via the analogy
\mathbf{V}^{0} corresponds to $\mathbf{A C A}_{0}, \ldots$.

The Analogy Leads Us to ...

The analogy guides us to:
Thm(i) $\mathbf{A C A}_{0}+\Delta_{0}^{1}-\mathbf{A C}^{1}$ is Π_{2}^{1}-cons. $/ \mathbf{A C A}_{0}$;
(ii) $\mathrm{V}^{0}+\Delta_{0}^{B}$-REPL is Π_{2}^{B}-cons. $/ \mathrm{V}^{0}$ (Zambella),
where Γ-AC and Γ-REPL are
Γ-AC $(\forall n)(\exists X) \varphi(n, X) \rightarrow(\exists Y)(\forall n) \varphi\left(n,(Y)_{n}\right) ;$
Γ-REPL $(\forall n<s)(\exists X \leq t(n)) \varphi(n, X)$

$$
\rightarrow(\exists Y \leq\langle s, t(s)\rangle)(\forall n<s) \varphi\left(n,(Y)_{n}\right) .
$$

Note that via the analogy
\mathbf{V}^{0} corresponds to $\mathbf{A C A}_{0}$, not to RCA_{0}.

The Analogy Leads Us to ...

The analogy guides us to:
Thm(i) $\mathbf{A C A}_{0}+\Delta_{0}^{1}-\mathbf{A C}^{1}$ is Π_{2}^{1}-cons. $/ \mathbf{A C A}_{0}$;
(ii) $\mathrm{V}^{0}+\Delta_{0}^{B}$-REPL is Π_{2}^{B}-cons. $/ \mathrm{V}^{0}$ (Zambella),
where Γ-AC and Γ-REPL are
Γ-AC $(\forall n)(\exists X) \varphi(n, X) \rightarrow(\exists Y)(\forall n) \varphi\left(n,(Y)_{n}\right) ;$
Γ-REPL $(\forall n<s)(\exists X \leq t(n)) \varphi(n, X)$

$$
\rightarrow(\exists Y \leq\langle s, t(s)\rangle)(\forall n<s) \varphi\left(n,(Y)_{n}\right) .
$$

Note that via the analogy
\mathbf{V}^{0} corresponds to ACA_{0}, not to RCA_{0}.
To make the comparison precise, we need the base theory that corresponds to RCA_{0}.

3. Introduction of Our Frameworks

Our New Base Theory \mathbf{V}^{-}

We can consider \mathbf{V}^{-}, corresponing to $\mathbf{R C A}_{0}$, by:
\square replacing $\Delta_{0}^{B}-\mathbf{b C A}$ in \mathbf{V}^{0} by $\Delta_{1}^{P L}-\mathbf{b C A}$;
\square adding $\Sigma_{1}^{P L}$-induction;
where $\Sigma_{n}^{P L}$ counts alternations of bdd number qf's
$\underbrace{\left(\exists x_{11}<t_{11}\right) \cdots\left(\exists x_{1 k_{1}}<t_{1 k_{1}}\right)}_{\text {bdd } \exists \text { 's }} \cdots \underbrace{\left(Q x_{n 1}<t_{n 1}\right) \cdots}_{\text {same-type qf's }}($ open formula $)$
n-alternation of bdd number qf's

Our New Base Theory \mathbf{V}^{-}

We can consider \mathbf{V}^{-}, corresponing to $\mathbf{R C A}_{0}$, by:
\square replacing $\Delta_{0}^{B}-\mathrm{bCA}$ in \mathbf{V}^{0} by $\Delta_{1}^{P L}-\mathrm{bCA}$;
\square adding $\Sigma_{1}^{P L}$-induction;
\square dropping $|X|-1 \in X$,
because Cook's |-| should be Δ_{0}^{B}-definable:
$x=\operatorname{length}(X) \leftrightarrow x-1 \in X \wedge(\forall y<|X|)(y \geq x \rightarrow y \notin X)$,
where $\Sigma_{n}^{P L}$ counts alternations of bdd number qf's
$\underbrace{\left(\exists x_{11}<t_{11}\right) \cdots\left(\exists x_{1 k_{1}}<t_{1 k_{1}}\right)}_{\text {bdd } \exists \text { 's }} \cdots \underbrace{\left(Q x_{n 1}<t_{n 1}\right) \cdots}_{\text {same-type qf's }}($ open formula $)$
n-alternation of bdd number qf's

