Towards a formal theory of computability

Helmut Schwichtenberg
(j.w.w. Simon Huber, Basil Karádais)
Mathematisches Institut, LMU, München

Workshop on Constructive Aspects of Logic and Mathematics Kanazawa, Japan, 8. - 12. March 2010

Finitary algebras as non-flat Scott information systems

- An algebra ι is given by its constructors.
- Examples:

- Examples of "information tokens": $\mathrm{S}^{n} 0(n \geq 0), \mathrm{S}^{2} *($ in $\mathbf{N})$, $\mathrm{C}(\mathrm{C} 0 *)(\mathrm{C} * 0)$ (in D$)(*$: special symbol; no information).
- An information token is total if it contains no $*$.
- In \mathbf{D} : total token \sim finite (well-founded) derivation.

Finitary algebras as non-flat Scott information systems

- An algebra ι is given by its constructors.
- Examples:

$$
\begin{aligned}
& 0^{\mathbf{N}}, S^{\mathbf{N} \rightarrow \mathbf{N}} \text { for } \mathbf{N} \text { (unary natural numbers), } \\
& 1^{\mathbf{P}}, S_{0}^{\mathbf{P} \rightarrow \mathbf{P}}, S_{1}^{\mathbf{P} \rightarrow \mathbf{P}} \text { for } \mathbf{P} \text { of (binary positive numbers), } \\
& 0^{\mathbf{D}} \text { (axiom) and } C^{\mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}} \text { (rule) for } \mathbf{D} \text { (derivations). }
\end{aligned}
$$

- Examples of "information tokens" $\mathrm{C}(\mathrm{C} 0 *)(\mathrm{C} * 0$) (in $\mathbf{D})(*$: special symbol; no information).
- An information token is total if it contains no
- In D: total token \sim finite (well-founded) derivation.

Finitary algebras as non-flat Scott information systems

- An algebra ι is given by its constructors.
- Examples:

$$
\begin{aligned}
& 0^{\mathbf{N}}, S^{\mathbf{N} \rightarrow \mathbf{N}} \text { for } \mathbf{N} \text { (unary natural numbers), } \\
& 1^{\mathbf{P}}, S_{0}^{\mathbf{P} \rightarrow \mathbf{P}}, S_{1}^{\mathbf{P} \rightarrow \mathbf{P}} \text { for } \mathbf{P} \text { of (binary positive numbers), } \\
& 0^{\mathbf{D}} \text { (axiom) and } C^{\mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}} \text { (rule) for } \mathbf{D} \text { (derivations). }
\end{aligned}
$$

- Examples of "information tokens": $\mathrm{S}^{n} 0(n \geq 0), \mathrm{S}^{2} *($ in $\mathbf{N})$, $\mathrm{C}(\mathrm{C} 0 *)(\mathrm{C} * 0)$ (in $\mathbf{D})(*$: special symbol; no information).

Finitary algebras as non-flat Scott information systems

- An algebra ι is given by its constructors.
- Examples:

$$
\begin{aligned}
& 0^{\mathbf{N}}, S^{\mathbf{N} \rightarrow \mathbf{N}} \text { for } \mathbf{N} \text { (unary natural numbers), } \\
& 1^{\mathbf{P}}, S_{0}^{\mathbf{P} \rightarrow \mathbf{P}}, S_{1}^{\mathbf{P} \rightarrow \mathbf{P}} \text { for } \mathbf{P} \text { of (binary positive numbers), } \\
& 0^{\mathbf{D}} \text { (axiom) and } C^{\mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}} \text { (rule) for } \mathbf{D} \text { (derivations). }
\end{aligned}
$$

- Examples of "information tokens": $\mathrm{S}^{n} 0(n \geq 0), \mathrm{S}^{2} *($ in $\mathbf{N})$, $\mathrm{C}(\mathrm{C} 0 *)(\mathrm{C} * 0)$ (in $\mathbf{D})(*$: special symbol; no information).
- An information token is total if it contains no $*$.
- In D: total token \sim finite (well-founded) derivation.

