
Towards a formal theory of computability

Helmut Schwichtenberg
(j.w.w. Simon Huber, Basil Karádais)

Mathematisches Institut, LMU, München

Workshop on Constructive Aspects of Logic and Mathematics
Kanazawa, Japan, 8. - 12. March 2010

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras as non-flat Scott information systems

I An algebra ι is given by its constructors.

I Examples:

0N,SN→N for N (unary natural numbers),

1P,SP→P
0 ,SP→P

1 for P of (binary positive numbers),

0D (axiom) and CD→D→D (rule) for D (derivations).

I Examples of “information tokens”: Sn0 (n ≥ 0), S2∗ (in N),
C(C0∗)(C∗0) (in D) (∗: special symbol; no information).

I An information token is total if it contains no ∗.
I In D: total token ∼ finite (well-founded) derivation.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras as non-flat Scott information systems

I An algebra ι is given by its constructors.

I Examples:

0N,SN→N for N (unary natural numbers),

1P,SP→P
0 ,SP→P

1 for P of (binary positive numbers),

0D (axiom) and CD→D→D (rule) for D (derivations).

I Examples of “information tokens”: Sn0 (n ≥ 0), S2∗ (in N),
C(C0∗)(C∗0) (in D) (∗: special symbol; no information).

I An information token is total if it contains no ∗.
I In D: total token ∼ finite (well-founded) derivation.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras as non-flat Scott information systems

I An algebra ι is given by its constructors.

I Examples:

0N,SN→N for N (unary natural numbers),

1P,SP→P
0 ,SP→P

1 for P of (binary positive numbers),

0D (axiom) and CD→D→D (rule) for D (derivations).

I Examples of “information tokens”: Sn0 (n ≥ 0), S2∗ (in N),
C(C0∗)(C∗0) (in D) (∗: special symbol; no information).

I An information token is total if it contains no ∗.
I In D: total token ∼ finite (well-founded) derivation.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras as non-flat Scott information systems

I An algebra ι is given by its constructors.

I Examples:

0N,SN→N for N (unary natural numbers),

1P,SP→P
0 ,SP→P

1 for P of (binary positive numbers),

0D (axiom) and CD→D→D (rule) for D (derivations).

I Examples of “information tokens”: Sn0 (n ≥ 0), S2∗ (in N),
C(C0∗)(C∗0) (in D) (∗: special symbol; no information).

I An information token is total if it contains no ∗.
I In D: total token ∼ finite (well-founded) derivation.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras as non-flat Scott information systems

I An algebra ι is given by its constructors.

I Examples:

0N,SN→N for N (unary natural numbers),

1P,SP→P
0 ,SP→P

1 for P of (binary positive numbers),

0D (axiom) and CD→D→D (rule) for D (derivations).

I Examples of “information tokens”: Sn0 (n ≥ 0), S2∗ (in N),
C(C0∗)(C∗0) (in D) (∗: special symbol; no information).

I An information token is total if it contains no ∗.
I In D: total token ∼ finite (well-founded) derivation.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Finitary algebras: consistency, entailment, ideals

For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}.
I The deductive closure of a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Tokens and entailment for N

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Constructors as continuous functions

I Continuous maps f : |N| → |N| (see below) are monotone:
x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones:

•
0

•
S0

•
S(S0)

. . .

There constructors must be strict (i.e., C~x∅~y = ∅), hence

In P: S1∅ = ∅ = S2∅,
In D: C∅{0} = ∅ = C{0}∅.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Constructors as continuous functions

I Continuous maps f : |N| → |N| (see below) are monotone:
x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones:

•
0

•
S0

•
S(S0)

. . .

There constructors must be strict (i.e., C~x∅~y = ∅), hence

In P: S1∅ = ∅ = S2∅,
In D: C∅{0} = ∅ = C{0}∅.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Constructors as continuous functions

I Continuous maps f : |N| → |N| (see below) are monotone:
x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones:

•
0

•
S0

•
S(S0)

. . .

There constructors must be strict (i.e., C~x∅~y = ∅), hence

In P: S1∅ = ∅ = S2∅,
In D: C∅{0} = ∅ = C{0}∅.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Constructors as continuous functions

I Continuous maps f : |N| → |N| (see below) are monotone:
x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones:

•
0

•
S0

•
S(S0)

. . .

There constructors must be strict (i.e., C~x∅~y = ∅), hence

In P: S1∅ = ∅ = S2∅,
In D: C∅{0} = ∅ = C{0}∅.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Constructors as continuous functions

I Continuous maps f : |N| → |N| (see below) are monotone:
x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones:

•
0

•
S0

•
S(S0)

. . .

There constructors must be strict (i.e., C~x∅~y = ∅), hence

In P: S1∅ = ∅ = S2∅,
In D: C∅{0} = ∅ = C{0}∅.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types

I Every mathematical object has a type.

I Types: built from base types (i.e., algebras) by ρ→ σ, ρ× σ.

I ρ× σ can be seen as finitary algebra with two parameters.

I Types and propositions are kept separate.

I Non-dependent types suffice.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types

I Every mathematical object has a type.

I Types: built from base types (i.e., algebras) by ρ→ σ, ρ× σ.

I ρ× σ can be seen as finitary algebra with two parameters.

I Types and propositions are kept separate.

I Non-dependent types suffice.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types

I Every mathematical object has a type.

I Types: built from base types (i.e., algebras) by ρ→ σ, ρ× σ.

I ρ× σ can be seen as finitary algebra with two parameters.

I Types and propositions are kept separate.

I Non-dependent types suffice.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types

I Every mathematical object has a type.

I Types: built from base types (i.e., algebras) by ρ→ σ, ρ× σ.

I ρ× σ can be seen as finitary algebra with two parameters.

I Types and propositions are kept separate.

I Non-dependent types suffice.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types

I Every mathematical object has a type.

I Types: built from base types (i.e., algebras) by ρ→ σ, ρ× σ.

I ρ× σ can be seen as finitary algebra with two parameters.

I Types and propositions are kept separate.

I Non-dependent types suffice.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A → B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` U := ({ bi | U `A Ui } `B U).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A → B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` U := ({ bi | U `A Ui } `B U).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A → B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` U := ({ bi | U `A Ui } `B U).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A → B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` U := ({ bi | U `A Ui } `B U).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A → B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` U := ({ bi | U `A Ui } `B U).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A → B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` U := ({ bi | U `A Ui } `B U).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A → B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` U := ({ bi | U `A Ui } `B U).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Terms
I Terms are built from (typed) variables and (typed) constants

(constructors C or defined constants D, see below):

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Every defined constant D comes with a system of
computation rules D~Pi (~yi) = Mi with FV(Mi) ⊆ ~yi .

