Towards a formal theory of computability

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais)

Mathematisches Institut, LMU, München

Workshop on Constructive Aspects of Logic and Mathematics Kanazawa, Japan, 8. - 12. March 2010

• An algebra ι is given by its constructors.

Examples:

- ► Examples of "information tokens": Sⁿ0 (n ≥ 0), S²* (in N), C(C0*)(C*0) (in D) (*: special symbol; no information).
- An information token is total if it contains no *.
- ▶ In **D**: total token ~ finite (well-founded) derivation.

- An algebra ι is given by its constructors.
- Examples:

- ► Examples of "information tokens": Sⁿ0 (n ≥ 0), S²* (in N), C(C0*)(C*0) (in D) (*: special symbol; no information).
- An information token is total if it contains no *.
- ▶ In **D**: total token ~ finite (well-founded) derivation.

- An algebra ι is given by its constructors.
- Examples:

- ► Examples of "information tokens": Sⁿ0 (n ≥ 0), S²* (in N), C(C0*)(C*0) (in D) (*: special symbol; no information).
- An information token is total if it contains no *.
- ▶ In **D**: total token ~ finite (well-founded) derivation.

- An algebra ι is given by its constructors.
- Examples:

- ► Examples of "information tokens": Sⁿ0 (n ≥ 0), S²* (in N), C(C0*)(C*0) (in D) (*: special symbol; no information).
- An information token is total if it contains no *.
- ▶ In **D**: total token ~ finite (well-founded) derivation.

- An algebra ι is given by its constructors.
- Examples:

- ► Examples of "information tokens": Sⁿ0 (n ≥ 0), S²* (in N), C(C0*)(C*0) (in D) (*: special symbol; no information).
- An information token is total if it contains no *.
- ▶ In **D**: total token ~ finite (well-founded) derivation.

For **D** (derivations):

- ▶ $\{C0*, C*0\}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ $\{C0*, C*0\} \vdash C00$ ("entails").

► Ideals: consistent and "deductively closed" sets of tokens. Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.
- ▶ {C**, C(C**)*, C*(C**), C(C**)(C**), ...} ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

▶ $\{C0*, C*0\}$ is "consistent", written $C0* \uparrow C*0$.

▶ ${C0*, C*0} \vdash C00$ ("entails").

Ideals: consistent and "deductively closed" sets of tokens.
 Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.
- ▶ $\{C^{**}, C(C^{**})^*, C^{*}(C^{**}), C(C^{**}), C^{**}, \dots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

- ▶ ${C0*, C*0}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ ${C0*, C*0} \vdash C00$ ("entails").

Ideals: consistent and "deductively closed" sets of tokens.
 Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.
- ▶ $\{C^{**}, C(C^{**})^*, C^{*}(C^{**}), C(C^{**}), C^{**}, \dots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

- ▶ ${C0*, C*0}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ ${C0*, C*0} \vdash C00$ ("entails").
- ► Ideals: consistent and "deductively closed" sets of tokens. Examples of ideals:
 - ► {C0*, C**}.
 - $\blacktriangleright \{C00, C0*, C*0, C**\}.$
 - ► The deductive closure of a finite (well-founded) derivation.
 - ▶ $\{C^{**}, C(C^{**})^*, C^{*}(C^{**}), C(C^{**}), \dots\}$ ("cototal").
 - Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

- ▶ ${C0*, C*0}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ ${C0*, C*0} \vdash C00$ ("entails").

Ideals: consistent and "deductively closed" sets of tokens.
 Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.
- ▶ $\{C^{**}, C(C^{**})^*, C^{*}(C^{**}), C(C^{**}), \dots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

- ▶ $\{C0*, C*0\}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ ${C0*, C*0} \vdash C00$ ("entails").

Ideals: consistent and "deductively closed" sets of tokens.
 Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.
- ▶ $\{C^{**}, C(C^{**})^*, C^{*}(C^{**}), C(C^{**}), \dots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

- ▶ $\{C0*, C*0\}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ ${C0*, C*0} \vdash C00$ ("entails").

► Ideals: consistent and "deductively closed" sets of tokens. Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.

▶ {C**, C(C**)*, C*(C**), C(C**)(C**), ...} ("cototal").

 Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

- $\{C0*, C*0\}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ ${C0*, C*0} \vdash C00$ ("entails").

Ideals: consistent and "deductively closed" sets of tokens.
 Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.
- ▶ {C**, C(C**)*, C*(C**), C(C**)(C**), ...} ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

For **D** (derivations):

- $\{C0*, C*0\}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ ${C0*, C*0} \vdash C00$ ("entails").

► Ideals: consistent and "deductively closed" sets of tokens. Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}.
- ► The deductive closure of a finite (well-founded) derivation.
- ▶ $\{C^{**}, C(C^{**})^*, C^{*}(C^{**}), C(C^{**}), \dots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

Tokens and entailment for ${\boldsymbol{\mathsf{N}}}$

- ► Continuous maps $f : |\mathbf{N}| \to |\mathbf{N}|$ (see below) are monotone: $x \subseteq y \to fx \subseteq fy$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms Sx ≠ 0 and Sx = Sy → x = y).
- This holds for non-flat algebras, but not for flat ones:

In **P**:
$$S_1 \emptyset = \emptyset = S_2 \emptyset$$
,
In **D**: $C\emptyset\{0\} = \emptyset = C\{0\}\emptyset$

- ► Continuous maps $f : |\mathbf{N}| \to |\mathbf{N}|$ (see below) are monotone: $x \subseteq y \to fx \subseteq fy$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms Sx ≠ 0 and Sx = Sy → x = y).
- This holds for non-flat algebras, but not for flat ones:

In **P**:
$$S_1 \emptyset = \emptyset = S_2 \emptyset$$
,
In **D**: $C\emptyset\{0\} = \emptyset = C\{0\}\emptyset$

- ► Continuous maps $f : |\mathbf{N}| \to |\mathbf{N}|$ (see below) are monotone: $x \subseteq y \to fx \subseteq fy$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms Sx ≠ 0 and Sx = Sy → x = y).
- This holds for non-flat algebras, but not for flat ones:

	SO	S(S0)
•	•	• • • •

In **P**:
$$S_1 \emptyset = \emptyset = S_2 \emptyset$$
,
In **D**: $C\emptyset\{0\} = \emptyset = C\{0\}\emptyset$

- ► Continuous maps $f : |\mathbf{N}| \to |\mathbf{N}|$ (see below) are monotone: $x \subseteq y \to fx \subseteq fy$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms Sx ≠ 0 and Sx = Sy → x = y).
- This holds for non-flat algebras, but not for flat ones:

In P:
$$S_1 \emptyset = \emptyset = S_2 \emptyset$$
,
In D: $C\emptyset\{0\} = \emptyset = C\{0\}\emptyset$

- ► Continuous maps $f : |\mathbf{N}| \to |\mathbf{N}|$ (see below) are monotone: $x \subseteq y \to fx \subseteq fy$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms Sx ≠ 0 and Sx = Sy → x = y).
- This holds for non-flat algebras, but not for flat ones:

In **P**:
$$S_1 \emptyset = \emptyset = S_2 \emptyset$$
,
In **D**: $C\emptyset\{0\} = \emptyset = C\{0\}\emptyset$.

Types

Every mathematical object has a type.

- ▶ Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma$, $\rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- ► Non-dependent types suffice.

- Every mathematical object has a type.
- ▶ Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma$, $\rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- Non-dependent types suffice.

- Every mathematical object has a type.
- ▶ Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma$, $\rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- ► Non-dependent types suffice.

- Every mathematical object has a type.
- ▶ Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma$, $\rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- Non-dependent types suffice.

- Every mathematical object has a type.
- ▶ Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma$, $\rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- Non-dependent types suffice.

Let A = (A, Con_A, ⊢_A), B = (B, Con_B, ⊢_B) be information systems (Scott). Function space: A → B := (C, Con, ⊢), with

$$C := \operatorname{Con}_{A} \times B,$$

$$\{(U_{i}, b_{i})\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \to \{b_{j}\}_{j \in J} \in \operatorname{Con}_{B}),$$

$$\{(U_{i}, b_{i})\}_{i \in I} \vdash U := (\{b_{i} \mid U \vdash_{A} U_{i}\} \vdash_{B} U).$$

▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathbf{C}_{\iota} := (\mathrm{Tok}_{\iota}, \mathrm{Con}_{\iota}, \vdash_{\iota}), \qquad \mathbf{C}_{\rho \to \sigma} := \mathbf{C}_{\rho} \to \mathbf{C}_{\sigma}.$$

- Let A = (A, Con_A, ⊢_A), B = (B, Con_B, ⊢_B) be information systems (Scott). Function space: A → B := (C, Con, ⊢), with
 - $C := \operatorname{Con}_{A} \times B,$ $\{(U_{i}, b_{i})\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \to \{b_{j}\}_{j \in J} \in \operatorname{Con}_{B}),$ $\{(U_{i}, b_{i})\}_{i \in I} \vdash U := (\{b_{i} \mid U \vdash_{A} U_{i}\} \vdash_{B} U).$
- ▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathbf{C}_{\iota} := (\mathrm{Tok}_{\iota}, \mathrm{Con}_{\iota}, \vdash_{\iota}), \qquad \mathbf{C}_{\rho \to \sigma} := \mathbf{C}_{\rho} \to \mathbf{C}_{\sigma}.$$

Let A = (A, Con_A, ⊢_A), B = (B, Con_B, ⊢_B) be information systems (Scott). Function space: A → B := (C, Con, ⊢), with

$$\begin{split} C &:= \operatorname{Con}_{\mathcal{A}} \times \mathcal{B}, \\ \{(U_i, b_i)\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_j \in \operatorname{Con}_{\mathcal{A}} \to \{b_j\}_{j \in J} \in \operatorname{Con}_{\mathcal{B}}), \\ \{(U_i, b_i)\}_{i \in I} \vdash U := (\{b_i \mid U \vdash_{\mathcal{A}} U_i\} \vdash_{\mathcal{B}} U). \end{split}$$

▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathbf{C}_{\iota} := (\mathrm{Tok}_{\iota}, \mathrm{Con}_{\iota}, \vdash_{\iota}), \qquad \mathbf{C}_{\rho \to \sigma} := \mathbf{C}_{\rho} \to \mathbf{C}_{\sigma}.$$

Let A = (A, Con_A, ⊢_A), B = (B, Con_B, ⊢_B) be information systems (Scott). Function space: A → B := (C, Con, ⊢), with

$$\begin{split} C &:= \operatorname{Con}_A \times B, \\ \{(U_i, b_i)\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_j \in \operatorname{Con}_A \to \{b_j\}_{j \in J} \in \operatorname{Con}_B), \\ \{(U_i, b_i)\}_{i \in I} \vdash U := (\{b_i \mid U \vdash_A U_i\} \vdash_B U). \end{split}$$

▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathbf{C}_{\iota} := (\mathrm{Tok}_{\iota}, \mathrm{Con}_{\iota}, \vdash_{\iota}), \qquad \mathbf{C}_{\rho \to \sigma} := \mathbf{C}_{\rho} \to \mathbf{C}_{\sigma}.$$

Let A = (A, Con_A, ⊢_A), B = (B, Con_B, ⊢_B) be information systems (Scott). Function space: A → B := (C, Con, ⊢), with

$$\begin{split} C &:= \operatorname{Con}_A \times B, \\ \{(U_i, b_i)\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_j \in \operatorname{Con}_A \to \{b_j\}_{j \in J} \in \operatorname{Con}_B), \\ \{(U_i, b_i)\}_{i \in I} \vdash U := (\{b_i \mid U \vdash_A U_i\} \vdash_B U). \end{split}$$

▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathsf{C}_{\iota} := (\operatorname{Tok}_{\iota}, \operatorname{Con}_{\iota}, \vdash_{\iota}), \qquad \mathsf{C}_{\rho \to \sigma} := \mathsf{C}_{\rho} \to \mathsf{C}_{\sigma}.$$

Let A = (A, Con_A, ⊢_A), B = (B, Con_B, ⊢_B) be information systems (Scott). Function space: A → B := (C, Con, ⊢), with

$$\begin{split} C &:= \operatorname{Con}_A \times B, \\ \{(U_i, b_i)\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_j \in \operatorname{Con}_A \to \{b_j\}_{j \in J} \in \operatorname{Con}_B), \\ \{(U_i, b_i)\}_{i \in I} \vdash U := (\{b_i \mid U \vdash_A U_i\} \vdash_B U). \end{split}$$

▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathbf{C}_{\iota} := (\operatorname{Tok}_{\iota}, \operatorname{Con}_{\iota}, \vdash_{\iota}), \qquad \mathbf{C}_{\rho \to \sigma} := \mathbf{C}_{\rho} \to \mathbf{C}_{\sigma}.$$

Let A = (A, Con_A, ⊢_A), B = (B, Con_B, ⊢_B) be information systems (Scott). Function space: A → B := (C, Con, ⊢), with

$$\begin{split} C &:= \operatorname{Con}_A \times B, \\ \{(U_i, b_i)\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_j \in \operatorname{Con}_A \to \{b_j\}_{j \in J} \in \operatorname{Con}_B), \\ \{(U_i, b_i)\}_{i \in I} \vdash U := (\{b_i \mid U \vdash_A U_i\} \vdash_B U). \end{split}$$

▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathbf{C}_{\iota} := (\operatorname{Tok}_{\iota}, \operatorname{Con}_{\iota}, \vdash_{\iota}), \qquad \mathbf{C}_{\rho \to \sigma} := \mathbf{C}_{\rho} \to \mathbf{C}_{\sigma}.$$

Terms

Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

- ► Every defined constant *D* comes with a system of computation rules $D\vec{P}_i(\vec{y}_i) = M_i$ with $FV(M_i) \subseteq \vec{y}_i$.
- ▶ $\vec{P}_i(\vec{y}_i)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $C\vec{P}$ (of base type). We assume that \vec{P}_i and \vec{P}_j for $i \neq j$ are non-unifiable.

Examples:

- ▶ Predecessor P: $N \rightarrow N$, defined by P0 = 0, P(Sn) = n,
- Gödel's primitive recursion operators

 $\begin{aligned} \mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau \text{ with computation rules} \\ \mathcal{R}0fg = f, \ \mathcal{R}(\mathrm{S}n)fg = gn(\mathcal{R}nfg), \text{ and} \end{aligned}$

▶ the least-fixed-point operators Y_{ρ} of type $(\rho \rightarrow \rho) \rightarrow \rho$ defined by the computation rule $Y_{\rho}f = f(Y_{\rho}f)$

Terms

Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

Every defined constant D comes with a system of computation rules DP_i(y_i) = M_i with FV(M_i) ⊆ y_i.

▶ $\vec{P}_i(\vec{y}_i)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $C\vec{P}$ (of base type). We assume that \vec{P}_i and \vec{P}_j for $i \neq j$ are non-unifiable.

Examples:

- ▶ Predecessor P: $N \rightarrow N$, defined by P0 = 0, P(Sn) = n,
- Gödel's primitive recursion operators

 $\begin{aligned} \mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau \text{ with computation rules} \\ \mathcal{R}0fg = f, \ \mathcal{R}(\mathrm{S}n)fg = gn(\mathcal{R}nfg), \text{ and} \end{aligned}$

Terms

Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

- ► Every defined constant *D* comes with a system of computation rules $D\vec{P}_i(\vec{y}_i) = M_i$ with $FV(M_i) \subseteq \vec{y}_i$.
- *P*_i(*y*_i): "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context CP (of base type). We assume that P
 _i and P
 _j for i ≠ j are non-unifiable.

Examples:

- ▶ Predecessor P: $N \rightarrow N$, defined by P0 = 0, P(Sn) = n,
- Gödel's primitive recursion operators
 - $\begin{aligned} \mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau \text{ with computation rules} \\ \mathcal{R}0fg = f, \ \mathcal{R}(\mathrm{S}n)fg = gn(\mathcal{R}nfg), \text{ and} \end{aligned}$

► the least-fixed-point operators Y_ρ of type (ρ → ρ) → ρ defined by the computation rule Y_ρf = f(Y_ρf), → ↓ ↓ ↓

Terms

Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

- Every defined constant D comes with a system of computation rules DP_i(y_i) = M_i with FV(M_i) ⊆ y_i.
- P_i(y_i): "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context CP (of base type). We assume that P_i and P_j for i ≠ j are non-unifiable.

Examples:

- ▶ Predecessor $P: \mathbf{N} \to \mathbf{N}$, defined by P0 = 0, P(Sn) = n,
- ▶ Gödel's primitive recursion operators $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ with computation rules
 - $\mathcal{R}0fg = f$, $\mathcal{R}(Sn)fg = gn(\mathcal{R}nfg)$, and

► the least-fixed-point operators Y_{ρ} of type $(\rho \rightarrow \rho) \rightarrow \rho$ defined by the computation rule $Y_{\rho}f = f(Y_{\rho}f)$

Terms

Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

- Every defined constant D comes with a system of computation rules DP_i(y_i) = M_i with FV(M_i) ⊆ y_i.
- ▶ $\vec{P}_i(\vec{y}_i)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $C\vec{P}$ (of base type). We assume that \vec{P}_i and \vec{P}_j for $i \neq j$ are non-unifiable.

Examples:

- ▶ Predecessor $P: \mathbf{N} \to \mathbf{N}$, defined by P0 = 0, P(Sn) = n,
- Gödel's primitive recursion operators

 $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ with computation rules $\mathcal{R}0fg = f$, $\mathcal{R}(\mathrm{S}n)fg = gn(\mathcal{R}nfg)$, and

▶ the least-fixed-point operators Y_{ρ} of type $(\rho \rightarrow \rho) \rightarrow \rho$ defined by the computation rule $Y_{\rho}f = f(Y_{\rho}f)$

Terms

Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

- Every defined constant D comes with a system of computation rules DP_i(y_i) = M_i with FV(M_i) ⊆ y_i.
- ▶ $\vec{P}_i(\vec{y}_i)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $C\vec{P}$ (of base type). We assume that \vec{P}_i and \vec{P}_j for $i \neq j$ are non-unifiable.

Examples:

- ▶ Predecessor $P: \mathbf{N} \to \mathbf{N}$, defined by P0 = 0, P(Sn) = n,
- ► Gödel's primitive recursion operators $\mathcal{R}_{\mathbf{N}}^{\tau} : \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ with computation rules $\mathcal{R}0fg = f, \mathcal{R}(Sn)fg = gn(\mathcal{R}nfg), \text{ and}$
- ▶ the least-fixed-point operators Y_{ρ} of type $(\rho \rightarrow \rho) \rightarrow \rho$ defined by the computation rule $Y_{\rho}f = f(Y_{\rho}f)$.

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \to \sigma$ we inductively define a set $[\![\lambda_{\vec{x}} M]\!]$ of tokens of type $\vec{\rho} \to \sigma$.

 $\frac{U_i \vdash b}{(\vec{U}, b) \in [\![\lambda_{\vec{X}} x_i]\!]}(V), \qquad \frac{(\vec{U}, V, c) \in [\![\lambda_{\vec{X}} M]\!] \quad (\vec{U}, V) \subseteq [\![\lambda_{\vec{X}} N]\!]}{(\vec{U}, c) \in [\![\lambda_{\vec{X}} (MN)]\!]}(A).$

For every constructor C and defined constant D:

$$\frac{\vec{V}\vdash\vec{b^*}}{(\vec{U},\vec{V},\mathbf{C}\vec{b^*})\in[\![\lambda_{\vec{x}}\mathbf{C}]\!]}(\mathbf{C}),\qquad\frac{(\vec{U},\vec{V},b)\in[\![\lambda_{\vec{x},\vec{y}}M]\!]}{(\vec{U},\vec{W},b)\in[\![\lambda_{\vec{x}}D]\!]}\vec{W}\vdash\vec{P}(\vec{V})}(D),$$

$$(\vec{U}, b)$$
 denotes $(U_1, \dots, (U_n, b) \dots),$
 $(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} M \rrbracket$ means $(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket$ for all $b \in V$.