Finitary algebras as non-flat Scott information systems

- An algebra ι is given by its constructors.
- Examples:

$$
\begin{aligned}
& 0^{\mathbf{N}}, S^{\mathbf{N} \rightarrow \mathbf{N}} \text { for } \mathbf{N} \text { (unary natural numbers), } \\
& 1^{\mathbf{P}}, S_{0}^{\mathbf{P} \rightarrow \mathbf{P}}, S_{1}^{\mathbf{P} \rightarrow \mathbf{P}} \text { for } \mathbf{P} \text { of (binary positive numbers), } \\
& 0^{\mathbf{D}} \text { (axiom) and } C^{\mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}} \text { (rule) for } \mathbf{D} \text { (derivations). }
\end{aligned}
$$

- Examples of "information tokens": $\mathrm{S}^{n} 0(n \geq 0), \mathrm{S}^{2} *($ in $\mathbf{N})$, $\mathrm{C}(\mathrm{C} 0 *)(\mathrm{C} * 0)$ (in D) ($*$: special symbol; no information).
- An information token is total if it contains no $*$.
- In D: total token \sim finite (well-founded) derivation.

Finitary algebras: consistency, entailment, ideals

For D (derivations):

Finitary algebras: consistency, entailment, ideals

```
For \(\mathbf{D}\) (derivations):
    - \(\{\mathrm{C} 0 *, \mathrm{C} * 0\}\) is "consistent", written \(\mathrm{C} 0 * \uparrow \mathrm{C} * 0\).
    - \(\{\mathrm{CO}, \mathrm{C} * 0\} \vdash \mathrm{COO}\) ("entails")
    - Ideals: consistent and "deductively closed" sets of tokens.
Examples of ideals:
    - \(\{\mathrm{C} 0 *, \mathrm{C} * *\}\)
    - \(\{\mathrm{COO}, \mathrm{C} 0 *, \mathrm{C} * 0, \mathrm{C} * *\}\)
    - The deductive closure of a finite (well-founded) derivation.
    > \(\{\mathrm{C} * *, \mathrm{C}(\mathrm{C} * *) *, \mathrm{C} *(\mathrm{C} * *), \mathrm{C}(\mathrm{C} * *)(\mathrm{C} * *), \ldots\}\) ("cototal" \()\).
    - Locally correct, but possibly non well-founded derivations
    (Mints 1978).
```


Finitary algebras: consistency, entailment, ideals

For \mathbf{D} (derivations):

- $\{\mathrm{C} 0 *, \mathrm{C} * 0\}$ is "consistent", written $\mathrm{C} 0 * \uparrow \mathrm{C} * 0$.
- $\{\mathrm{C} 0 *, \mathrm{C} * 0\} \vdash \mathrm{C} 00$ ("entails").
- Ideals: consistent and "deductively closed" sets of tokens.

Examples of ideals:

- $\{\mathrm{C} 0 *, \mathrm{C} * *\}$
- $\{\mathrm{COO}, \mathrm{C} 0 *, \mathrm{C} * 0, \mathrm{C} * *\}$
- The deductive closure of a finite (well-founded) derivation.
- $\{\mathrm{C} * *, \mathrm{C}(\mathrm{C} * *) *, \mathrm{C} *(\mathrm{C} * *), \mathrm{C}(\mathrm{C} * *)(\mathrm{C} * *), \ldots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

Finitary algebras: consistency, entailment, ideals

For \mathbf{D} (derivations):

- $\{\mathrm{C} 0 *, \mathrm{C} * 0\}$ is "consistent", written $\mathrm{C} 0 * \uparrow \mathrm{C} * 0$.
- $\{\mathrm{C} 0 *, \mathrm{C} * 0\} \vdash \mathrm{C} 00$ ("entails").
- Ideals: consistent and "deductively closed" sets of tokens.

Finitary algebras: consistency, entailment, ideals

For \mathbf{D} (derivations):

- $\{\mathrm{C} 0 *, \mathrm{C} * 0\}$ is "consistent", written $\mathrm{C} 0 * \uparrow \mathrm{C} * 0$.
- $\{\mathrm{C} 0 *, \mathrm{C} * 0\} \vdash \mathrm{C} 00$ ("entails").
- Ideals: consistent and "deductively closed" sets of tokens.

Examples of ideals:

- $\{\mathrm{C} 0 *, \mathrm{C} * *\}$.
- The deductive closure of a finite (well-founded) derivation. - $\{\mathrm{C} * *, \mathrm{C}(\mathrm{C} * *) *, \mathrm{C} *(\mathrm{C} * *), \mathrm{C}(\mathrm{C} * *)(\mathrm{C} * *), \ldots\}$ ("cototal" $)$.
- Locally correct, but possibly non well-founded derivations (Mints 1978)

Finitary algebras: consistency, entailment, ideals

For \mathbf{D} (derivations):

- $\{\mathrm{C} 0 *, \mathrm{C} * 0\}$ is "consistent", written $\mathrm{C} 0 * \uparrow \mathrm{C} * 0$.
- $\{\mathrm{C} 0 *, \mathrm{C} * 0\} \vdash \mathrm{C} 00$ ("entails").
- Ideals: consistent and "deductively closed" sets of tokens.