I ~Pi (~yi): “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables, with each
constructor C occurring in a context C~P (of base type). We
assume that ~Pi and ~Pj for i 6= j are non-unifiable.

Examples:
I Predecessor P : N → N, defined by P0 = 0, P(Sn) = n,
I Gödel’s primitive recursion operators
Rτ

N : N → τ → (N → τ → τ) → τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg), and

I the least-fixed-point operators Yρ of type (ρ→ ρ) → ρ
defined by the computation rule Yρf = f (Yρf).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Terms
I Terms are built from (typed) variables and (typed) constants

(constructors C or defined constants D, see below):

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Every defined constant D comes with a system of
computation rules D~Pi (~yi) = Mi with FV(Mi) ⊆ ~yi .

I ~Pi (~yi): “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables, with each
constructor C occurring in a context C~P (of base type). We
assume that ~Pi and ~Pj for i 6= j are non-unifiable.

Examples:
I Predecessor P : N → N, defined by P0 = 0, P(Sn) = n,
I Gödel’s primitive recursion operators
Rτ

N : N → τ → (N → τ → τ) → τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg), and

I the least-fixed-point operators Yρ of type (ρ→ ρ) → ρ
defined by the computation rule Yρf = f (Yρf).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Terms
I Terms are built from (typed) variables and (typed) constants

(constructors C or defined constants D, see below):

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Every defined constant D comes with a system of
computation rules D~Pi (~yi) = Mi with FV(Mi) ⊆ ~yi .

I ~Pi (~yi): “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables, with each
constructor C occurring in a context C~P (of base type). We
assume that ~Pi and ~Pj for i 6= j are non-unifiable.

Examples:
I Predecessor P : N → N, defined by P0 = 0, P(Sn) = n,
I Gödel’s primitive recursion operators
Rτ

N : N → τ → (N → τ → τ) → τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg), and

I the least-fixed-point operators Yρ of type (ρ→ ρ) → ρ
defined by the computation rule Yρf = f (Yρf).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Terms
I Terms are built from (typed) variables and (typed) constants

(constructors C or defined constants D, see below):

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Every defined constant D comes with a system of
computation rules D~Pi (~yi) = Mi with FV(Mi) ⊆ ~yi .

I ~Pi (~yi): “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables, with each
constructor C occurring in a context C~P (of base type). We
assume that ~Pi and ~Pj for i 6= j are non-unifiable.

Examples:
I Predecessor P : N → N, defined by P0 = 0, P(Sn) = n,
I Gödel’s primitive recursion operators
Rτ

N : N → τ → (N → τ → τ) → τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg), and

I the least-fixed-point operators Yρ of type (ρ→ ρ) → ρ
defined by the computation rule Yρf = f (Yρf).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Terms
I Terms are built from (typed) variables and (typed) constants

(constructors C or defined constants D, see below):

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Every defined constant D comes with a system of
computation rules D~Pi (~yi) = Mi with FV(Mi) ⊆ ~yi .

I ~Pi (~yi): “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables, with each
constructor C occurring in a context C~P (of base type). We
assume that ~Pi and ~Pj for i 6= j are non-unifiable.

Examples:
I Predecessor P : N → N, defined by P0 = 0, P(Sn) = n,
I Gödel’s primitive recursion operators
Rτ

N : N → τ → (N → τ → τ) → τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg), and

I the least-fixed-point operators Yρ of type (ρ→ ρ) → ρ
defined by the computation rule Yρf = f (Yρf).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Terms
I Terms are built from (typed) variables and (typed) constants

(constructors C or defined constants D, see below):

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Every defined constant D comes with a system of
computation rules D~Pi (~yi) = Mi with FV(Mi) ⊆ ~yi .

I ~Pi (~yi): “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables, with each
constructor C occurring in a context C~P (of base type). We
assume that ~Pi and ~Pj for i 6= j are non-unifiable.

Examples:
I Predecessor P : N → N, defined by P0 = 0, P(Sn) = n,
I Gödel’s primitive recursion operators
Rτ

N : N → τ → (N → τ → τ) → τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg), and

I the least-fixed-point operators Yρ of type (ρ→ ρ) → ρ
defined by the computation rule Yρf = f (Yρf).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Denotational semantics

For every closed term λ~xM of type ~ρ→ σ we inductively define a
set [[λ~xM]] of tokens of type ~ρ→ σ.

Ui ` b

(~U, b) ∈ [[λ~xxi]]
(V),

(~U,V , c) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~V ` ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x ,~yM]] ~W ` ~P(~V)

(~U, ~W , b) ∈ [[λ~xD]]
(D),

with one rule (D) for every computation rule D~P(~y) = M. Note:

(~U, b) denotes (U1, . . . (Un, b) . . .),

(~U,V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all b ∈ V .

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Denotational semantics

For every closed term λ~xM of type ~ρ→ σ we inductively define a
set [[λ~xM]] of tokens of type ~ρ→ σ.

Ui ` b

(~U, b) ∈ [[λ~xxi]]
(V),

(~U,V , c) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~V ` ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x ,~yM]] ~W ` ~P(~V)

(~U, ~W , b) ∈ [[λ~xD]]
(D),

with one rule (D) for every computation rule D~P(~y) = M. Note:

(~U, b) denotes (U1, . . . (Un, b) . . .),

(~U,V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all b ∈ V .

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Denotational semantics

For every closed term λ~xM of type ~ρ→ σ we inductively define a
set [[λ~xM]] of tokens of type ~ρ→ σ.

Ui ` b

(~U, b) ∈ [[λ~xxi]]
(V),

(~U,V , c) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~V ` ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x ,~yM]] ~W ` ~P(~V)

(~U, ~W , b) ∈ [[λ~xD]]
(D),

with one rule (D) for every computation rule D~P(~y) = M. Note:

(~U, b) denotes (U1, . . . (Un, b) . . .),

(~U,V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all b ∈ V .

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Denotational semantics

For every closed term λ~xM of type ~ρ→ σ we inductively define a
set [[λ~xM]] of tokens of type ~ρ→ σ.

Ui ` b

(~U, b) ∈ [[λ~xxi]]
(V),

(~U,V , c) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~V ` ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x ,~yM]] ~W ` ~P(~V)

(~U, ~W , b) ∈ [[λ~xD]]
(D),

with one rule (D) for every computation rule D~P(~y) = M. Note:

(~U, b) denotes (U1, . . . (Un, b) . . .),

(~U,V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all b ∈ V .

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Denotational semantics

For every closed term λ~xM of type ~ρ→ σ we inductively define a
set [[λ~xM]] of tokens of type ~ρ→ σ.