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \to \sigma$ we inductively define a set $[\![\lambda_{\vec{x}} M]\!]$ of tokens of type $\vec{\rho} \to \sigma$.

$$\frac{U_i \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_i \rrbracket} (V), \qquad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{x}} M \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{x}} (MN) \rrbracket} (A).$$

For every constructor C and defined constant D:

$$\frac{\vec{V}\vdash\vec{b^*}}{(\vec{U},\vec{V},\mathbf{C}\vec{b^*})\in[\![\lambda_{\vec{x}}\mathbf{C}]\!]}(\mathbf{C}),\qquad\frac{(\vec{U},\vec{V},b)\in[\![\lambda_{\vec{x},\vec{y}}M]\!]}{(\vec{U},\vec{W},b)\in[\![\lambda_{\vec{x}}D]\!]}\vec{W}\vdash\vec{P}(\vec{V})}(D),$$

$$(\vec{U}, b)$$
 denotes $(U_1, \dots, (U_n, b) \dots),$
 $(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} M \rrbracket$ means $(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket$ for all $b \in V$.

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \to \sigma$ we inductively define a set $[\![\lambda_{\vec{x}} M]\!]$ of tokens of type $\vec{\rho} \to \sigma$.

$$\frac{U_i \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_i \rrbracket}(V), \qquad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{x}} M \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{x}} (MN) \rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{V}\vdash\vec{b^*}}{(\vec{U},\vec{V},\mathbf{C}\vec{b^*})\in[\![\lambda_{\vec{x}}\mathbf{C}]\!]}(\mathbf{C}),\qquad\frac{(\vec{U},\vec{V},b)\in[\![\lambda_{\vec{x},\vec{y}}M]\!]}{(\vec{U},\vec{W},b)\in[\![\lambda_{\vec{x}}D]\!]}\vec{W}\vdash\vec{P}(\vec{V})}(D),$$

$$(\vec{U}, b)$$
 denotes $(U_1, \dots, (U_n, b) \dots),$
 $(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} M \rrbracket$ means $(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket$ for all $b \in V$

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \to \sigma$ we inductively define a set $[\![\lambda_{\vec{x}} M]\!]$ of tokens of type $\vec{\rho} \to \sigma$.

$$\frac{U_i \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_i \rrbracket}(V), \qquad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{x}} M \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{x}} (MN) \rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{V}\vdash\vec{b^*}}{(\vec{U},\vec{V},\mathbf{C}\vec{b^*})\in[\![\lambda_{\vec{x}}\mathbf{C}]\!]}(\mathbf{C}),\qquad\frac{(\vec{U},\vec{V},b)\in[\![\lambda_{\vec{x},\vec{y}}M]\!]}{(\vec{U},\vec{W},b)\in[\![\lambda_{\vec{x}}D]\!]}\vec{W}\vdash\vec{P}(\vec{V})}(D),$$

$$(\vec{U}, b)$$
 denotes $(U_1, \dots, (U_n, b) \dots),$
 $(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} M \rrbracket$ means $(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket$ for all $b \in V$

For every closed term $\lambda_{\vec{x}}M$ of type $\vec{\rho} \to \sigma$ we inductively define a set $[\![\lambda_{\vec{x}}M]\!]$ of tokens of type $\vec{\rho} \to \sigma$.

$$\frac{U_i \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{X}} x_i \rrbracket}(V), \qquad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{X}} M \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{X}} (MN) \rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{V} \vdash \vec{b^*}}{(\vec{U}, \vec{V}, C\vec{b^*}) \in \llbracket \lambda_{\vec{x}} C \rrbracket} (C), \qquad \frac{(\vec{U}, \vec{V}, b) \in \llbracket \lambda_{\vec{x}, \vec{y}} M \rrbracket}{(\vec{U}, \vec{W}, b) \in \llbracket \lambda_{\vec{x}} D \rrbracket} \vec{W} \vdash \vec{P}(\vec{V}) (D),$$

$$(\vec{U}, b)$$
 denotes $(U_1, \dots, (U_n, b) \dots),$
 $(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} M \rrbracket$ means $(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket$ for all $b \in V$.

For every term M, $[\lambda_{\vec{x}}M]$ is an ideal.

 If a term M converts to M' by βη-conversion or application of a computation rule, then [[M]] = [[M']].

Let

$$\llbracket M \rrbracket_{\vec{x}}^{\vec{u}} := \bigcup_{\vec{U} \subseteq \vec{u}} \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} \quad \text{with} \quad \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} := \{ b \mid (\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket \}.$$

$$c \in \llbracket MN \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{u}}} ((V, c) \in \llbracket M \rrbracket_{\vec{x}}^{\vec{u}}).$$

- For every term M, $[\lambda_{\vec{X}}M]$ is an ideal.
- If a term M converts to M' by βη-conversion or application of a computation rule, then [[M]] = [[M']].

Let

$$\llbracket M \rrbracket_{\vec{X}}^{\vec{u}} := \bigcup_{\vec{U} \subseteq \vec{u}} \llbracket M \rrbracket_{\vec{X}}^{\vec{U}} \quad \text{with} \quad \llbracket M \rrbracket_{\vec{X}}^{\vec{U}} := \{ \ b \mid (\vec{U}, b) \in \llbracket \lambda_{\vec{X}} M \rrbracket \}.$$

$$c \in \llbracket MN \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{u}}} ((V, c) \in \llbracket M \rrbracket_{\vec{x}}^{\vec{u}}).$$

- For every term M, $[\lambda_{\vec{X}}M]$ is an ideal.
- If a term M converts to M' by βη-conversion or application of a computation rule, then [[M]] = [[M']].

Let

$$\llbracket M \rrbracket_{\vec{x}}^{\vec{u}} := \bigcup_{\vec{U} \subseteq \vec{u}} \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} \quad \text{with} \quad \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} := \{ \ b \mid (\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket \}.$$

$$c \in \llbracket MN \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{u}}} ((V, c) \in \llbracket M \rrbracket_{\vec{x}}^{\vec{u}}).$$

- For every term M, $[\lambda_{\vec{X}}M]$ is an ideal.
- If a term M converts to M' by βη-conversion or application of a computation rule, then [[M]] = [[M']].

Let

$$\llbracket M \rrbracket_{\vec{x}}^{\vec{u}} := \bigcup_{\vec{U} \subseteq \vec{u}} \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} \quad \text{with} \quad \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} := \{ \ b \mid (\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket \}.$$

$$c \in \llbracket MN \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{u}}} ((V, c) \in \llbracket M \rrbracket_{\vec{x}}^{\vec{u}}).$$

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_1 \approx x_2$ between them are defined inductively.

- For an algebra ι, the total ideals x are those of the form Cz with C a constructor of ι and z total.
- x₁ ≈_ι x₂ iff both are of the form Cz_i with the same constructor C of ι, and z_{1j} ≈_ι z_{2j} for all j.

•
$$f \in G_{\rho \to \sigma}$$
 iff $\forall_{z \in G_{\rho}} (fz \in G_{\sigma}).$

▶ For $f, g \in G_{\rho \to \sigma}$ define $f \approx_{\rho \to \sigma} g$ by $\forall_{x \in G_{\rho}} (fx \approx_{\sigma} gx)$.

Theorem (Ershov 1974, Longo & Moggi 1984) $x \approx_{\rho} y$ implies $f_x \approx_{\sigma} f_y$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \to \sigma}$.

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_1 \approx x_2$ between them are defined inductively.

For an algebra *ι*, the total ideals x are those of the form Cz with C a constructor of *ι* and z total.

▶ $x_1 \approx_{\iota} x_2$ iff both are of the form $C\vec{z_i}$ with the same constructor C of ι , and $z_{1j} \approx_{\iota} z_{2j}$ for all j.

$$\blacktriangleright f \in G_{\rho \to \sigma} \text{ iff } \forall_{z \in G_{\rho}} (fz \in G_{\sigma}).$$

▶ For $f, g \in G_{\rho \to \sigma}$ define $f \approx_{\rho \to \sigma} g$ by $\forall_{x \in G_{\rho}} (fx \approx_{\sigma} gx)$.

Theorem (Ershov 1974, Longo & Moggi 1984) $x \approx_{\rho} y$ implies $f_x \approx_{\sigma} f_y$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \to \sigma}$.

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_1 \approx x_2$ between them are defined inductively.

- For an algebra *ι*, the total ideals x are those of the form C*z* with C a constructor of *ι* and *z* total.
- x₁ ≈_ι x₂ iff both are of the form Cz_i with the same constructor C of ι, and z_{1j} ≈_ι z_{2j} for all j.
- ▶ $f \in G_{\rho \to \sigma}$ iff $\forall_{z \in G_{\rho}} (fz \in G_{\sigma}).$
- ▶ For $f, g \in G_{\rho \to \sigma}$ define $f \approx_{\rho \to \sigma} g$ by $\forall_{x \in G_{\rho}} (fx \approx_{\sigma} gx)$.

Theorem (Ershov 1974, Longo & Moggi 1984) $x \approx_{\rho} y$ implies $fx \approx_{\sigma} fy$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \to \sigma}$

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_1 \approx x_2$ between them are defined inductively.

- For an algebra *ι*, the total ideals x are those of the form C*z* with C a constructor of *ι* and *z* total.
- x₁ ≈_ℓ x₂ iff both are of the form Cz_i with the same constructor C of ℓ, and z_{1i} ≈_ℓ z_{2i} for all j.

•
$$f \in G_{\rho \to \sigma}$$
 iff $\forall_{z \in G_{\rho}} (fz \in G_{\sigma}).$

▶ For $f, g \in G_{\rho \to \sigma}$ define $f \approx_{\rho \to \sigma} g$ by $\forall_{x \in G_{\rho}} (fx \approx_{\sigma} gx)$.