$\triangle_{1}^{P L}$-definability

RM based on \mathbf{V}^{-}is a research on $\Delta_{1}^{P L}$-reducibility
\square in the sense that RM based on RCA_{0} is that on Δ_{1} (Turing) reducibility;

$\triangle_{1}^{P L}$-definability

RM based on V^{-}is a research on $\Delta_{1}^{P L}$-reducibility
\square in the sense that RM based on RCA_{0} is that on Δ_{1} (Turing) reducibility;
\square where it should be kept in mind that "provably $\Delta_{1}^{P L}$ in $\mathbf{V}^{-"} \neq " \Delta_{1}^{P L}$-definable" (as "provably Δ_{1}^{0} in $\mathrm{RCA}_{0} " \neq " \Delta_{1}^{0}$-definable").

$\triangle_{1}^{P L}$-definability

RM based on \mathbf{V}^{-}is a research on $\Delta_{1}^{P L}$-reducibility
\square in the sense that RM based on RCA_{0} is that on Δ_{1} (Turing) reducibility;
\square where it should be kept in mind that "provably $\Delta_{1}^{P L}$ in $\mathbf{V}^{-"} \neq$ " $\Delta_{1}^{P L}$-definable" (as "provably Δ_{1}^{0} in RCA_{0} " \neq " Δ_{1}^{0}-definable").
The machine model for $\Delta_{1}^{P L}$ is unclear:

$\triangle_{1}^{P L}$-definability

RM based on \mathbf{V}^{-}is a research on $\Delta_{1}^{P L}$-reducibility
\square in the sense that RM based on RCA_{0} is that on Δ_{1} (Turing) reducibility;
\square where it should be kept in mind that "provably $\Delta_{1}^{P L}$ in $\mathbf{V}^{-"} \neq$ " $\Delta_{1}^{P L}$-definable" (as "provably Δ_{1}^{0} in RCA_{0} " \neq " Δ_{1}^{0}-definable").
The machine model for $\Delta_{1}^{P L}$ is unclear:
$\square " \Sigma_{<\omega}^{P L}\left(=\Delta_{0}^{B}\right)$-definable" $=$ "in LH"

$\triangle_{1}^{P L}$-definability

RM based on \mathbf{V}^{-}is a research on $\Delta_{1}^{P L}$-reducibility
\square in the sense that RM based on RCA_{0} is that on Δ_{1} (Turing) reducibility;
\square where it should be kept in mind that "provably $\Delta_{1}^{P L}$ in $\mathbf{V}^{-"} \neq$ " $\Delta_{1}^{P L}$-definable" (as "provably Δ_{1}^{0} in RCA_{0} " \neq " Δ_{1}^{0}-definable").
The machine model for $\Delta_{1}^{P L}$ is unclear:
$\square " \Sigma_{<\omega}^{P L}\left(=\Delta_{0}^{B}\right)$-definable" $=$ "in LH"
\square bdd number qf's in $\Delta_{<\omega}^{P L}$ corr. to alternations in LH;

$\triangle_{1}^{P L}$-definability

RM based on \mathbf{V}^{-}is a research on $\Delta_{1}^{P L}$-reducibility
\square in the sense that RM based on RCA_{0} is that on Δ_{1} (Turing) reducibility;
\square where it should be kept in mind that "provably $\Delta_{1}^{P L}$ in $\mathbf{V}^{-"} \neq$ " $\Delta_{1}^{P L}$-definable" (as "provably Δ_{1}^{0} in RCA_{0} " \neq " Δ_{1}^{0}-definable").
The machine model for $\Delta_{1}^{P L}$ is unclear:
$\square " \Sigma_{<\omega}^{P L}\left(=\Delta_{0}^{B}\right)$-definable" $=$ "in LH"
\square bdd number qf's in $\Delta_{<\omega}^{P L}$ corr. to alternations in LH;
$\square \Delta_{1}^{P L}$ does not fit with log-time complexity.