Ui ` b

(~U, b) ∈ [[λ~xxi]]
(V),

(~U,V , c) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~V ` ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x ,~yM]] ~W ` ~P(~V)

(~U, ~W , b) ∈ [[λ~xD]]
(D),

with one rule (D) for every computation rule D~P(~y) = M. Note:

(~U, b) denotes (U1, . . . (Un, b) . . .),

(~U,V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all b ∈ V .

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Theorem

I For every term M, [[λ~xM]] is an ideal.

I If a term M converts to M ′ by βη-conversion or application of
a computation rule, then [[M]] = [[M ′]].

Let

[[M]]~u~x :=
⋃
~U⊆~u

[[M]]
~U
~x with [[M]]

~U
~x := { b | (~U, b) ∈ [[λ~xM]] }.

A consequence of (A) is continuity of application:

c ∈ [[MN]]~u~x ↔ ∃V⊆[[N]]~u
~x
((V , c) ∈ [[M]]~u~x).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Theorem

I For every term M, [[λ~xM]] is an ideal.

I If a term M converts to M ′ by βη-conversion or application of
a computation rule, then [[M]] = [[M ′]].

Let

[[M]]~u~x :=
⋃
~U⊆~u

[[M]]
~U
~x with [[M]]

~U
~x := { b | (~U, b) ∈ [[λ~xM]] }.

A consequence of (A) is continuity of application:

c ∈ [[MN]]~u~x ↔ ∃V⊆[[N]]~u
~x
((V , c) ∈ [[M]]~u~x).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Theorem

I For every term M, [[λ~xM]] is an ideal.

I If a term M converts to M ′ by βη-conversion or application of
a computation rule, then [[M]] = [[M ′]].

Let

[[M]]~u~x :=
⋃
~U⊆~u

[[M]]
~U
~x with [[M]]

~U
~x := { b | (~U, b) ∈ [[λ~xM]] }.

A consequence of (A) is continuity of application:

c ∈ [[MN]]~u~x ↔ ∃V⊆[[N]]~u
~x
((V , c) ∈ [[M]]~u~x).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Theorem

I For every term M, [[λ~xM]] is an ideal.

I If a term M converts to M ′ by βη-conversion or application of
a computation rule, then [[M]] = [[M ′]].

Let

[[M]]~u~x :=
⋃
~U⊆~u

[[M]]
~U
~x with [[M]]

~U
~x := { b | (~U, b) ∈ [[λ~xM]] }.

A consequence of (A) is continuity of application:

c ∈ [[MN]]~u~x ↔ ∃V⊆[[N]]~u
~x
((V , c) ∈ [[M]]~u~x).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Total functionals

The total ideals x of type ρ (notation x ∈ Gρ) and an equivalence
relation x1 ≈ x2 between them are defined inductively.

I For an algebra ι, the total ideals x are those of the form C~z
with C a constructor of ι and ~z total.

I x1 ≈ι x2 iff both are of the form C~zi with the same
constructor C of ι, and z1j ≈ι z2j for all j .

I f ∈ Gρ→σ iff ∀z∈Gρ(fz ∈ Gσ).

I For f , g ∈ Gρ→σ define f ≈ρ→σ g by ∀x∈Gρ(fx ≈σ gx).

Theorem (Ershov 1974, Longo & Moggi 1984)

x ≈ρ y implies fx ≈σ fy , for x , y ∈ Gρ and f ∈ Gρ→σ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Total functionals

The total ideals x of type ρ (notation x ∈ Gρ) and an equivalence
relation x1 ≈ x2 between them are defined inductively.

I For an algebra ι, the total ideals x are those of the form C~z
with C a constructor of ι and ~z total.

I x1 ≈ι x2 iff both are of the form C~zi with the same
constructor C of ι, and z1j ≈ι z2j for all j .

I f ∈ Gρ→σ iff ∀z∈Gρ(fz ∈ Gσ).

I For f , g ∈ Gρ→σ define f ≈ρ→σ g by ∀x∈Gρ(fx ≈σ gx).

Theorem (Ershov 1974, Longo & Moggi 1984)

x ≈ρ y implies fx ≈σ fy , for x , y ∈ Gρ and f ∈ Gρ→σ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Total functionals

The total ideals x of type ρ (notation x ∈ Gρ) and an equivalence
relation x1 ≈ x2 between them are defined inductively.

I For an algebra ι, the total ideals x are those of the form C~z
with C a constructor of ι and ~z total.

I x1 ≈ι x2 iff both are of the form C~zi with the same
constructor C of ι, and z1j ≈ι z2j for all j .

I f ∈ Gρ→σ iff ∀z∈Gρ(fz ∈ Gσ).

I For f , g ∈ Gρ→σ define f ≈ρ→σ g by ∀x∈Gρ(fx ≈σ gx).

Theorem (Ershov 1974, Longo & Moggi 1984)

x ≈ρ y implies fx ≈σ fy , for x , y ∈ Gρ and f ∈ Gρ→σ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Total functionals

The total ideals x of type ρ (notation x ∈ Gρ) and an equivalence
relation x1 ≈ x2 between them are defined inductively.

I For an algebra ι, the total ideals x are those of the form C~z
with C a constructor of ι and ~z total.

I x1 ≈ι x2 iff both are of the form C~zi with the same
constructor C of ι, and z1j ≈ι z2j for all j .

I f ∈ Gρ→σ iff ∀z∈Gρ(fz ∈ Gσ).

I For f , g ∈ Gρ→σ define f ≈ρ→σ g by ∀x∈Gρ(fx ≈σ gx).

Theorem (Ershov 1974, Longo & Moggi 1984)

x ≈ρ y implies fx ≈σ fy , for x , y ∈ Gρ and f ∈ Gρ→σ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Total functionals

The total ideals x of type ρ (notation x ∈ Gρ) and an equivalence
relation x1 ≈ x2 between them are defined inductively.

I For an algebra ι, the total ideals x are those of the form C~z
with C a constructor of ι and ~z total.

I x1 ≈ι x2 iff both are of the form C~zi with the same
constructor C of ι, and z1j ≈ι z2j for all j .

I f ∈ Gρ→σ iff ∀z∈Gρ(fz ∈ Gσ).

I For f , g ∈ Gρ→σ define f ≈ρ→σ g by ∀x∈Gρ(fx ≈σ gx).

Theorem (Ershov 1974, Longo & Moggi 1984)

x ≈ρ y implies fx ≈σ fy , for x , y ∈ Gρ and f ∈ Gρ→σ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Total functionals

The total ideals x of type ρ (notation x ∈ Gρ) and an equivalence
relation x1 ≈ x2 between them are defined inductively.

I For an algebra ι, the total ideals x are those of the form C~z
with C a constructor of ι and ~z total.