Theorem (Ershov 1974, Longo & Moggi 1984) $x \approx y$ implies fx $\approx fy$ for $x, y \in G$, and $f \in G$.

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_1 \approx x_2$ between them are defined inductively.

- For an algebra *ι*, the total ideals x are those of the form C*z* with C a constructor of *ι* and *z* total.
- ► $x_1 \approx_{\iota} x_2$ iff both are of the form $C\vec{z}_i$ with the same constructor C of ι , and $z_{1j} \approx_{\iota} z_{2j}$ for all j.

•
$$f \in G_{\rho \to \sigma}$$
 iff $\forall_{z \in G_{\rho}} (fz \in G_{\sigma}).$

▶ For $f, g \in G_{\rho \to \sigma}$ define $f \approx_{\rho \to \sigma} g$ by $\forall_{x \in G_{\rho}} (fx \approx_{\sigma} gx)$.

Theorem (Ershov 1974, Longo & Moggi 1984) $x \approx_{\rho} y$ implies $f_x \approx_{\sigma} f_y$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \to \sigma}$

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_1 \approx x_2$ between them are defined inductively.

- For an algebra *ι*, the total ideals x are those of the form C*z* with C a constructor of *ι* and *z* total.
- ► $x_1 \approx_{\iota} x_2$ iff both are of the form $C\vec{z}_i$ with the same constructor C of ι , and $z_{1j} \approx_{\iota} z_{2j}$ for all j.

•
$$f \in G_{\rho \to \sigma}$$
 iff $\forall_{z \in G_{\rho}} (fz \in G_{\sigma})$.

▶ For $f, g \in G_{\rho \to \sigma}$ define $f \approx_{\rho \to \sigma} g$ by $\forall_{x \in G_{\rho}} (fx \approx_{\sigma} gx)$.

Theorem (Ershov 1974, Longo & Moggi 1984) $x \approx_{\rho} y$ implies $fx \approx_{\sigma} fy$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \to \sigma}$.

Density

The total functionals are dense (w.r.t. the Scott topology) in the space of all partial continuous functionals of type ρ .

Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)

For every type $\rho = \rho_1 \rightarrow \ldots \rightarrow \rho_p \rightarrow \iota$ we have decidable formulas $\operatorname{TExt}_{\rho}$ and $\operatorname{Sep}_{\rho}^i$ $(i = 1, \ldots, p)$ such that

► $\forall_{U \in \operatorname{Con}_{\rho}} (U \subseteq \{ a \mid \operatorname{TExt}_{\rho}(U, a) \} \in G_{\rho})$ and

 $\blacktriangleright \forall_{U,V \in \operatorname{Con}_{\rho}} (U \not 1_{\rho} V \to \vec{z}_{U,V} \in G \land U \vec{z}_{U,V} \not 1_{\iota} V \vec{z}_{U,V}),$

where $\vec{z}_{U,V} = z_{U,V,1}, \dots, z_{U,V,p}$ and $z_{U,V,i} = \{ a \mid \text{Sep}_{\rho}^{i}(U, V, a) \}.$

Proof.

By induction on ρ .

Density

The total functionals are dense (w.r.t. the Scott topology) in the space of all partial continuous functionals of type ρ .

Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)

For every type $\rho = \rho_1 \rightarrow \ldots \rightarrow \rho_p \rightarrow \iota$ we have decidable formulas $\operatorname{TExt}_{\rho}$ and $\operatorname{Sep}_{\rho}^i$ $(i = 1, \ldots, p)$ such that

► $\forall_{U \in \operatorname{Con}_{\rho}} (U \subseteq \{ a \mid \operatorname{TExt}_{\rho}(U, a) \} \in G_{\rho})$ and

 $\blacktriangleright \forall_{U,V \in \operatorname{Con}_{\rho}} (U \not\!\!\!1_{\rho} V \to \vec{z}_{U,V} \in G \land U \vec{z}_{U,V} \not\!\!\!1_{\iota} V \vec{z}_{U,V}),$

where $\vec{z}_{U,V} = z_{U,V,1}, \dots, z_{U,V,\rho}$ and $z_{U,V,i} = \{ a \mid \text{Sep}_{\rho}^{i}(U, V, a) \}.$

Proof.

By induction on ρ .

Density

The total functionals are dense (w.r.t. the Scott topology) in the space of all partial continuous functionals of type ρ .

Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)

For every type $\rho = \rho_1 \rightarrow \ldots \rightarrow \rho_p \rightarrow \iota$ we have decidable formulas $\operatorname{TExt}_{\rho}$ and $\operatorname{Sep}_{\rho}^i$ $(i = 1, \ldots, p)$ such that

► $\forall_{U \in \operatorname{Con}_{\rho}} (U \subseteq \{ a \mid \operatorname{TExt}_{\rho}(U, a) \} \in G_{\rho})$ and

$$\blacktriangleright \forall_{U,V \in \operatorname{Con}_{\rho}} (U \not\!\!\!\! 1_{\rho} V \to \vec{z}_{U,V} \in G \land U \vec{z}_{U,V} \not\!\!\! 1_{\iota} V \vec{z}_{U,V}),$$

where $\vec{z}_{U,V} = z_{U,V,1}, \dots, z_{U,V,p}$ and $z_{U,V,i} = \{ a \mid \text{Sep}_{\rho}^{i}(U, V, a) \}.$

Proof.

By induction on ρ .

Definability

There will be two kinds of (natural) numbers:

- ▶ total tokens in **N**, i.e., $S^n 0$ ("index numbers" $n \in \mathbb{N}$), and
- total ideals \overline{n} of type **N**.

Fix enumerations

▶ $(e_n)_{n \in \mathbb{N}}$ of all tokens, and

• $(E_n)_{n \in \mathbb{N}}$ of all formal neighborhoods,

one for each type.

Definability

There will be two kinds of (natural) numbers:

- ▶ total tokens in **N**, i.e., $S^n 0$ ("index numbers" $n \in \mathbb{N}$), and
- total ideals \overline{n} of type **N**.

Fix enumerations

- $(e_n)_{n\in\mathbb{N}}$ of all tokens, and
- $(E_n)_{n \in \mathbb{N}}$ of all formal neighborhoods,

one for each type.

The parallel conditional pcond: $\mathbf{B} \rightarrow \rho \rightarrow \rho \rightarrow \rho$

It is defined by the clauses

$$U \vdash \mathfrak{t} \to V \vdash a \to (U, V, W, a) \in \text{pcond},$$
$$U \vdash \text{ff} \to W \vdash a \to (U, V, W, a) \in \text{pcond},$$
$$V \vdash a \to W \vdash a \to (U, V, W, a) \in \text{pcond}.$$

We also need the least-fixed-point axiom, which says that any set of tokens (U, V, W, a) satisfying these is a superset of pcond. Lemma (Properties of pcond)

pcond is an ideal, and

$$tt \in z \to pcond(z, x, y) = x,$$

$$ff \in z \to pcond(z, x, y) = y,$$

$$a \in x \to a \in y \to a \in pcond(z, x, y).$$

The parallel conditional pcond: $\mathbf{B} \rightarrow \rho \rightarrow \rho \rightarrow \rho$

It is defined by the clauses

$$U \vdash \mathsf{tt} \to V \vdash a \to (U, V, W, a) \in \text{pcond}, \\ U \vdash \mathsf{ff} \to W \vdash a \to (U, V, W, a) \in \text{pcond}, \\ V \vdash a \to W \vdash a \to (U, V, W, a) \in \text{pcond}.$$

We also need the least-fixed-point axiom, which says that any set of tokens (U, V, W, a) satisfying these is a superset of pcond.

Lemma (Properties of pcond) pcond *is an ideal, and*

$$tt \in z \to pcond(z, x, y) = x,$$

$$ff \in z \to pcond(z, x, y) = y,$$

$$a \in x \to a \in y \to a \in pcond(z, x, y).$$

The parallel conditional pcond: $\mathbf{B} \rightarrow \rho \rightarrow \rho \rightarrow \rho$

It is defined by the clauses

$$U \vdash \mathsf{tt} \to V \vdash a \to (U, V, W, a) \in \text{pcond}, \\ U \vdash \mathsf{ff} \to W \vdash a \to (U, V, W, a) \in \text{pcond}, \\ V \vdash a \to W \vdash a \to (U, V, W, a) \in \text{pcond}.$$

We also need the least-fixed-point axiom, which says that any set of tokens (U, V, W, a) satisfying these is a superset of pcond.

Lemma (Properties of pcond)

pcond is an ideal, and

$$\begin{split} & \texttt{tt} \in z \to \operatorname{pcond}(z, x, y) = x, \\ & \texttt{ff} \in z \to \operatorname{pcond}(z, x, y) = y, \\ & \texttt{a} \in x \to \texttt{a} \in y \to \texttt{a} \in \operatorname{pcond}(z, x, y). \end{split}$$

A continuous variant of the union for N

For ideals in **N**, the union (\sim maximum) is not continuous. Continuous variant: $\cup_{\mathbf{N}}^{\#} : \mathbf{N} \to \mathbf{N} \to \mathbf{N}$, defined by the clauses

$$U \vdash e_n \to V \vdash n \to U \vdash a \to (U, V, a) \in \bigcup_{\mathbf{N}}^{\#},$$

$$\{e_n\} \vdash a \to V \vdash n \to (U, V, a) \in \bigcup_{\mathbf{N}}^{\#},$$

plus the least-fixed-point axiom.

Lemma (Properties of $\bigcup_{N}^{\#}$) $\bigcup_{N}^{\#}$ is an ideal, and

$$\forall_{a \in X} (a \uparrow e_n) \to X \cup_{\mathbb{N}}^{\#} \overline{n} = X \cup \overline{\{e_n\}},$$
$$e_n \in X \cup_{\mathbb{N}}^{\#} \overline{n}.$$

A continuous variant of the union for N

For ideals in **N**, the union (\sim maximum) is not continuous. Continuous variant: $\cup_{\mathbf{N}}^{\#} : \mathbf{N} \to \mathbf{N} \to \mathbf{N}$, defined by the clauses

$$U \vdash e_n \to V \vdash n \to U \vdash a \to (U, V, a) \in \bigcup_{\mathbf{N}}^{\#},$$

$$\{e_n\} \vdash a \to V \vdash n \to (U, V, a) \in \bigcup_{\mathbf{N}}^{\#},$$

plus the least-fixed-point axiom.