$\triangle_{1}^{P L}$-definability

RM based on \mathbf{V}^{-}is a research on $\Delta_{1}^{P L}$-reducibility
\square in the sense that RM based on RCA_{0} is that on Δ_{1} (Turing) reducibility;
\square where it should be kept in mind that "provably $\Delta_{1}^{P L}$ in $\mathbf{V}^{-"} \neq$ " $\Delta_{1}^{P L}$-definable" (as "provably Δ_{1}^{0} in RCA_{0} " \neq " Δ_{1}^{0}-definable").
The machine model for $\Delta_{1}^{P L}$ is unclear:
$\square " \Sigma_{<\omega}^{P L}\left(=\Delta_{0}^{B}\right)$-definable" $=$ "in LH"
\square bdd number qf's in $\Delta_{<\omega}^{P L}$ corr. to alternations in LH;
$\square \Delta_{1}^{P L}$ does not fit with log-time complexity.
No "robust" machine model for log-time!.

V^{-}as Base Theory

\mathbf{V}^{-}can play the role of the base theory:
$\square \mathrm{VC}=\mathrm{V}^{-}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y) ;$

- where recall the definition of VC :
$\mathbf{V C}={ }_{\text {def }} \mathbf{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.

V^{-}as Base Theory

\mathbf{V}^{-}can play the role of the base theory:
$\square \mathrm{VC}=\mathbf{V}^{-}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y) ;$
\square where recall the definition of VC:

$$
\mathbf{V C}={ }_{\text {def }} \mathbf{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y) .
$$

As consequences, w.r.t. $\Delta_{1}^{P L}$-reducibility,
\square The counting problem is TC^{0}-complete;

V^{-}as Base Theory

\mathbf{V}^{-}can play the role of the base theory:
$\square \mathbf{V C}=\mathbf{V}^{-}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$;
\square where recall the definition of VC :
$\mathbf{V C}={ }_{\text {def }} \mathbf{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
As consequences, w.r.t. $\Delta_{1}^{P L}$-reducibility,
\square The counting problem is TC^{0}-complete;
\square The reachability problem for directed graphs of out-degree ≤ 1 is L-complete;

as Base Theory

\mathbf{V}^{-}can play the role of the base theory:
$\square \mathbf{V C}=\mathbf{V}^{-}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$;
\square where recall the definition of VC :
$\mathrm{VC}={ }_{\text {def }} \mathbf{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
As consequences, w.r.t. $\Delta_{1}^{P L}$-reducibility,
\square The counting problem is TC^{0}-complete;
\square The reachability problem for directed graphs of out-degree ≤ 1 is L-complete;
\square The reachability problem is NL-complete;

as Base Theory

\mathbf{V}^{-}can play the role of the base theory:
$\square \mathbf{V C}=\mathbf{V}^{-}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$;
\square where recall the definition of VC :
$\mathrm{VC}={ }_{\text {def }} \mathbf{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
As consequences, w.r.t. $\Delta_{1}^{P L}$-reducibility,
\square The counting problem is TC^{0}-complete;
\square The reachability problem for directed graphs of out-degree ≤ 1 is L-complete;
\square The reachability problem is NL-complete;

- The monotone circuit value problem is P-complete.

as Base Theory

V^{-}can play the role of the base theory:
$\square \mathrm{VC}=\mathrm{V}^{-}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$;
\square where recall the definition of VC:
$\mathrm{VC}={ }_{\text {def }} \mathbf{V}^{0}+(\forall X, x)(\exists Y) \delta_{\mathbf{C}}(x, X, Y)$.
As consequences, w.r.t. $\Delta_{1}^{P L}$-reducibility,

- The counting problem is TC^{0}-complete;
\square The reachability problem for directed graphs of out-degree ≤ 1 is L-complete;
\square The reachability problem is NL-complete;
\square The monotone circuit value problem is P-complete.
Moreover, these complete problems are ordered by

$$
\Delta_{1}^{P L} \text {-many-one-reducibility. }
$$

4. Result

Target Assertions

We consider the following assertions:
CWO: for given two well-orders R and S, we have the comparison map $R \rightarrow S$ or $S \rightarrow R$;

Target Assertions

We consider the following assertions:
CWO: for given two well-orders R and S, we have the comparison map $R \rightarrow S$ or $S \rightarrow R$;
DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m\rangle \in R)$ then $(\forall n \in X)(\exists f: \# X \rightarrow X)(f(0)=n \&$

$$
(\forall \xi<\# X-1)(\langle f(\xi), f(\xi+1)\rangle \in R))
$$

Target Assertions

We consider the following assertions:
CWO: for given two well-orders R and S, we have the comparison map $R \rightarrow S$ or $S \rightarrow R$;
DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m\rangle \in R)$ then $(\forall n \in X)(\exists f: \# X \rightarrow X)(f(0)=n \&$

$$
(\forall \xi<\# X-1)(\langle f(\xi), f(\xi+1)\rangle \in R))
$$

DWF: for a given sequence R_{n} of relations, there is X s.t. $n \in X$ iff R_{n} is well-founded;