Examples of ideals:

- $\{\mathrm{C} 0 *, \mathrm{C} * *\}$.
- $\{\mathrm{C} 00, \mathrm{C} 0 *, \mathrm{C} * 0, \mathrm{C} * *\}$.
- The deductive closure of a finite (well-founded) derivation - $\{\mathrm{C} * *, \mathrm{C}(\mathrm{C} * *) *, \mathrm{C} *(\mathrm{C} * *), \mathrm{C}(\mathrm{C} * *)(\mathrm{C} * *), \ldots\}$ ("cototal")
- Locally correct, but possibly non well-founded derivations (Mints 1978).

Finitary algebras: consistency, entailment, ideals

For \mathbf{D} (derivations):

- $\{\mathrm{C} 0 *, \mathrm{C} * 0\}$ is "consistent", written $\mathrm{C} 0 * \uparrow \mathrm{C} * 0$.
- $\{\mathrm{C} 0 *, \mathrm{C} * 0\} \vdash \mathrm{C} 00$ ("entails").
- Ideals: consistent and "deductively closed" sets of tokens.

Examples of ideals:

- $\{\mathrm{C} 0 *, \mathrm{C} * *\}$.
- $\{\mathrm{C} 00, \mathrm{C} 0 *, \mathrm{C} * 0, \mathrm{C} * *\}$.
- The deductive closure of a finite (well-founded) derivation.
- Locally correct, but possibly non well-founded derivations (Mints 1978).

Finitary algebras: consistency, entailment, ideals

For \mathbf{D} (derivations):

- $\{\mathrm{C} 0 *, \mathrm{C} * 0\}$ is "consistent", written $\mathrm{C} 0 * \uparrow \mathrm{C} * 0$.
- $\{\mathrm{C} 0 *, \mathrm{C} * 0\} \vdash \mathrm{C} 00$ ("entails").
- Ideals: consistent and "deductively closed" sets of tokens.

Examples of ideals:

- $\{\mathrm{C} 0 *, \mathrm{C} * *\}$.
- $\{\mathrm{C} 00, \mathrm{C} 0 *, \mathrm{C} * 0, \mathrm{C} * *\}$.
- The deductive closure of a finite (well-founded) derivation.
- $\{\mathrm{C} * *, \mathrm{C}(\mathrm{C} * *) *, \mathrm{C} *(\mathrm{C} * *), \mathrm{C}(\mathrm{C} * *)(\mathrm{C} * *), \ldots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

Finitary algebras: consistency, entailment, ideals

For \mathbf{D} (derivations):

- $\{\mathrm{C} 0 *, \mathrm{C} * 0\}$ is "consistent", written $\mathrm{C} 0 * \uparrow \mathrm{C} * 0$.
- $\{\mathrm{C} 0 *, \mathrm{C} * 0\} \vdash \mathrm{C} 00$ ("entails").
- Ideals: consistent and "deductively closed" sets of tokens.

Examples of ideals:

- $\{\mathrm{C} 0 *, \mathrm{C} * *\}$.
- $\{\mathrm{C} 00, \mathrm{C} 0 *, \mathrm{C} * 0, \mathrm{C} * *\}$.
- The deductive closure of a finite (well-founded) derivation.
- $\{\mathrm{C} * *, \mathrm{C}(\mathrm{C} * *) *, \mathrm{C} *(\mathrm{C} * *), \mathrm{C}(\mathrm{C} * *)(\mathrm{C} * *), \ldots\}$ ("cototal").
- Locally correct, but possibly non well-founded derivations (Mints 1978).

Tokens and entailment for \mathbf{N}

Constructors as continuous functions

- Continuous maps $f:|\mathbf{N}| \rightarrow|\mathbf{N}|$ (see below) are monotone: $x \subseteq y \rightarrow f x \subseteq f y$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms $\mathrm{S} x \neq 0$ and $\mathrm{S} x=\mathrm{S} y \rightarrow x=y$).
- This holds for non-flat algebras, but not for flat ones:

There constructors must be strict (i.e., $\mathrm{C} \vec{x} \emptyset \vec{y}=\emptyset$), hence
In $\boldsymbol{P}: \quad S_{1} \emptyset=\emptyset=S_{2} \emptyset$,
In D: $C \emptyset\{0\}=\emptyset=C\{0\} \emptyset$.