Lemma (Properties of $\cup_{N}^{\#}$) $\cup_{N}^{\#}$ is an ideal, and

$$\forall_{a \in x} (a \uparrow e_n) \to x \cup_{\mathbf{N}}^{\#} \overline{n} = x \cup \overline{\{e_n\}},$$
$$e_n \in x \cup_{\mathbf{N}}^{\#} \overline{n}.$$

A continuous variant of consistency

Define
$$\uparrow_{\rho}^{\#}$$
 of type $\rho \to \mathbf{N} \to \mathbf{B}$ by the clauses
 $U \vdash E_n \to V \vdash n \to (U, V, tt) \in \uparrow_{\rho}^{\#},$
 $a \in U \to b \in E_n \to V \vdash n \to a \not\uparrow b \to (U, V, ff) \in \uparrow_{\rho}^{\#}.$

Again we require the least-fixed-point axiom.

Lemma (Properties of $\uparrow^{\#}_{\rho}$) $\uparrow^{\#}_{\rho}$ is an ideal, and

$$\begin{split} \mathfrak{tt} &\in x \uparrow_{\rho}^{\#} \ \overline{n} \leftrightarrow x \supseteq E_{n}, \\ \mathfrak{ff} &\in x \uparrow_{\rho}^{\#} \ \overline{n} \leftrightarrow \exists_{a \in x, b \in E_{n}} (a \ \mathring{1} \ b) \end{split}$$

A continuous variant of consistency

Define
$$\uparrow_{\rho}^{\#}$$
 of type $\rho \to \mathbf{N} \to \mathbf{B}$ by the clauses
 $U \vdash E_n \to V \vdash n \to (U, V, tt) \in \uparrow_{\rho}^{\#},$
 $a \in U \to b \in E_n \to V \vdash n \to a \not\uparrow b \to (U, V, ff) \in \uparrow_{\rho}^{\#}.$

Again we require the least-fixed-point axiom.

Lemma (Properties of $\uparrow^{\#}_{\rho}$) $\uparrow^{\#}_{\rho}$ is an ideal, and

$$\begin{split} \mathfrak{tt} &\in x \uparrow_{\rho}^{\#} \overline{n} \leftrightarrow x \supseteq E_{n}, \\ \mathfrak{ff} &\in x \uparrow_{\rho}^{\#} \overline{n} \leftrightarrow \exists_{a \in x, b \in E_{n}} (a \not 1 b). \end{split}$$

A continuous variant of existence

Define
$$\exists$$
 of type $(\mathbf{N} \to \mathbf{B}) \to \mathbf{B}$ by the clauses
 $U \vdash (\{\mathbf{S}^n \mathbf{0}\}, \mathbf{t}) \to (U, \mathbf{t}) \in \exists,$
 $U \vdash (\{\mathbf{S}^n *\}, \mathbf{ff}) \to \forall_{i < n} (U \vdash (\{\mathbf{S}^i \mathbf{0}\}, \mathbf{ff})) \to (U, \mathbf{ff}) \in \exists,$

plus the least-fixed-point axiom.

Lemma (Properties of ∃) ∃ *is an ideal, and*

$$\begin{split} & \mathfrak{t} \in \exists x \leftrightarrow \exists_n((\{\mathbf{S}^n \mathbf{0}\}, \mathfrak{t}) \in x), \\ & \mathfrak{f} \in \exists x \leftrightarrow \exists_n((\{\mathbf{S}^n \ast\}, \mathfrak{f}) \in x \land \forall_{i < n}((\{\mathbf{S}^i \mathbf{0}\}, \mathfrak{f}) \in x). \end{split}$$

A continuous variant of existence

Define
$$\exists$$
 of type $(\mathbf{N} \to \mathbf{B}) \to \mathbf{B}$ by the clauses
 $U \vdash (\{\mathbf{S}^n \mathbf{0}\}, \mathbf{t}) \to (U, \mathbf{t}) \in \exists,$
 $U \vdash (\{\mathbf{S}^n *\}, \mathbf{ff}) \to \forall_{i < n} (U \vdash (\{\mathbf{S}^i \mathbf{0}\}, \mathbf{ff})) \to (U, \mathbf{ff}) \in \exists,$

plus the least-fixed-point axiom.

Lemma (Properties of \exists) \exists is an ideal, and

$$\begin{split} & \mathfrak{t} \in \exists x \leftrightarrow \exists_n ((\{\mathbf{S}^n \mathbf{0}\}, \mathfrak{t}) \in x), \\ & \mathsf{ff} \in \exists x \leftrightarrow \exists_n ((\{\mathbf{S}^n \ast\}, \mathsf{ff}) \in x \land \forall_{i < n} ((\{\mathbf{S}^i \mathbf{0}\}, \mathsf{ff}) \in x). \end{split}$$

Definability

 $\Phi: \rho \to \iota$ is called "recursive in $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$ " if it can be defined by a term involving the constructors for ι and \mathbf{N} , the fixed point operators Y_{ρ} , and predecessor, $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$.

Theorem (Plotkin 1977)

For an algebra ι with at most unary constructors (e.g., **N**, **B** or **P**) and $\Phi: \rho \rightarrow \iota$ a partial continuous functional, the following are equivalent.

(a) Φ is computable.

- (b) Φ is recursive in $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$.
- (c) Φ is recursive in $\cup_{\mathsf{N}}^{\#}$, pcond and \exists .

Definability

 $\Phi: \rho \to \iota$ is called "recursive in $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$ " if it can be defined by a term involving the constructors for ι and \mathbf{N} , the fixed point operators Y_{ρ} , and predecessor, $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$.

Theorem (Plotkin 1977)

For an algebra ι with at most unary constructors (e.g., **N**, **B** or **P**) and $\Phi: \rho \rightarrow \iota$ a partial continuous functional , the following are equivalent.

- (a) Φ is computable.
- (b) Φ is recursive in $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$.
- (c) Φ is recursive in $\cup_{\mathbf{N}}^{\#}$, pcond and \exists .

Proof of the definability theorem

 $(a) \rightarrow (b)$. Let $\Phi \colon \rho \rightarrow \iota$ be computable:

 $\Phi = \{ (E_{fn}, e_{gn}) \mid n \in \mathbb{N} \} \text{ with } f, g \text{ prim. rec. functions}$

 \overline{f} : continuous extension of f to ideals, such that $\overline{fn} = \overline{f}\overline{n}$. Show: Φ definable by $\Phi \varphi = Y w_{\varphi} \overline{0}$ with w_{φ} of type $(\mathbf{N} \to \iota) \to \mathbf{N} \to \iota$:

$$w_{\varphi}\psi x := \operatorname{pcond}(\varphi \uparrow_{\rho}^{\#} \overline{f}x, \psi(x+1) \cup_{\mathsf{N}}^{\#} \overline{g}x, \psi(x+1)).$$

Proof of the definability theorem (continued)

Write w for w_{φ} . Prove $\forall_n (a \in w^{k+1} \emptyset \overline{n} \to \exists_{n \leq l \leq n+k} (\varphi \supseteq E_{fl} \land \{e_{gl}\} \vdash a)).$ (1) by induction on k. Step $k \mapsto k+1$: $a \in w^{k+2} \emptyset \overline{n} = w(w^{k+1} \emptyset) \overline{n} = pcond(\varphi \uparrow_{\rho}^{\#} \overline{fn}, v \cup_{\mathbf{N}}^{\#} \overline{gn}, v),$ with $v := w^{k+1} \emptyset(\overline{n}+1)$. Then either $a \in v$ (\to done by IH) or else

$$\varphi \supseteq E_{fn} \wedge \{e_{gn}\} \vdash a$$

Now $\Phi \varphi \supseteq Yw\overline{0}$ follows easily. Assume $a \in Yw\overline{0}$. Then $a \in w^{k+1}\emptyset\overline{0}$ for some k. By (1) there is an I with $0 \le I \le k$ such that $\varphi \supseteq E_{fl}$ and $\{e_{gl}\} \vdash a$. But this implies $a \in \Phi \varphi$.

Proof of the definability theorem (continued)

Converse: assume $a \in \Phi \varphi$. Then $(U, a) \in \Phi$ for some $U \subseteq \varphi$. By assumption on Φ : $U = E_{fn}$ and $a = e_{gn}$ for some n. We show

$$a\in w^{k+1}\emptyset(\overline{n-k}) \quad ext{for } k\leq n.$$

by induction on k. Step $k \mapsto k + 1$: by definition of w $(:= w_{\varphi})$

$$\begin{aligned} \mathbf{v}' &:= \mathbf{w}^{k+2} \emptyset(\overline{n-k-1}) \\ &= \mathbf{w}(\mathbf{w}^{k+1} \emptyset)(\overline{n-k-1}) \\ &= \operatorname{pcond}(\varphi \uparrow_{\rho}^{\#} \overline{f(n-k-1)}, \mathbf{v} \cup_{\mathbf{N}}^{\#} \overline{g(n-k-1)}, \mathbf{v}) \end{aligned}$$

with $v := w^{k+1} \emptyset(\overline{n-k})$. By IH: $a \in v$; we show $a \in v'$. If a and $e_{g(n-k-1)}$ are inconsistent, $a \in \Phi \varphi$ and $(E_{f(n-k-1)}, e_{g(n-k-1)}) \in \Phi$ imply that $\varphi \cup E_{f(n-k-1)}$ is inconsistent, hence $\mathrm{ff} \in \varphi \uparrow_{\rho}^{\#} \overline{f(n-k-1)}$ and therefore v' = v.

Proof of the definability theorem (continued)

If a and $e_{g(n-k-1)}$ are consistent, a and $e_{g(n-k-1)}$ are comparable, since the underlying algebra ι has at most unary constructors.