I x1 ≈ι x2 iff both are of the form C~zi with the same
constructor C of ι, and z1j ≈ι z2j for all j .

I f ∈ Gρ→σ iff ∀z∈Gρ(fz ∈ Gσ).

I For f , g ∈ Gρ→σ define f ≈ρ→σ g by ∀x∈Gρ(fx ≈σ gx).

Theorem (Ershov 1974, Longo & Moggi 1984)

x ≈ρ y implies fx ≈σ fy , for x , y ∈ Gρ and f ∈ Gρ→σ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Density

The total functionals are dense (w.r.t. the Scott topology) in the
space of all partial continuous functionals of type ρ.

Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)

For every type ρ = ρ1 → . . .→ ρp → ι we have decidable formulas
TExtρ and Sepi

ρ (i = 1, . . . , p) such that

I ∀U∈Conρ(U ⊆ { a | TExtρ(U, a) } ∈ Gρ) and

I ∀U,V∈Conρ(U 6 ↑ρ V → ~zU,V ∈ G ∧ U~zU,V 6 ↑ι V~zU,V),

where ~zU,V = zU,V ,1, . . . , zU,V ,p and zU,V ,i = { a | Sepi
ρ(U,V , a) }.

Proof.
By induction on ρ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Density

The total functionals are dense (w.r.t. the Scott topology) in the
space of all partial continuous functionals of type ρ.

Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)

For every type ρ = ρ1 → . . .→ ρp → ι we have decidable formulas
TExtρ and Sepi

ρ (i = 1, . . . , p) such that

I ∀U∈Conρ(U ⊆ { a | TExtρ(U, a) } ∈ Gρ) and

I ∀U,V∈Conρ(U 6 ↑ρ V → ~zU,V ∈ G ∧ U~zU,V 6 ↑ι V~zU,V),

where ~zU,V = zU,V ,1, . . . , zU,V ,p and zU,V ,i = { a | Sepi
ρ(U,V , a) }.

Proof.
By induction on ρ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Density

The total functionals are dense (w.r.t. the Scott topology) in the
space of all partial continuous functionals of type ρ.

Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)

For every type ρ = ρ1 → . . .→ ρp → ι we have decidable formulas
TExtρ and Sepi

ρ (i = 1, . . . , p) such that

I ∀U∈Conρ(U ⊆ { a | TExtρ(U, a) } ∈ Gρ) and

I ∀U,V∈Conρ(U 6 ↑ρ V → ~zU,V ∈ G ∧ U~zU,V 6 ↑ι V~zU,V),

where ~zU,V = zU,V ,1, . . . , zU,V ,p and zU,V ,i = { a | Sepi
ρ(U,V , a) }.

Proof.
By induction on ρ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Definability

There will be two kinds of (natural) numbers:

I total tokens in N, i.e., Sn0 (“index numbers” n ∈ N), and

I total ideals n of type N.

Fix enumerations

I (en)n∈N of all tokens, and

I (En)n∈N of all formal neighborhoods,

one for each type.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Definability

There will be two kinds of (natural) numbers:

I total tokens in N, i.e., Sn0 (“index numbers” n ∈ N), and

I total ideals n of type N.

Fix enumerations

I (en)n∈N of all tokens, and

I (En)n∈N of all formal neighborhoods,

one for each type.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The parallel conditional pcond : B → ρ → ρ → ρ

It is defined by the clauses

U ` tt → V ` a → (U,V ,W , a) ∈ pcond,
U ` ff → W ` a → (U,V ,W , a) ∈ pcond,
V ` a → W ` a → (U,V ,W , a) ∈ pcond.

We also need the least-fixed-point axiom, which says that any set
of tokens (U,V ,W , a) satisfying these is a superset of pcond.

Lemma (Properties of pcond)

pcond is an ideal, and

tt ∈ z → pcond(z , x , y) = x ,

ff ∈ z → pcond(z , x , y) = y ,

a ∈ x → a ∈ y → a ∈ pcond(z , x , y).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The parallel conditional pcond : B → ρ → ρ → ρ

It is defined by the clauses

U ` tt → V ` a → (U,V ,W , a) ∈ pcond,
U ` ff → W ` a → (U,V ,W , a) ∈ pcond,
V ` a → W ` a → (U,V ,W , a) ∈ pcond.

We also need the least-fixed-point axiom, which says that any set
of tokens (U,V ,W , a) satisfying these is a superset of pcond.

Lemma (Properties of pcond)

pcond is an ideal, and

tt ∈ z → pcond(z , x , y) = x ,

ff ∈ z → pcond(z , x , y) = y ,

a ∈ x → a ∈ y → a ∈ pcond(z , x , y).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

The parallel conditional pcond : B → ρ → ρ → ρ

It is defined by the clauses

U ` tt → V ` a → (U,V ,W , a) ∈ pcond,
U ` ff → W ` a → (U,V ,W , a) ∈ pcond,
V ` a → W ` a → (U,V ,W , a) ∈ pcond.

We also need the least-fixed-point axiom, which says that any set
of tokens (U,V ,W , a) satisfying these is a superset of pcond.

Lemma (Properties of pcond)

pcond is an ideal, and

tt ∈ z → pcond(z , x , y) = x ,

ff ∈ z → pcond(z , x , y) = y ,

a ∈ x → a ∈ y → a ∈ pcond(z , x , y).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

A continuous variant of the union for N

For ideals in N, the union (∼ maximum) is not continuous.

Continuous variant: ∪#
N : N → N → N, defined by the clauses

U ` en → V ` n → U ` a → (U,V , a) ∈ ∪#
N ,

{en} ` a → V ` n → (U,V , a) ∈ ∪#
N ,

plus the least-fixed-point axiom.

Lemma (Properties of ∪#
N)

∪#
N is an ideal, and

∀a∈x(a ↑ en) → x ∪#
N n = x ∪ {en},

en ∈ x ∪#
N n.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

A continuous variant of the union for N

For ideals in N, the union (∼ maximum) is not continuous.

Continuous variant: ∪#
N : N → N → N, defined by the clauses

U ` en → V ` n → U ` a → (U,V , a) ∈ ∪#
N ,

{en} ` a → V ` n → (U,V , a) ∈ ∪#
N ,

plus the least-fixed-point axiom.

Lemma (Properties of ∪#
N)

∪#
N is an ideal, and

∀a∈x(a ↑ en) → x ∪#
N n = x ∪ {en},

en ∈ x ∪#
N n.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

A continuous variant of consistency

Define ↑#
ρ of type ρ→ N → B by the clauses

U ` En → V ` n → (U,V , tt) ∈↑#
ρ ,

a ∈ U → b ∈ En → V ` n → a 6 ↑ b → (U,V , ff) ∈↑#
ρ .