Constructors as continuous functions

- Continuous maps $f:|\mathbf{N}| \rightarrow|\mathbf{N}|$ (see below) are monotone: $x \subseteq y \rightarrow f x \subseteq f y$.
- Easy: every constructor gives rise to a continuous function.

There constructors must be strict (i.e., $\mathrm{C} \vec{x} \emptyset \vec{y}=\emptyset$), hence
In $P: \quad S_{1} \emptyset=\emptyset=S_{2} \emptyset$,
In D: $C \emptyset\{0\}=\emptyset=C\{0\}$.

Constructors as continuous functions

- Continuous maps $f:|\mathbf{N}| \rightarrow|\mathbf{N}|$ (see below) are monotone: $x \subseteq y \rightarrow f x \subseteq f y$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms $\mathrm{S} x \neq 0$ and $\mathrm{S} x=\mathrm{S} y \rightarrow x=y$).
- This holds for non-flat algebras, but not for flat ones:

There constructors must be strict (i.e., $C \vec{x} \emptyset \vec{y}=\emptyset$), hence
\square
In D: $C \emptyset\{0\}=\emptyset=C\{0\} \emptyset$.

Constructors as continuous functions

- Continuous maps $f:|\mathbf{N}| \rightarrow|\mathbf{N}|$ (see below) are monotone: $x \subseteq y \rightarrow f x \subseteq f y$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms $\mathrm{S} x \neq 0$ and $\mathrm{S} x=\mathrm{S} y \rightarrow x=y$).
- This holds for non-flat algebras, but not for flat ones:
$0 \quad$ S0 \quad S(S0)

There constructors must be strict (i.e., C $\vec{x} \emptyset \vec{y}=\emptyset$), hence
\square
In D: $C \emptyset\{0\}=\emptyset=C\{0\} \emptyset$.

Constructors as continuous functions

- Continuous maps $f:|\mathbf{N}| \rightarrow|\mathbf{N}|$ (see below) are monotone: $x \subseteq y \rightarrow f x \subseteq f y$.
- Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms $\mathrm{S} x \neq 0$ and $\mathrm{S} x=\mathrm{S} y \rightarrow x=y$).
- This holds for non-flat algebras, but not for flat ones:
$0 \quad$ S0 \quad S(S0)

There constructors must be strict (i.e., $\mathrm{C} \vec{x} \emptyset \vec{y}=\emptyset$), hence

$$
\begin{array}{ll}
\text { In } \mathbf{P}: & \mathrm{S}_{1} \emptyset=\emptyset=\mathrm{S}_{2} \emptyset \\
\text { In } \mathbf{D}: & \mathrm{C} \emptyset\{0\}=\emptyset=\mathrm{C}\{0\} \emptyset
\end{array}
$$

Types

- Every mathematical object has a type.

Types

- Every mathematical object has a type.
- Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma, \rho \times \sigma$.
> $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- Non-dependent types suffice.

Types

- Every mathematical object has a type.
- Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma, \rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- Non-dependent types suffice.
- Every mathematical object has a type.
- Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma, \rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- Non-dependent types suffice.
- Every mathematical object has a type.
- Types: built from base types (i.e., algebras) by $\rho \rightarrow \sigma, \rho \times \sigma$.
- $\rho \times \sigma$ can be seen as finitary algebra with two parameters.
- Types and propositions are kept separate.
- Non-dependent types suffice.

The Scott-Ershov model of partial continuous functionals

- Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right), \mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems (Scott). Function space: $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con,$\vdash)$,

\rightarrow Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ}.

$\rightarrow f \in\left|\mathbf{C}_{\rho}\right|:$ limit of formal neighborhoods $U \in \operatorname{Con}_{\rho \rightarrow \sigma}$.
- $f \subset\left|C_{p}\right|$ computable: re limit

The Scott-Ershov model of partial continuous functionals

- Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right), \mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems (Scott). Function space: $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con, $\vdash)$, with $C:=\mathrm{Con}_{A} \times B$,

$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \vdash U:=\left(\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} U\right)$.
- Partial continuous functionals of type ρ : the ideals in C_{ρ}.