► $\{e_{g(n-k-1)}\} \vdash a$. Then $v \cup_{\mathbf{N}}^{\#} \overline{g(n-k-1)} \supseteq \{e_{g(n-k-1)}\} \vdash a$, and hence $a \in v'$ because of $a \in v$.

►
$$\{a\} \vdash e_{g(n-k-1)}$$
. Then $e_{g(n-k-1)} \in v$ because of $a \in v$, hence $v \cup_{\mathbf{N}}^{\#} \overline{g(n-k-1)} = v$ and therefore again $a \in v'$.

Now the converse inclusion $\Phi \varphi \subseteq Y w_{\varphi} \overline{0}$ can be seen easily. Since $a \in \Phi \varphi$, the claim just proved for k := n gives $a \in w_{\varphi}^{n+1} \emptyset \overline{0}$, and this implies $a \in Y w_{\varphi} \overline{0}$.

TCF^+

- Theory of Computable Functionals plus their finite approximations, i.e., tokens and formal neighborhoods.
- Since continuous functionals (i.e., ideals) are possibly infinite sets of tokens, TCF⁺ contains set variables x^ρ.
- The only existence axiom for sets will be Σ -comprehension.

TCF^+

- Theory of Computable Functionals plus their finite approximations, i.e., tokens and formal neighborhoods.
- Since continuous functionals (i.e., ideals) are possibly infinite sets of tokens, TCF⁺ contains set variables x^ρ.
- The only existence axiom for sets will be Σ -comprehension.

TCF^+

- Theory of Computable Functionals plus their finite approximations, i.e., tokens and formal neighborhoods.
- Since continuous functionals (i.e., ideals) are possibly infinite sets of tokens, TCF⁺ contains set variables x^ρ.
- The only existence axiom for sets will be Σ-comprehension.

Recall that (object) types are built from base types ι by $\rho \rightarrow \sigma$. In addition for every (object) type ρ we have token types (named τ):

• Tok^{*}_{ρ} (extended tokens of type ρ),

- Tok^{*}_{ρ} (tokens of type ρ),
- LTok_{ρ} (lists of tokens of type ρ),
- $LTok_{\rho}^{*}$ (lists of extended tokens of type ρ).

We inductively define the extended tokens of **D**, given by the constructors 0^{D} (axiom) and $C^{D \rightarrow D \rightarrow D}$ (rule). The clauses are

$$\begin{split} &\operatorname{Tok}_{\mathsf{D}}^{*}(*), \quad \operatorname{Tok}_{\mathsf{D}}^{*}(0^{\mathsf{D}}), \\ &\operatorname{Tok}_{\mathsf{D}}^{*}(a_{1}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(a_{2}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(\operatorname{C}^{\mathsf{D} \to \mathsf{D} \to \mathsf{D}}a_{1}^{*}a_{2}^{*}). \end{split}$$

Recall that (object) types are built from base types ι by $\rho \to \sigma$. In addition for every (object) type ρ we have token types (named τ):

- $\operatorname{Tok}_{\rho}^{*}$ (extended tokens of type ρ),
- $\operatorname{Tok}_{\rho}^{*}$ (tokens of type ρ),
- $LTok_{\rho}$ (lists of tokens of type ρ),
- $LTok_{\rho}^{*}$ (lists of extended tokens of type ρ).

We inductively define the extended tokens of **D**, given by the constructors 0^{D} (axiom) and $C^{D \rightarrow D \rightarrow D}$ (rule). The clauses are

$$\begin{split} &\operatorname{Tok}_{\mathsf{D}}^{*}(*), \quad \operatorname{Tok}_{\mathsf{D}}^{*}(0^{\mathsf{D}}), \\ &\operatorname{Tok}_{\mathsf{D}}^{*}(a_{1}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(a_{2}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(\operatorname{C}^{\mathsf{D} \to \mathsf{D} \to \mathsf{D}}a_{1}^{*}a_{2}^{*}). \end{split}$$

Recall that (object) types are built from base types ι by $\rho \to \sigma$. In addition for every (object) type ρ we have token types (named τ):

- $\operatorname{Tok}_{\rho}^{*}$ (extended tokens of type ρ),
- $\operatorname{Tok}_{\rho}^{*}$ (tokens of type ρ),
- $LTok_{\rho}$ (lists of tokens of type ρ),
- $LTok_{\rho}^*$ (lists of extended tokens of type ρ).

We inductively define the extended tokens of **D**, given by the constructors 0^{D} (axiom) and $C^{D \to D \to D}$ (rule). The clauses are

$$\begin{split} &\operatorname{Tok}_{\mathsf{D}}^{*}(*), \quad \operatorname{Tok}_{\mathsf{D}}^{*}(0^{\mathsf{D}}), \\ &\operatorname{Tok}_{\mathsf{D}}^{*}(a_{1}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(a_{2}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(\operatorname{C}^{\mathsf{D} \to \mathsf{D} \to \mathsf{D}}a_{1}^{*}a_{2}^{*}). \end{split}$$

Recall that (object) types are built from base types ι by $\rho \to \sigma$. In addition for every (object) type ρ we have token types (named τ):

- $\operatorname{Tok}_{\rho}^{*}$ (extended tokens of type ρ),
- $\operatorname{Tok}_{\rho}^{*}$ (tokens of type ρ),
- $LTok_{\rho}$ (lists of tokens of type ρ),
- $LTok_{\rho}^{*}$ (lists of extended tokens of type ρ).

We inductively define the extended tokens of **D**, given by the constructors 0^{D} (axiom) and $\mathrm{C}^{D\to D\to D}$ (rule). The clauses are

$$\begin{split} &\operatorname{Tok}_{\mathsf{D}}^{*}(*), \quad \operatorname{Tok}_{\mathsf{D}}^{*}(\mathsf{0}^{\mathsf{D}}), \\ &\operatorname{Tok}_{\mathsf{D}}^{*}(a_{1}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(a_{2}^{*}) \to \operatorname{Tok}_{\mathsf{D}}^{*}(\operatorname{C}^{\mathsf{D} \to \mathsf{D} \to \mathsf{D}}a_{1}^{*}a_{2}^{*}). \end{split}$$

Functions of token-valued types $\vec{\tau} \rightarrow \tau$

 $\mathsf{Example:}\ \dot{\in}_D\colon \mathrm{Tok}_D^*\to \mathrm{LTok}_D^*\to \mathrm{Tok}_B. \ \mathsf{Recursion}\ \mathsf{equations:}$

$$(a^* \in_{\mathbf{D}} \operatorname{nil}) := \mathrm{ff},$$

$$(a^* \in_{\mathbf{D}} (b^* ::_{\mathbf{D}} U)) := (a^* =_{\mathbf{D}} b^*) \vee_{\mathbf{B}} a^* \in U,$$

where equality $=_D : \operatorname{Tok}_D^* \to \operatorname{Tok}_D^* \to \operatorname{Tok}_B$ is defined by

$$(* =_{\mathbf{D}} *) := (0 =_{\mathbf{D}} 0) := \mathsf{t}, (* =_{\mathbf{D}} 0) := (* =_{\mathbf{D}} Ca_{1}^{*}a_{2}^{*}) := \mathsf{ff}, (0 =_{\mathbf{D}} *) := (0 =_{\mathbf{D}} Ca_{1}^{*}a_{2}^{*}) := \mathsf{ff}, (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} *) := (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} 0) := \mathsf{ff}, (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} Cb_{1}^{*}b_{2}^{*}) := (a_{1}^{*} =_{\mathbf{D}} b_{1}^{*}) \wedge_{\mathbf{B}} (a_{2}^{*} =_{\mathbf{D}} b_{2}^{*}),$$

and $\vee_{\mathbf{B}}, \wedge_{\mathbf{B}}$: Tok_B \to Tok_B \to Tok_B are defined by $\mathfrak{tt} \vee_{\mathbf{B}} b := \mathfrak{tt}$, ff $\vee_{\mathbf{B}} b := b$, ff $\wedge_{\mathbf{B}} b :=$ ff and $\mathfrak{tt} \wedge_{\mathbf{B}} b := b$. Similarly: \vdash : LTok_D \to Tok_D^{*} \to Tok_B, Con: LTok_D \to Tok_B etc. Functions of token-valued types $\vec{\tau} \rightarrow \tau$

 $\mathsf{Example:}\ \dot{\in}_{D}\colon \mathrm{Tok}_{D}^{*} \to \mathrm{LTok}_{D}^{*} \to \mathrm{Tok}_{B}. \ \mathsf{Recursion} \ \mathsf{equations:}$

$$(a^* \stackrel{.}{\in}_{\mathbf{D}} \operatorname{nil}) := \mathrm{ff},$$
$$(a^* \stackrel{.}{\in}_{\mathbf{D}} (b^* ::_{\mathbf{D}} U)) := (a^* =_{\mathbf{D}} b^*) \vee_{\mathbf{B}} a^* \stackrel{.}{\in} U,$$

where equality $=_D\colon {\rm Tok}_D^*\to {\rm Tok}_D^*\to {\rm Tok}_B$ is defined by

$$\begin{aligned} (* =_{\mathbf{D}} *) &:= (0 =_{\mathbf{D}} 0) := \mathtt{t}, \\ (* =_{\mathbf{D}} 0) &:= (* =_{\mathbf{D}} Ca_{1}^{*}a_{2}^{*}) := \mathtt{f}, \\ (0 =_{\mathbf{D}} *) &:= (0 =_{\mathbf{D}} Ca_{1}^{*}a_{2}^{*}) := \mathtt{f}, \\ (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} *) &:= (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} 0) := \mathtt{f}, \\ (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} Cb_{1}^{*}b_{2}^{*}) &:= (a_{1}^{*} =_{\mathbf{D}} b_{1}^{*}) \wedge_{\mathbf{B}} (a_{2}^{*} =_{\mathbf{D}} b_{2}^{*}), \end{aligned}$$

and $\vee_{\mathbf{B}}, \wedge_{\mathbf{B}}: \operatorname{Tok}_{\mathbf{B}} \to \operatorname{Tok}_{\mathbf{B}} \to \operatorname{Tok}_{\mathbf{B}}$ are defined by $\mathfrak{tt} \vee_{\mathbf{B}} b := \mathfrak{tt}$, ff $\vee_{\mathbf{B}} b := b$, ff $\wedge_{\mathbf{B}} b := \mathfrak{ff}$ and $\mathfrak{tt} \wedge_{\mathbf{B}} b := b$. Similarly: $\vdash: \operatorname{LTok}_{\mathbf{D}} \to \operatorname{Tok}_{\mathbf{B}}^* \to \operatorname{Tok}_{\mathbf{B}}$. Con: LToko $\to \operatorname{Tok}_{\mathbf{B}}$ etc.