Again we require the least-fixed-point axiom.

Lemma (Properties of ↑#
ρ)

↑#
ρ is an ideal, and

tt ∈ x ↑#
ρ n ↔ x ⊇ En,

ff ∈ x ↑#
ρ n ↔ ∃a∈x ,b∈En(a 6 ↑ b).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

A continuous variant of consistency

Define ↑#
ρ of type ρ→ N → B by the clauses

U ` En → V ` n → (U,V , tt) ∈↑#
ρ ,

a ∈ U → b ∈ En → V ` n → a 6 ↑ b → (U,V , ff) ∈↑#
ρ .

Again we require the least-fixed-point axiom.

Lemma (Properties of ↑#
ρ)

↑#
ρ is an ideal, and

tt ∈ x ↑#
ρ n ↔ x ⊇ En,

ff ∈ x ↑#
ρ n ↔ ∃a∈x ,b∈En(a 6 ↑ b).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

A continuous variant of existence

Define ∃ of type (N → B) → B by the clauses

U ` ({Sn0}, tt) → (U, tt) ∈ ∃,
U ` ({Sn∗}, ff) → ∀i<n(U ` ({Si0}, ff)) → (U, ff) ∈ ∃,

plus the least-fixed-point axiom.

Lemma (Properties of ∃)
∃ is an ideal, and

tt ∈ ∃x ↔ ∃n(({Sn0}, tt) ∈ x),

ff ∈ ∃x ↔ ∃n(({Sn∗}, ff) ∈ x ∧ ∀i<n(({Si0}, ff) ∈ x).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

A continuous variant of existence

Define ∃ of type (N → B) → B by the clauses

U ` ({Sn0}, tt) → (U, tt) ∈ ∃,
U ` ({Sn∗}, ff) → ∀i<n(U ` ({Si0}, ff)) → (U, ff) ∈ ∃,

plus the least-fixed-point axiom.

Lemma (Properties of ∃)
∃ is an ideal, and

tt ∈ ∃x ↔ ∃n(({Sn0}, tt) ∈ x),

ff ∈ ∃x ↔ ∃n(({Sn∗}, ff) ∈ x ∧ ∀i<n(({Si0}, ff) ∈ x).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Definability

Φ: ρ→ ι is called “recursive in ∪#
N , pcond and ↑#

ρ ” if it can be
defined by a term involving the constructors for ι and N, the fixed
point operators Yρ, and predecessor, ∪#

N , pcond and ↑#
ρ .

Theorem (Plotkin 1977)

For an algebra ι with at most unary constructors (e.g., N, B or P)
and Φ: ρ→ ι a partial continuous functional , the following are
equivalent.

(a) Φ is computable.

(b) Φ is recursive in ∪#
N , pcond and ↑#

ρ .

(c) Φ is recursive in ∪#
N , pcond and ∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Definability

Φ: ρ→ ι is called “recursive in ∪#
N , pcond and ↑#

ρ ” if it can be
defined by a term involving the constructors for ι and N, the fixed
point operators Yρ, and predecessor, ∪#

N , pcond and ↑#
ρ .

Theorem (Plotkin 1977)

For an algebra ι with at most unary constructors (e.g., N, B or P)
and Φ: ρ→ ι a partial continuous functional , the following are
equivalent.

(a) Φ is computable.

(b) Φ is recursive in ∪#
N , pcond and ↑#

ρ .

(c) Φ is recursive in ∪#
N , pcond and ∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Proof of the definability theorem

(a) → (b). Let Φ: ρ→ ι be computable:

Φ = { (Efn, egn) | n ∈ N } with f , g prim. rec. functions

f : continuous extension of f to ideals, such that fn = f n. Show:
Φ definable by Φϕ = Ywϕ0 with wϕ of type (N → ι) → N → ι:

wϕψx := pcond(ϕ ↑#
ρ f x , ψ(x + 1) ∪#

N gx , ψ(x + 1)).

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Proof of the definability theorem (continued)

Write w for wϕ. Prove

∀n(a ∈ wk+1∅n → ∃n≤l≤n+k(ϕ ⊇ Efl ∧ {egl} ` a)). (1)

by induction on k. Step k 7→ k + 1:

a ∈ wk+2∅n = w(wk+1∅)n = pcond(ϕ ↑#
ρ fn, v ∪#

N gn, v),

with v := wk+1∅(n + 1). Then either a ∈ v (→ done by IH) or else

ϕ ⊇ Efn ∧ {egn} ` a.

Now Φϕ ⊇ Yw0 follows easily. Assume a ∈ Yw0. Then
a ∈ wk+1∅0 for some k. By (1) there is an l with 0 ≤ l ≤ k such
that ϕ ⊇ Efl and {egl} ` a. But this implies a ∈ Φϕ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Proof of the definability theorem (continued)

Converse: assume a ∈ Φϕ. Then (U, a) ∈ Φ for some U ⊆ ϕ. By
assumption on Φ: U = Efn and a = egn for some n. We show

a ∈ wk+1∅(n − k) for k ≤ n.

by induction on k. Step k 7→ k + 1: by definition of w (:= wϕ)

v ′ := wk+2∅(n − k − 1)

= w(wk+1∅)(n − k − 1)

= pcond(ϕ ↑#
ρ f (n − k − 1), v ∪#

N g(n − k − 1), v)

with v := wk+1∅(n − k). By IH: a ∈ v ; we show a ∈ v ′. If a and
eg(n−k−1) are inconsistent, a ∈ Φϕ and (Ef (n−k−1), eg(n−k−1)) ∈ Φ
imply that ϕ ∪ Ef (n−k−1) is inconsistent, hence

ff ∈ ϕ ↑#
ρ f (n − k − 1) and therefore v ′ = v .

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Proof of the definability theorem (continued)

If a and eg(n−k−1) are consistent, a and eg(n−k−1) are comparable,
since the underlying algebra ι has at most unary constructors.

I {eg(n−k−1)} ` a. Then v ∪#
N g(n − k − 1) ⊇ {eg(n−k−1)} ` a,

and hence a ∈ v ′ because of a ∈ v .

I {a} ` eg(n−k−1). Then eg(n−k−1) ∈ v because of a ∈ v , hence

v ∪#
N g(n − k − 1) = v and therefore again a ∈ v ′.

Now the converse inclusion Φϕ ⊆ Ywϕ0 can be seen easily. Since
a ∈ Φϕ, the claim just proved for k := n gives a ∈ wn+1

ϕ ∅0, and

this implies a ∈ Ywϕ0.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

TCF+

I Theory of Computable Functionals plus their finite
approximations, i.e., tokens and formal neighborhoods.

I Since continuous functionals (i.e., ideals) are possibly infinite
sets of tokens, TCF+ contains set variables xρ.