- $f \in\left|\mathbf{C}_{\rho}\right|$: limit of formal neighborhoods $U \in \operatorname{Con}_{\rho \rightarrow \sigma}$.
- $f \in\left|\mathbf{C}_{\rho}\right|$ computable: r.e. limit.

The Scott-Ershov model of partial continuous functionals

- Let $\mathbf{A}=\left(A\right.$, Con $\left._{A}, \vdash_{A}\right), \mathbf{B}=\left(B\right.$, Con $\left._{B}, \vdash_{B}\right)$ be information systems (Scott). Function space: $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con, $\vdash)$, with
$C:=\operatorname{Con}_{A} \times B$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \in \operatorname{Con}:=\forall_{J \subseteq I}\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j}\right\}_{j \in J} \in \operatorname{Con}_{B}\right)$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \vdash U:=\left(\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} U\right)$.
- Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ}.

The Scott-Ershov model of partial continuous functionals

- Let $\mathbf{A}=\left(A\right.$, Con $\left._{A}, \vdash_{A}\right), \mathbf{B}=\left(B\right.$, Con $\left._{B}, \vdash_{B}\right)$ be information systems (Scott). Function space: $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con, $\vdash)$, with
$C:=\mathrm{Con}_{A} \times B$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \in \operatorname{Con}:=\forall_{J \subseteq I}\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j}\right\}_{j \in J} \in \operatorname{Con}_{B}\right)$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \vdash U:=\left(\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} U\right)$.
- Partial continuous functionals of type ρ : the ideals in C_{ρ}.

The Scott-Ershov model of partial continuous functionals

- Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right), \mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems (Scott). Function space: $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con, $\vdash)$, with
$C:=\mathrm{Con}_{A} \times B$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \in \operatorname{Con}:=\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j}\right\}_{j \in J} \in \operatorname{Con}_{B}\right)$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \vdash U:=\left(\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} U\right)$.
- Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ}.

$$
\mathbf{C}_{\iota}:=\left(\operatorname{Tok}_{\iota}, \operatorname{Con}_{\iota}, \vdash_{\iota}\right), \quad \mathbf{C}_{\rho \rightarrow \sigma}:=\mathbf{C}_{\rho} \rightarrow \mathbf{C}_{\sigma}
$$

The Scott-Ershov model of partial continuous functionals

- Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right), \mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems (Scott). Function space: $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con, $\vdash)$, with
$C:=\mathrm{Con}_{A} \times B$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \in \operatorname{Con}:=\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j}\right\}_{j \in J} \in \operatorname{Con}_{B}\right)$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \vdash U:=\left(\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} U\right)$.
- Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ}.

$$
\mathbf{C}_{\iota}:=\left(\operatorname{Tok}_{\iota}, \operatorname{Con}_{\iota}, \vdash_{\iota}\right), \quad \mathbf{C}_{\rho \rightarrow \sigma}:=\mathbf{C}_{\rho} \rightarrow \mathbf{C}_{\sigma}
$$

- $f \in\left|\mathbf{C}_{\rho}\right|$: limit of formal neighborhoods $U \in \operatorname{Con}_{\rho \rightarrow \sigma}$.

The Scott-Ershov model of partial continuous functionals

- Let $\mathbf{A}=\left(A, \operatorname{Con}_{A}, \vdash_{A}\right), \mathbf{B}=\left(B, \operatorname{Con}_{B}, \vdash_{B}\right)$ be information systems (Scott). Function space: $\mathbf{A} \rightarrow \mathbf{B}:=(C$, Con, $\vdash)$, with
$C:=\mathrm{Con}_{A} \times B$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \in \operatorname{Con}:=\forall J \subseteq I\left(\bigcup_{j \in J} U_{j} \in \operatorname{Con}_{A} \rightarrow\left\{b_{j}\right\}_{j \in J} \in \operatorname{Con}_{B}\right)$,
$\left\{\left(U_{i}, b_{i}\right)\right\}_{i \in I} \vdash U:=\left(\left\{b_{i} \mid U \vdash_{A} U_{i}\right\} \vdash_{B} U\right)$.
- Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ}.

$$
\mathbf{C}_{\iota}:=\left(\operatorname{Tok}_{\iota}, \operatorname{Con}_{\iota}, \vdash_{\iota}\right), \quad \mathbf{C}_{\rho \rightarrow \sigma}:=\mathbf{C}_{\rho} \rightarrow \mathbf{C}_{\sigma}
$$

- $f \in\left|\mathbf{C}_{\rho}\right|$: limit of formal neighborhoods $U \in \operatorname{Con}_{\rho \rightarrow \sigma}$.
- $f \in\left|\mathbf{C}_{\rho}\right|$ computable: r.e. limit.