Functions of token-valued types $\vec{\tau} \rightarrow \tau$

 $\mathsf{Example:}\ \dot{\in}_{D}\colon \mathrm{Tok}_{D}^{*} \to \mathrm{LTok}_{D}^{*} \to \mathrm{Tok}_{B}. \ \mathsf{Recursion} \ \mathsf{equations:}$

$$(a^* \stackrel{.}{\in}_{\mathbf{D}} \operatorname{nil}) := \mathrm{ff},$$
$$(a^* \stackrel{.}{\in}_{\mathbf{D}} (b^* ::_{\mathbf{D}} U)) := (a^* =_{\mathbf{D}} b^*) \vee_{\mathbf{B}} a^* \stackrel{.}{\in} U,$$

where equality $=_D\colon \mathrm{Tok}_D^*\to \mathrm{Tok}_D^*\to \mathrm{Tok}_B$ is defined by

$$\begin{aligned} (* =_{\mathbf{D}} *) &:= (0 =_{\mathbf{D}} 0) := \mathsf{t}\mathsf{t}, \\ (* =_{\mathbf{D}} 0) &:= (* =_{\mathbf{D}} Ca_{1}^{*}a_{2}^{*}) := \mathsf{f}\mathsf{f}, \\ (0 =_{\mathbf{D}} *) &:= (0 =_{\mathbf{D}} Ca_{1}^{*}a_{2}^{*}) := \mathsf{f}\mathsf{f}, \\ (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} *) &:= (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} 0) := \mathsf{f}\mathsf{f}, \\ (Ca_{1}^{*}a_{2}^{*} =_{\mathbf{D}} Cb_{1}^{*}b_{2}^{*}) &:= (a_{1}^{*} =_{\mathbf{D}} b_{1}^{*}) \wedge_{\mathbf{B}} (a_{2}^{*} =_{\mathbf{D}} b_{2}^{*}), \end{aligned}$$

and $\vee_{\mathbf{B}}, \wedge_{\mathbf{B}} : \operatorname{Tok}_{\mathbf{B}} \to \operatorname{Tok}_{\mathbf{B}} \to \operatorname{Tok}_{\mathbf{B}}$ are defined by $\mathfrak{tt} \vee_{\mathbf{B}} b := \mathfrak{tt}$, ff $\vee_{\mathbf{B}} b := b$, ff $\wedge_{\mathbf{B}} b := \mathfrak{ff}$ and $\mathfrak{tt} \wedge_{\mathbf{B}} b := b$. Similarly: $\vdash : \operatorname{LTok}_{\mathbf{D}} \to \operatorname{Tok}_{\mathbf{D}}^* \to \operatorname{Tok}_{\mathbf{B}}$, Con: $\operatorname{LTok}_{\mathbf{D}} \to \operatorname{Tok}_{\mathbf{B}}$ etc.

- ▶ Variables a^* for $\operatorname{Tok}_{\rho}^*$, a for $\operatorname{Tok}_{\rho}$, U for $\operatorname{LTok}_{\rho}$.
- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

Tokens of a function type $\rho \to \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ . Both projections are given by functions π_1 , π_2 . Consistency of lists of tokens, application WUand entailment $W \vdash (U, a)$ can be defined as described as above.

▶ Variables a^* for $\operatorname{Tok}_{\rho}^*$, a for $\operatorname{Tok}_{\rho}$, U for $\operatorname{LTok}_{\rho}$.

- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

Tokens of a function type $\rho \rightarrow \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ . Both projections are given by functions π_1 , π_2 . Consistency of lists of tokens, application WUand entailment $W \vdash (U, a)$ can be defined as described as above.

▶ Variables a^* for $\operatorname{Tok}_{\rho}^*$, a for $\operatorname{Tok}_{\rho}$, U for $\operatorname{LTok}_{\rho}$.

- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

- Variables a^* for $\operatorname{Tok}_{\rho}^*$, a for $\operatorname{Tok}_{\rho}$, U for $\operatorname{LTok}_{\rho}$.
- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

- Variables a^* for $\operatorname{Tok}_{\rho}^*$, a for $\operatorname{Tok}_{\rho}$, U for $\operatorname{LTok}_{\rho}$.
- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

- Variables a^* for $\operatorname{Tok}_{\rho}^*$, a for $\operatorname{Tok}_{\rho}$, U for $\operatorname{LTok}_{\rho}$.
- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

- ▶ Prime Δ -formulas: atom(p), with p term of token type Tok_B. Examples: $a \uparrow_{\rho} b$, $a \in_{\rho} U$, $U \vdash_{\rho} a$ (i.e., atom($a \uparrow_{\rho} b$) etc.)
- ► Δ-formulas: from prime Δ-formulas by →, ∧, ∨, ∀_{a∈U}, ∃_{a∈U}, with a variable for tokens and U a term for a list of tokens.
- Variables x^ρ and constants of (object) type ρ, intended to denote sets of tokens. Constants: [[λ_xM]], ∪[#]_N, pcond, ↑[#]_ρ.
- ► Prime Σ -formulas: prime Δ -formulas or of the form $r \in_{\rho} x$, with r: Tok_{ρ} a term and x a variable or constant of type ρ .
- ► **Σ**-formulas: (i) prime Σ -formulas, (ii) $A_0 \rightarrow B$ with A_0 a Δ and B a Σ -formula, and (iii) closed under $\wedge, \lor, \forall_{a \in U}, \exists_{a \in U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime Σ-formulas or G_ρx (totality of x) or x ≈_ρ y (equivalence of x and y); x, y variables or constants.
- ▶ Formulas: from prime formulas by \rightarrow , \land , \lor , \forall , \exists .

- ▶ Prime Δ -formulas: atom(p), with p term of token type Tok_B. Examples: $a \uparrow_{\rho} b$, $a \in_{\rho} U$, $U \vdash_{\rho} a$ (i.e., atom($a \uparrow_{\rho} b$) etc.)
- ► Δ-formulas: from prime Δ-formulas by →, ∧, ∨, ∀_{a∈U}, ∃_{a∈U}, with a a variable for tokens and U a term for a list of tokens.
- Variables x^ρ and constants of (object) type ρ, intended to denote sets of tokens. Constants: [[λ_xM]], ∪[#]_N, pcond, ↑[#]_ρ.
- ► Prime Σ -formulas: prime Δ -formulas or of the form $r \in_{\rho} x$, with r: Tok_{ρ} a term and x a variable or constant of type ρ .
- ► **Σ**-formulas: (i) prime Σ -formulas, (ii) $A_0 \rightarrow B$ with A_0 a Δ and B a Σ -formula, and (iii) closed under $\wedge, \lor, \forall_{a \in U}, \exists_{a \in U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime Σ-formulas or G_ρx (totality of x) or x ≈_ρ y (equivalence of x and y); x, y variables or constants.
- ▶ Formulas: from prime formulas by \rightarrow , \land , \lor , \forall , \exists .

- ▶ Prime Δ -formulas: atom(p), with p term of token type Tok_B. Examples: $a \uparrow_{\rho} b$, $a \in_{\rho} U$, $U \vdash_{\rho} a$ (i.e., atom($a \uparrow_{\rho} b$) etc.)
- ► Δ -formulas: from prime Δ -formulas by \rightarrow , \land , \lor , $\forall_{a \in U}$, $\exists_{a \in U}$, with *a* a variable for tokens and *U* a term for a list of tokens.
- Variables x^ρ and constants of (object) type ρ, intended to denote sets of tokens. Constants: [[λ_xM]], ∪[#]_N, pcond, ↑[#]_ρ.
- ► Prime Σ -formulas: prime Δ -formulas or of the form $r \in_{\rho} x$, with r: Tok_{ρ} a term and x a variable or constant of type ρ .
- ► **Σ**-formulas: (i) prime Σ -formulas, (ii) $A_0 \rightarrow B$ with A_0 a Δ and B a Σ -formula, and (iii) closed under $\land, \lor, \forall_{a \in U}, \exists_{a \in U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime Σ-formulas or G_ρx (totality of x) or x ≈_ρ y (equivalence of x and y); x, y variables or constants.
- ▶ Formulas: from prime formulas by \rightarrow , \land , \lor , \forall , \exists .

- ▶ Prime Δ -formulas: atom(p), with p term of token type Tok_B. Examples: $a \uparrow_{\rho} b$, $a \in_{\rho} U$, $U \vdash_{\rho} a$ (i.e., atom($a \uparrow_{\rho} b$) etc.)
- ► Δ -formulas: from prime Δ -formulas by \rightarrow , \land , \lor , $\forall_{a \in U}$, $\exists_{a \in U}$, with *a* a variable for tokens and *U* a term for a list of tokens.
- Variables x^ρ and constants of (object) type ρ, intended to denote sets of tokens. Constants: [[λ_xM]], ∪[#]_N, pcond, ↑[#]_ρ.
- ► Prime Σ -formulas: prime Δ -formulas or of the form $r \in_{\rho} x$, with r: Tok_{ρ} a term and x a variable or constant of type ρ .
- ▶ Σ -formulas: (i) prime Σ -formulas, (ii) $A_0 \rightarrow B$ with A_0 a Δ and B a Σ -formula, and (iii) closed under $\land, \lor, \forall_{a \in U}, \exists_{a \in U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime Σ-formulas or G_ρx (totality of x) or x ≈_ρ y (equivalence of x and y); x, y variables or constants.
- ▶ Formulas: from prime formulas by \rightarrow , \land , \lor , \forall , \exists .