I The only existence axiom for sets will be Σ-comprehension.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

TCF+

I Theory of Computable Functionals plus their finite
approximations, i.e., tokens and formal neighborhoods.

I Since continuous functionals (i.e., ideals) are possibly infinite
sets of tokens, TCF+ contains set variables xρ.

I The only existence axiom for sets will be Σ-comprehension.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

TCF+

I Theory of Computable Functionals plus their finite
approximations, i.e., tokens and formal neighborhoods.

I Since continuous functionals (i.e., ideals) are possibly infinite
sets of tokens, TCF+ contains set variables xρ.

I The only existence axiom for sets will be Σ-comprehension.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types and token types

Recall that (object) types are built from base types ι by ρ→ σ. In
addition for every (object) type ρ we have token types (named τ):

I Tok∗ρ (extended tokens of type ρ),

I Tok∗ρ (tokens of type ρ),

I LTokρ (lists of tokens of type ρ),

I LTok∗ρ (lists of extended tokens of type ρ).

We inductively define the extended tokens of D, given by the
constructors 0D (axiom) and CD→D→D (rule). The clauses are

Tok∗D(∗), Tok∗D(0D),

Tok∗D(a∗1) → Tok∗D(a∗2) → Tok∗D(CD→D→Da∗1a
∗
2).

Similarly for Tok∗ρ, LTokρ, LTok∗ρ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types and token types

Recall that (object) types are built from base types ι by ρ→ σ. In
addition for every (object) type ρ we have token types (named τ):

I Tok∗ρ (extended tokens of type ρ),

I Tok∗ρ (tokens of type ρ),

I LTokρ (lists of tokens of type ρ),

I LTok∗ρ (lists of extended tokens of type ρ).

We inductively define the extended tokens of D, given by the
constructors 0D (axiom) and CD→D→D (rule). The clauses are

Tok∗D(∗), Tok∗D(0D),

Tok∗D(a∗1) → Tok∗D(a∗2) → Tok∗D(CD→D→Da∗1a
∗
2).

Similarly for Tok∗ρ, LTokρ, LTok∗ρ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types and token types

Recall that (object) types are built from base types ι by ρ→ σ. In
addition for every (object) type ρ we have token types (named τ):

I Tok∗ρ (extended tokens of type ρ),

I Tok∗ρ (tokens of type ρ),

I LTokρ (lists of tokens of type ρ),

I LTok∗ρ (lists of extended tokens of type ρ).

We inductively define the extended tokens of D, given by the
constructors 0D (axiom) and CD→D→D (rule). The clauses are

Tok∗D(∗), Tok∗D(0D),

Tok∗D(a∗1) → Tok∗D(a∗2) → Tok∗D(CD→D→Da∗1a
∗
2).

Similarly for Tok∗ρ, LTokρ, LTok∗ρ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Types and token types

Recall that (object) types are built from base types ι by ρ→ σ. In
addition for every (object) type ρ we have token types (named τ):

I Tok∗ρ (extended tokens of type ρ),

I Tok∗ρ (tokens of type ρ),

I LTokρ (lists of tokens of type ρ),

I LTok∗ρ (lists of extended tokens of type ρ).

We inductively define the extended tokens of D, given by the
constructors 0D (axiom) and CD→D→D (rule). The clauses are

Tok∗D(∗), Tok∗D(0D),

Tok∗D(a∗1) → Tok∗D(a∗2) → Tok∗D(CD→D→Da∗1a
∗
2).

Similarly for Tok∗ρ, LTokρ, LTok∗ρ.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Functions of token-valued types ~τ → τ

Example: ∈̇D : Tok∗D → LTok∗D → TokB. Recursion equations:

(a∗ ∈̇D nil) := ff,

(a∗ ∈̇D (b∗ ::D U)) := (a∗ =D b∗) ∨B a∗ ∈̇ U,

where equality =D : Tok∗D → Tok∗D → TokB is defined by

(∗ =D ∗) := (0 =D 0) := tt,

(∗ =D 0) := (∗ =D Ca∗1a
∗
2) := ff,

(0 =D ∗) := (0 =D Ca∗1a
∗
2) := ff,

(Ca∗1a
∗
2 =D ∗) := (Ca∗1a

∗
2 =D 0) := ff,

(Ca∗1a
∗
2 =D Cb∗1b

∗
2) := (a∗1 =D b∗1) ∧B (a∗2 =D b∗2),

and ∨B,∧B : TokB → TokB → TokB are defined by tt ∨B b := tt,
ff ∨B b := b, ff ∧B b := ff and tt ∧B b := b.
Similarly: ` : LTokD → Tok∗D → TokB, Con : LTokD → TokB etc.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Functions of token-valued types ~τ → τ

Example: ∈̇D : Tok∗D → LTok∗D → TokB. Recursion equations:

(a∗ ∈̇D nil) := ff,

(a∗ ∈̇D (b∗ ::D U)) := (a∗ =D b∗) ∨B a∗ ∈̇ U,

where equality =D : Tok∗D → Tok∗D → TokB is defined by

(∗ =D ∗) := (0 =D 0) := tt,

(∗ =D 0) := (∗ =D Ca∗1a
∗
2) := ff,

(0 =D ∗) := (0 =D Ca∗1a
∗
2) := ff,

(Ca∗1a
∗
2 =D ∗) := (Ca∗1a

∗
2 =D 0) := ff,

(Ca∗1a
∗
2 =D Cb∗1b

∗
2) := (a∗1 =D b∗1) ∧B (a∗2 =D b∗2),

and ∨B,∧B : TokB → TokB → TokB are defined by tt ∨B b := tt,
ff ∨B b := b, ff ∧B b := ff and tt ∧B b := b.
Similarly: ` : LTokD → Tok∗D → TokB, Con : LTokD → TokB etc.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Functions of token-valued types ~τ → τ

Example: ∈̇D : Tok∗D → LTok∗D → TokB. Recursion equations:

(a∗ ∈̇D nil) := ff,

(a∗ ∈̇D (b∗ ::D U)) := (a∗ =D b∗) ∨B a∗ ∈̇ U,

where equality =D : Tok∗D → Tok∗D → TokB is defined by

(∗ =D ∗) := (0 =D 0) := tt,

(∗ =D 0) := (∗ =D Ca∗1a
∗
2) := ff,

(0 =D ∗) := (0 =D Ca∗1a
∗
2) := ff,

(Ca∗1a
∗
2 =D ∗) := (Ca∗1a

∗
2 =D 0) := ff,

(Ca∗1a
∗
2 =D Cb∗1b

∗
2) := (a∗1 =D b∗1) ∧B (a∗2 =D b∗2),

and ∨B,∧B : TokB → TokB → TokB are defined by tt ∨B b := tt,
ff ∨B b := b, ff ∧B b := ff and tt ∧B b := b.
Similarly: ` : LTokD → Tok∗D → TokB, Con : LTokD → TokB etc.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Tokens of higher type

Tokens of a function type ρ→ σ are pairs (U, a) of lists of tokens
of type ρ and tokens of type σ. Both projections are given by
functions π1, π2. Consistency of lists of tokens, application WU
and entailment W ` (U, a) can be defined as described as above.