Target Assertions

We consider the following assertions:
CWO: for given two well-orders R and S, we have the comparison map $R \rightarrow S$ or $S \rightarrow R$;
DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m\rangle \in R)$
then $(\forall n \in X)(\exists f: \# X \rightarrow X)(f(0)=n \&$

$$
(\forall \xi<\# X-1)(\langle f(\xi), f(\xi+1)\rangle \in R))
$$

DWF: for a given sequence R_{n} of relations, there is X s.t. $n \in X$ iff R_{n} is well-founded;
BISIM: for directed graphs G, F, there is B s.t.
$\langle g, f\rangle \in B$ iff (g, G) and (f, F) are bisimilar.
I.e., $\exists B^{\prime} \subset|G| \times|F| \mathrm{w} /\langle g, f\rangle \in B^{\prime}$ s.t. for $\left\langle g^{\prime}, f^{\prime}\right\rangle \in B^{\prime}$,
$\left(\forall g^{\prime \prime} \leftarrow_{G} g^{\prime}\right)\left(\exists f^{\prime \prime} \leftarrow_{F} f^{\prime}\right)\left(\left\langle g^{\prime \prime}, f^{\prime \prime}\right\rangle \in B^{\prime}\right)$ and vice versa.

Target Assertions

We consider the following assertions:
CWO: for given two well-orders R and S, we have the comparison map $R \rightarrow S$ or $S \rightarrow R$;
DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m\rangle \in R)$
then $(\forall n \in X)(\exists f: \# X \rightarrow X)(f(0)=n \&$

$$
(\forall \xi<\# X-1)(\langle f(\xi), f(\xi+1)\rangle \in R))
$$

DWF: for a given sequence R_{n} of relations, there is X s.t. $n \in X$ iff R_{n} is well-founded;
BISIM: for directed graphs G, F, there is B s.t.
$\langle g, f\rangle \in B$ iff (g, G) and (f, F) are bisimilar.
These can easily be formulated in 2-BA

Target Assertions

We consider the following assertions:
CWO: for given two well-orders R and S, we have the comparison map $R \rightarrow S$ or $S \rightarrow R$;
DC: if $(\forall n \in X)(\exists m \in X)(\langle n, m\rangle \in R)$
then $(\forall n \in X)(\exists f: \# X \rightarrow X)(f(0)=n \&$

$$
(\forall \xi<\# X-1)(\langle f(\xi), f(\xi+1)\rangle \in R))
$$

DWF: for a given sequence R_{n} of relations, there is X s.t. $n \in X$ iff R_{n} is well-founded;
BISIM: for directed graphs G, F, there is B s.t.
$\langle g, f\rangle \in B$ iff (g, G) and (f, F) are bisimilar.
These can easily be formulated in 2-BA (and in SOA).

BRM Results

\mathbf{V}^{-}can proves

- VTC $^{0} \leftrightarrow \mathrm{CWO}$;

BRM Results

\mathbf{V}^{-}can proves

\square VTC $^{0} \leftrightarrow$ CWO;

- $\mathrm{VL} \leftrightarrow \mathrm{DC}$;

BRM Results

\mathbf{V}^{-}can proves

- VTC $^{0} \leftrightarrow$ CWO;
$\square \mathrm{VL} \leftrightarrow \mathrm{DC}$;
\square VNL \leftrightarrow DWF;

BRM Results

\mathbf{V}^{-}can proves

- VTC $^{0} \leftrightarrow$ CWO;
$\square \mathrm{VL} \leftrightarrow \mathrm{DC}$;
\square VNL \leftrightarrow DWF;
\square VP \leftrightarrow BISIM \leftrightarrow BISIM(rest. to w.f. trees).