- ▶ Prime Δ -formulas: atom(p), with p term of token type Tok_B. Examples: $a \uparrow_{\rho} b$, $a \in_{\rho} U$, $U \vdash_{\rho} a$ (i.e., atom($a \uparrow_{\rho} b$) etc.)
- ► Δ -formulas: from prime Δ -formulas by \rightarrow , \land , \lor , $\forall_{a \in U}$, $\exists_{a \in U}$, with *a* a variable for tokens and *U* a term for a list of tokens.
- Variables x^ρ and constants of (object) type ρ, intended to denote sets of tokens. Constants: [[λ_xM]], ∪[#]_N, pcond, ↑[#]_ρ.
- ► Prime Σ -formulas: prime Δ -formulas or of the form $r \in_{\rho} x$, with r: Tok_{ρ} a term and x a variable or constant of type ρ .
- ► **Σ**-formulas: (i) prime Σ -formulas, (ii) $A_0 \rightarrow B$ with A_0 a Δ and B a Σ -formula, and (iii) closed under $\land, \lor, \forall_{a \in U}, \exists_{a \in U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime Σ-formulas or G_ρx (totality of x) or x ≈_ρ y (equivalence of x and y); x, y variables or constants.
- ▶ Formulas: from prime formulas by \rightarrow , \land , \lor , \forall , \exists .

- ▶ Prime Δ -formulas: atom(p), with p term of token type Tok_B. Examples: $a \uparrow_{\rho} b$, $a \in_{\rho} U$, $U \vdash_{\rho} a$ (i.e., atom($a \uparrow_{\rho} b$) etc.)
- ► Δ -formulas: from prime Δ -formulas by \rightarrow , \land , \lor , $\forall_{a \in U}$, $\exists_{a \in U}$, with *a* a variable for tokens and *U* a term for a list of tokens.
- Variables x^ρ and constants of (object) type ρ, intended to denote sets of tokens. Constants: [[λ_xM]], ∪[#]_N, pcond, ↑[#]_ρ.
- ► Prime Σ -formulas: prime Δ -formulas or of the form $r \in_{\rho} x$, with r: Tok_{ρ} a term and x a variable or constant of type ρ .
- ► **Σ**-formulas: (i) prime Σ -formulas, (ii) $A_0 \rightarrow B$ with A_0 a Δ and B a Σ -formula, and (iii) closed under $\land, \lor, \forall_{a \in U}, \exists_{a \in U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime Σ-formulas or G_ρx (totality of x) or x ≈_ρ y (equivalence of x and y); x, y variables or constants.

▶ Formulas: from prime formulas by \rightarrow , \land , \lor , \forall , \exists .

- ▶ Prime Δ -formulas: atom(p), with p term of token type Tok_B. Examples: $a \uparrow_{\rho} b$, $a \in_{\rho} U$, $U \vdash_{\rho} a$ (i.e., atom($a \uparrow_{\rho} b$) etc.)
- ► Δ -formulas: from prime Δ -formulas by \rightarrow , \land , \lor , $\forall_{a \in U}$, $\exists_{a \in U}$, with *a* a variable for tokens and *U* a term for a list of tokens.
- Variables x^ρ and constants of (object) type ρ, intended to denote sets of tokens. Constants: [[λ_xM]], ∪[#]_N, pcond, ↑[#]_ρ.
- ► Prime Σ -formulas: prime Δ -formulas or of the form $r \in_{\rho} x$, with r: Tok_{ρ} a term and x a variable or constant of type ρ .
- ► **Σ**-formulas: (i) prime Σ -formulas, (ii) $A_0 \rightarrow B$ with A_0 a Δ and B a Σ -formula, and (iii) closed under $\land, \lor, \forall_{a \in U}, \exists_{a \in U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime Σ-formulas or G_ρx (totality of x) or x ≈_ρ y (equivalence of x and y); x, y variables or constants.
- ▶ Formulas: from prime formulas by \rightarrow , \land , \lor , \forall , \exists .

- ▶ Based on minimal logic. Define **F** := atom(ff) ("falsum").
- ► **F** \rightarrow *A* ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$\begin{array}{l} A(\mathtt{t}) \to A(\mathtt{ff}) \to A(a), \\ A(*) \to A(0) \to \forall_{a^*,b^*} (A(a^*) \to A(b^*) \to A(\mathrm{C}a^*b^*)) \to A(a^*). \end{array}$$

- ▶ atom(tt).
- ▶ $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for A Σ-formula (ρ an object type)
- For every constant $[\![\lambda_{\vec{X}}M]\!]$, (V), (A), (C), (D), + lfp axioms.
- ▶ Defining clauses and lfp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_{ρ} and the equivalence relations $x_1 \approx_{\rho} x_2$, together with their lfp axioms.

Theorem

- ▶ Based on minimal logic. Define **F** := atom(ff) ("falsum").
- ► $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$\begin{array}{l} A(\mathfrak{t}) \to A(\mathfrak{f}) \to A(a), \\ A(*) \to A(0) \to \forall_{a^*,b^*} (A(a^*) \to A(b^*) \to A(\mathrm{C} a^* b^*)) \to A(a^*). \end{array}$$

- ▶ atom(tt).
- ► $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for $A \Sigma$ -formula (ρ an object type)
- For every constant $[\![\lambda_{\vec{x}}M]\!]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and lfp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

- Based on minimal logic. Define F := atom(ff) ("falsum").
- ▶ $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$egin{aligned} & A(\mathfrak{t})
ightarrow A(\mathfrak{f})
ightarrow A(a), \ & A(*)
ightarrow A(0)
ightarrow orall_{a^*,b^*}(A(a^*)
ightarrow A(b^*)
ightarrow A(\mathrm{C}a^*b^*))
ightarrow A(a^*). \end{aligned}$$

- ▶ atom(tt).
- ► $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for $A \Sigma$ -formula (ρ an object type)
- For every constant $[\![\lambda_{\vec{x}}M]\!]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and lfp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

- Based on minimal logic. Define F := atom(ff) ("falsum").
- ▶ $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$egin{aligned} & A(\mathfrak{t})
ightarrow A(\mathfrak{f})
ightarrow A(a), \ & A(*)
ightarrow A(0)
ightarrow orall_{a^*,b^*}(A(a^*)
ightarrow A(b^*)
ightarrow A(\mathrm{C}a^*b^*))
ightarrow A(a^*). \end{aligned}$$

▶ atom(tt).

- ► $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for $A \Sigma$ -formula (ρ an object type)
- For every constant $[\![\lambda_{\vec{x}}M]\!]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and lfp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

- Based on minimal logic. Define F := atom(ff) ("falsum").
- ▶ $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$A(\mathfrak{t}) \to A(\mathfrak{ff}) \to A(a),$$

 $A(*) \to A(0) \to orall_{a^*,b^*}(A(a^*) \to A(b^*) \to A(\mathbf{C}a^*b^*)) \to A(a^*).$

- ▶ atom(tt).
- ► $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for $A \Sigma$ -formula (ρ an object type)
- For every constant $[\![\lambda_{\vec{x}}M]\!]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and lfp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

- Based on minimal logic. Define F := atom(ff) ("falsum").
- ▶ $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$A(\mathfrak{t}) \to A(\mathfrak{ff}) \to A(a),$$

 $A(*) \to A(0) \to orall_{a^*,b^*}(A(a^*) \to A(b^*) \to A(\mathbf{C}a^*b^*)) \to A(a^*).$

- ▶ atom(tt).
- ▶ $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for A Σ-formula (ρ an object type)
- ► For every constant $[\![\lambda_{\vec{X}}M]\!]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and lfp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

- Based on minimal logic. Define F := atom(ff) ("falsum").
- ▶ $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$A(\mathfrak{t}) \to A(\mathfrak{ff}) \to A(a),$$

 $A(*) \to A(0) \to orall_{a^*,b^*}(A(a^*) \to A(b^*) \to A(\mathbf{C}a^*b^*)) \to A(a^*).$

- ▶ atom(tt).
- ► $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for $A \Sigma$ -formula (ρ an object type)
- ► For every constant $[\lambda_{\vec{x}}M]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and Ifp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

- Based on minimal logic. Define F := atom(ff) ("falsum").
- ▶ $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$A(\mathfrak{t}) \to A(\mathfrak{ff}) \to A(a),$$

 $A(*) \to A(0) \to \forall_{a^*,b^*}(A(a^*) \to A(b^*) \to A(\mathbf{C}a^*b^*)) \to A(a^*).$

- ▶ atom(tt).
- ► $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for $A \Sigma$ -formula (ρ an object type)
- ► For every constant $[\lambda_{\vec{x}}M]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and Ifp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

- Based on minimal logic. Define F := atom(ff) ("falsum").
- ▶ $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$A(\mathfrak{t}) \to A(\mathfrak{ff}) \to A(a),$$

 $A(*) \to A(0) \to orall_{a^*,b^*}(A(a^*) \to A(b^*) \to A(\mathbf{C}a^*b^*)) \to A(a^*).$

- ▶ atom(tt).
- ▶ $\exists_x \forall_a (a \in_{\rho} x \leftrightarrow A)$ for A Σ-formula (ρ an object type)
- ► For every constant $[\lambda_{\vec{X}}M]$, (V), (A), (C), (D), + Ifp axioms.
- ▶ Defining clauses and Ifp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$, \exists .
- ► The clauses defining the totality predicates G_ρ and the equivalence relations x₁ ≈_ρ x₂, together with their lfp axioms.

Theorem

 TCF^+ proves the density theorem and the definability theorem.

Conclusion, future work

- A semantical approach to type theory.
- TCF⁺ allows to study the Scott-Ershov model of partial continuous functionals and their formal neighborhoods.
- Tested for two basic theorems: density, definability
- ▶ Further case studies are necessary (e.g., adequacy).
- Program extraction from formalized proofs.