I Variables a∗ for Tok∗ρ, a for Tokρ, U for LTokρ.

I From these, the symbols for token-valued functions and
constants for the constructors for tokens, extended tokens and
lists of these we can build terms of token types.

I We identify terms of token type if they have the same normal
form w.r.t. the defining primitive recursion equations for the
token-valued functions involved.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Tokens of higher type

Tokens of a function type ρ→ σ are pairs (U, a) of lists of tokens
of type ρ and tokens of type σ. Both projections are given by
functions π1, π2. Consistency of lists of tokens, application WU
and entailment W ` (U, a) can be defined as described as above.

I Variables a∗ for Tok∗ρ, a for Tokρ, U for LTokρ.

I From these, the symbols for token-valued functions and
constants for the constructors for tokens, extended tokens and
lists of these we can build terms of token types.

I We identify terms of token type if they have the same normal
form w.r.t. the defining primitive recursion equations for the
token-valued functions involved.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Tokens of higher type

Tokens of a function type ρ→ σ are pairs (U, a) of lists of tokens
of type ρ and tokens of type σ. Both projections are given by
functions π1, π2. Consistency of lists of tokens, application WU
and entailment W ` (U, a) can be defined as described as above.

I Variables a∗ for Tok∗ρ, a for Tokρ, U for LTokρ.

I From these, the symbols for token-valued functions and
constants for the constructors for tokens, extended tokens and
lists of these we can build terms of token types.

I We identify terms of token type if they have the same normal
form w.r.t. the defining primitive recursion equations for the
token-valued functions involved.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Tokens of higher type

Tokens of a function type ρ→ σ are pairs (U, a) of lists of tokens
of type ρ and tokens of type σ. Both projections are given by
functions π1, π2. Consistency of lists of tokens, application WU
and entailment W ` (U, a) can be defined as described as above.

I Variables a∗ for Tok∗ρ, a for Tokρ, U for LTokρ.

I From these, the symbols for token-valued functions and
constants for the constructors for tokens, extended tokens and
lists of these we can build terms of token types.

I We identify terms of token type if they have the same normal
form w.r.t. the defining primitive recursion equations for the
token-valued functions involved.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Tokens of higher type

Tokens of a function type ρ→ σ are pairs (U, a) of lists of tokens
of type ρ and tokens of type σ. Both projections are given by
functions π1, π2. Consistency of lists of tokens, application WU
and entailment W ` (U, a) can be defined as described as above.

I Variables a∗ for Tok∗ρ, a for Tokρ, U for LTokρ.

I From these, the symbols for token-valued functions and
constants for the constructors for tokens, extended tokens and
lists of these we can build terms of token types.

I We identify terms of token type if they have the same normal
form w.r.t. the defining primitive recursion equations for the
token-valued functions involved.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Tokens of higher type

Tokens of a function type ρ→ σ are pairs (U, a) of lists of tokens
of type ρ and tokens of type σ. Both projections are given by
functions π1, π2. Consistency of lists of tokens, application WU
and entailment W ` (U, a) can be defined as described as above.

I Variables a∗ for Tok∗ρ, a for Tokρ, U for LTokρ.

I From these, the symbols for token-valued functions and
constants for the constructors for tokens, extended tokens and
lists of these we can build terms of token types.

I We identify terms of token type if they have the same normal
form w.r.t. the defining primitive recursion equations for the
token-valued functions involved.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Formulas

I Prime ∆-formulas: atom(p), with p term of token type TokB.
Examples: a ↑ρ b, a ∈̇ρ U, U `ρ a (i.e., atom(a ↑ρ b) etc.)

I ∆-formulas: from prime ∆-formulas by →, ∧,∨, ∀a∈̇U , ∃a∈̇U ,
with a a variable for tokens and U a term for a list of tokens.

I Variables xρ and constants of (object) type ρ, intended to

denote sets of tokens. Constants: [[λ~xM]], ∪#
N , pcond, ↑#

ρ .

I Prime Σ-formulas: prime ∆-formulas or of the form r ∈ρ x ,
with r : Tokρ a term and x a variable or constant of type ρ.

I Σ-formulas: (i) prime Σ-formulas, (ii) A0 → B with A0 a ∆-
and B a Σ-formula, and (iii) closed under ∧,∨, ∀a∈̇U , ∃a∈̇U

and existential quantifiers over variables of a token type.

I Prime formulas: prime Σ-formulas or Gρx (totality of x) or
x ≈ρ y (equivalence of x and y); x , y variables or constants.

I Formulas: from prime formulas by →,∧,∨,∀,∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Formulas

I Prime ∆-formulas: atom(p), with p term of token type TokB.
Examples: a ↑ρ b, a ∈̇ρ U, U `ρ a (i.e., atom(a ↑ρ b) etc.)

I ∆-formulas: from prime ∆-formulas by →, ∧,∨, ∀a∈̇U , ∃a∈̇U ,
with a a variable for tokens and U a term for a list of tokens.

I Variables xρ and constants of (object) type ρ, intended to

denote sets of tokens. Constants: [[λ~xM]], ∪#
N , pcond, ↑#

ρ .

I Prime Σ-formulas: prime ∆-formulas or of the form r ∈ρ x ,
with r : Tokρ a term and x a variable or constant of type ρ.

I Σ-formulas: (i) prime Σ-formulas, (ii) A0 → B with A0 a ∆-
and B a Σ-formula, and (iii) closed under ∧,∨, ∀a∈̇U , ∃a∈̇U

and existential quantifiers over variables of a token type.

I Prime formulas: prime Σ-formulas or Gρx (totality of x) or
x ≈ρ y (equivalence of x and y); x , y variables or constants.

I Formulas: from prime formulas by →,∧,∨,∀,∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Formulas

I Prime ∆-formulas: atom(p), with p term of token type TokB.
Examples: a ↑ρ b, a ∈̇ρ U, U `ρ a (i.e., atom(a ↑ρ b) etc.)

I ∆-formulas: from prime ∆-formulas by →, ∧,∨, ∀a∈̇U , ∃a∈̇U ,
with a a variable for tokens and U a term for a list of tokens.

I Variables xρ and constants of (object) type ρ, intended to

denote sets of tokens. Constants: [[λ~xM]], ∪#
N , pcond, ↑#

ρ .