BRM Results

\mathbf{V}^{-}can proves

- VTC $^{0} \leftrightarrow$ CWO;
$\square \mathrm{VL} \leftrightarrow \mathrm{DC}$;
\square VNL \leftrightarrow DWF;
\square VP \leftrightarrow BISIM \leftrightarrow BISIM(rest. to w.f. trees).
This should be compared with the fact: $\mathbf{R C A}_{0}$ proves
\square RCA $_{0} \leftrightarrow$ DC;
\square ATR $_{0} \leftrightarrow$ CWO \leftrightarrow BISIM(rest. to w.f. trees);
$\square \Pi_{1}^{1}-\mathrm{CA}_{0} \leftrightarrow$ DWF \leftrightarrow BISIM.

BRM Results

\mathbf{V}^{-}can proves
\square VTC $^{0} \leftrightarrow$ CWO;
$\square \mathrm{VL} \leftrightarrow \mathrm{DC}$;
\square VNL \leftrightarrow DWF;
\square VP \leftrightarrow BISIM \leftrightarrow BISIM(rest. to w.f. trees).
This should be compared with the fact: $\mathbf{R C A}_{0}$ proves
\square RCA $_{0} \leftrightarrow$ DC;
\square ATR $_{0} \leftrightarrow$ CWO \leftrightarrow BISIM(rest. to w.f. trees);
$\square \Pi_{1}^{1}-\mathrm{CA}_{0} \leftrightarrow$ DWF \leftrightarrow BISIM.
As a conclusion:
Finitary combinatorics is quite different from infinitary combinatorics!

Comparison with Other Works

As before, we have results on $\Delta_{1}^{P L}$-reducibility:

- comparability of well-ordering is $\mathbf{T C}^{0}$-complete;
- deciding well-foundedness is NL-complete;
\square deciding bisimilarity (rest. to w.f.) is P-complete.

Comparison with Other Works

As before, we have results on $\Delta_{1}^{P L}$-reducibility:

- comparability of well-ordering is $\mathbf{T C}^{0}$-complete;
\square deciding well-foundedness is NL-complete;
\square deciding bisimilarity (rest. to w.f.) is P-complete. Moreover, among the solving algorithms of problems,
\square we have the same results as in the previous slides
- by $\Delta_{1}^{P L}$-Weihrauch-reducibility,

Comparison with Other Works

As before, we have results on $\Delta_{1}^{P L}$-reducibility:

- comparability of well-ordering is $\mathbf{T C}^{0}$-complete;
\square deciding well-foundedness is NL-complete;
\square deciding bisimilarity (rest. to w.f.) is P-complete.
Moreover, among the solving algorithms of problems,
\square we have the same results as in the previous slides
\square by $\Delta_{1}^{P L}$-Weihrauch-reducibility,
Weihrauch-reducibility with "computable functions" replaced by " $\Delta_{1}^{P L}$-definable functions".

Comparison with Other Works

As before, we have results on $\Delta_{1}^{P L}$-reducibility:

- comparability of well-ordering is $\mathbf{T C}^{0}$-complete;
\square deciding well-foundedness is NL-complete;
- deciding bisimilarity (rest. to w.f.) is P-complete.

Moreover, among the solving algorithms of problems,

- we have the same results as in the previous slides
\square by $\triangle_{1}^{P L}$-Weihrauch-reducibility,
Weihrauch-reducibility with "computable functions" replaced by " $\Delta_{1}^{P L}$-definable functions".
- I.e., a finite version of computable RM by Brattka.

Comparison with Other Works

As before, we have results on $\Delta_{1}^{P L}$-reducibility:

- comparability of well-ordering is $\mathbf{T C}^{0}$-complete;
\square deciding well-foundedness is NL-complete;
\square deciding bisimilarity (rest. to w.f.) is P-complete.
Moreover, among the solving algorithms of problems,
\square we have the same results as in the previous slides
- by $\triangle_{1}^{P L}$-Weihrauch-reducibility,

Weihrauch-reducibility with "computable functions" replaced by " $\Delta_{1}^{P L}$-definable functions".

- I.e., a finite version of computable RM by Brattka. (Unfortunately/fortunately, no new splitting!)

Conclusions

Conclusions

Conclusions

Though \mathbf{V}^{-}and $\Delta_{1}^{P L}$-reducibility provide nice result, Question can we have a "robust" machine model for it?"

Conclusions

Though \mathbf{V}^{-}and $\Delta_{1}^{P L}$-reducibility provide nice result, Question can we have a "robust" machine model for it?"