I Prime Σ-formulas: prime ∆-formulas or of the form r ∈ρ x ,
with r : Tokρ a term and x a variable or constant of type ρ.

I Σ-formulas: (i) prime Σ-formulas, (ii) A0 → B with A0 a ∆-
and B a Σ-formula, and (iii) closed under ∧,∨, ∀a∈̇U , ∃a∈̇U

and existential quantifiers over variables of a token type.

I Prime formulas: prime Σ-formulas or Gρx (totality of x) or
x ≈ρ y (equivalence of x and y); x , y variables or constants.

I Formulas: from prime formulas by →,∧,∨,∀,∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Formulas

I Prime ∆-formulas: atom(p), with p term of token type TokB.
Examples: a ↑ρ b, a ∈̇ρ U, U `ρ a (i.e., atom(a ↑ρ b) etc.)

I ∆-formulas: from prime ∆-formulas by →, ∧,∨, ∀a∈̇U , ∃a∈̇U ,
with a a variable for tokens and U a term for a list of tokens.

I Variables xρ and constants of (object) type ρ, intended to

denote sets of tokens. Constants: [[λ~xM]], ∪#
N , pcond, ↑#

ρ .

I Prime Σ-formulas: prime ∆-formulas or of the form r ∈ρ x ,
with r : Tokρ a term and x a variable or constant of type ρ.

I Σ-formulas: (i) prime Σ-formulas, (ii) A0 → B with A0 a ∆-
and B a Σ-formula, and (iii) closed under ∧,∨, ∀a∈̇U , ∃a∈̇U

and existential quantifiers over variables of a token type.

I Prime formulas: prime Σ-formulas or Gρx (totality of x) or
x ≈ρ y (equivalence of x and y); x , y variables or constants.

I Formulas: from prime formulas by →,∧,∨,∀,∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Formulas

I Prime ∆-formulas: atom(p), with p term of token type TokB.
Examples: a ↑ρ b, a ∈̇ρ U, U `ρ a (i.e., atom(a ↑ρ b) etc.)

I ∆-formulas: from prime ∆-formulas by →, ∧,∨, ∀a∈̇U , ∃a∈̇U ,
with a a variable for tokens and U a term for a list of tokens.

I Variables xρ and constants of (object) type ρ, intended to

denote sets of tokens. Constants: [[λ~xM]], ∪#
N , pcond, ↑#

ρ .

I Prime Σ-formulas: prime ∆-formulas or of the form r ∈ρ x ,
with r : Tokρ a term and x a variable or constant of type ρ.

I Σ-formulas: (i) prime Σ-formulas, (ii) A0 → B with A0 a ∆-
and B a Σ-formula, and (iii) closed under ∧,∨, ∀a∈̇U , ∃a∈̇U

and existential quantifiers over variables of a token type.

I Prime formulas: prime Σ-formulas or Gρx (totality of x) or
x ≈ρ y (equivalence of x and y); x , y variables or constants.

I Formulas: from prime formulas by →,∧,∨,∀,∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Formulas

I Prime ∆-formulas: atom(p), with p term of token type TokB.
Examples: a ↑ρ b, a ∈̇ρ U, U `ρ a (i.e., atom(a ↑ρ b) etc.)

I ∆-formulas: from prime ∆-formulas by →, ∧,∨, ∀a∈̇U , ∃a∈̇U ,
with a a variable for tokens and U a term for a list of tokens.

I Variables xρ and constants of (object) type ρ, intended to

denote sets of tokens. Constants: [[λ~xM]], ∪#
N , pcond, ↑#

ρ .

I Prime Σ-formulas: prime ∆-formulas or of the form r ∈ρ x ,
with r : Tokρ a term and x a variable or constant of type ρ.

I Σ-formulas: (i) prime Σ-formulas, (ii) A0 → B with A0 a ∆-
and B a Σ-formula, and (iii) closed under ∧,∨, ∀a∈̇U , ∃a∈̇U

and existential quantifiers over variables of a token type.

I Prime formulas: prime Σ-formulas or Gρx (totality of x) or
x ≈ρ y (equivalence of x and y); x , y variables or constants.

I Formulas: from prime formulas by →,∧,∨,∀,∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Formulas

I Prime ∆-formulas: atom(p), with p term of token type TokB.
Examples: a ↑ρ b, a ∈̇ρ U, U `ρ a (i.e., atom(a ↑ρ b) etc.)

I ∆-formulas: from prime ∆-formulas by →, ∧,∨, ∀a∈̇U , ∃a∈̇U ,
with a a variable for tokens and U a term for a list of tokens.

I Variables xρ and constants of (object) type ρ, intended to

denote sets of tokens. Constants: [[λ~xM]], ∪#
N , pcond, ↑#

ρ .

I Prime Σ-formulas: prime ∆-formulas or of the form r ∈ρ x ,
with r : Tokρ a term and x a variable or constant of type ρ.

I Σ-formulas: (i) prime Σ-formulas, (ii) A0 → B with A0 a ∆-
and B a Σ-formula, and (iii) closed under ∧,∨, ∀a∈̇U , ∃a∈̇U

and existential quantifiers over variables of a token type.

I Prime formulas: prime Σ-formulas or Gρx (totality of x) or
x ≈ρ y (equivalence of x and y); x , y variables or constants.

I Formulas: from prime formulas by →,∧,∨,∀,∃.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Axioms of TCF+

I Based on minimal logic. Define F := atom(ff) (“falsum”).
I F → A (“ex-falso-quodlibet”) for prime non-∆ prime formulas.
I Usual axioms of Heyting arithmetic, adapted to token types:

A(tt) → A(ff) → A(a),

A(∗) → A(0) → ∀a∗,b∗(A(a∗) → A(b∗) → A(Ca∗b∗)) → A(a∗).

I atom(tt).
I ∃x∀a(a ∈ρ x ↔ A) for A Σ-formula (ρ an object type)
I For every constant [[λ~xM]], (V), (A), (C), (D), + lfp axioms.

I Defining clauses and lfp axioms for ∪#
N , pcond, ↑#

ρ , ∃.
I The clauses defining the totality predicates Gρ and the

equivalence relations x1 ≈ρ x2, together with their lfp axioms.

Theorem
TCF+ proves the density theorem and the definability theorem.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

Conclusion, future work

I A semantical approach to type theory.

I TCF+ allows to study the Scott-Ershov model of partial
continuous functionals and their formal neighborhoods.

I Tested for two basic theorems: density, definability

I Further case studies are necessary (e.g., adequacy).

I Program extraction from formalized proofs.

Helmut Schwichtenberg (j.w.w. Simon Huber, Basil Karádais) Formal computability