Terms

- Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x^{\rho}} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma} .
$$

- Every defined constant D comes with a system of computation rules $D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i}$ with $\mathrm{FV}\left(M_{i}\right) \subseteq \vec{y}_{i}$
- $\vec{P}_{i}\left(\vec{y}_{i}\right)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $\mathrm{C} \vec{P}$ (of base type). We assume that \vec{P}_{i} and \vec{P}_{j} for $i \neq j$ are non-unifiable.

Examples:

- Predecessor $\mathrm{P}: \mathrm{N} \rightarrow \mathrm{N}$, defined by $\mathrm{P} 0=0, \mathrm{P}(\mathrm{Sn})=n$,
- Gödel's primitive recursion operators
 $\mathcal{R} 0 f g=f, \mathcal{R}(\mathrm{Sn}) f g=\ln (\mathcal{R} n f g)$, and
- the least-fixed-point operators Y_{ρ} of type $(\rho \rightarrow \rho) \rightarrow \rho$ defined by the computation rule

Terms

- Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x^{\rho}} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma} .
$$

- Every defined constant D comes with a system of computation rules $D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i}$ with $\mathrm{FV}\left(M_{i}\right) \subseteq \vec{y}_{i}$.
 assume that \vec{P}_{i} and \vec{P}_{j} for $i \neq j$ are non-unifiable.

Examples:

\Rightarrow Predecessor $\mathrm{P}: \mathrm{N} \rightarrow \mathrm{N}$, defined by $\mathrm{P} 0=0, \mathrm{P}(\mathrm{Sn})=n$,

- Gödel's primitive recursion operators $\mathcal{R}_{\mathrm{N}}^{\tau}: \mathbf{N} \rightarrow \tau \rightarrow(\mathbf{N} \rightarrow \tau \rightarrow \tau) \rightarrow \tau$ with computation rules $\mathcal{R} 0 f g=f, \mathcal{R}(\mathrm{Sn}) f g=\operatorname{gn}(\mathcal{R} n f g)$, and
- the least-fixed-point operators Y_{ρ} of type $(\rho \rightarrow \rho) \rightarrow \rho$ defined by the computation rule

Terms

- Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma} .
$$

- Every defined constant D comes with a system of computation rules $D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i}$ with $\mathrm{FV}\left(M_{i}\right) \subseteq \vec{y}_{i}$.
- $\vec{P}_{i}\left(\vec{y}_{i}\right)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $\mathrm{C} \vec{P}$ (of base type). We assume that \vec{P}_{i} and \vec{P}_{j} for $i \neq j$ are non-unifiable.
Examples:
- Gödel's primitive recursion operators
$\mathcal{R} 0 f g=f, \mathcal{R}(\mathrm{Sn}) f g=\operatorname{gn}(\mathcal{R} n f g)$, and

Terms

- Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x^{\rho}} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma} .
$$

- Every defined constant D comes with a system of computation rules $D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i}$ with $\mathrm{FV}\left(M_{i}\right) \subseteq \vec{y}_{i}$.
- $\vec{P}_{i}\left(\vec{y}_{i}\right)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $\mathrm{C} \vec{P}$ (of base type). We assume that \vec{P}_{i} and \vec{P}_{j} for $i \neq j$ are non-unifiable.
Examples:
- Predecessor $\mathrm{P}: \mathbf{N} \rightarrow \mathbf{N}$, defined by $\mathrm{P} 0=0, \mathrm{P}(\mathrm{S} n)=n$,

Terms

- Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma} .
$$

- Every defined constant D comes with a system of computation rules $D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i}$ with $\mathrm{FV}\left(M_{i}\right) \subseteq \vec{y}_{i}$.
- $\vec{P}_{i}\left(\vec{y}_{i}\right)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $\mathrm{C} \vec{P}$ (of base type). We assume that \vec{P}_{i} and \vec{P}_{j} for $i \neq j$ are non-unifiable.
Examples:
- Predecessor $\mathrm{P}: \mathbf{N} \rightarrow \mathbf{N}$, defined by $\mathrm{P} 0=0, \mathrm{P}(\mathrm{Sn})=n$,
- Gödel's primitive recursion operators $\mathcal{R}_{\mathrm{N}}^{\tau}: \mathbf{N} \rightarrow \tau \rightarrow(\mathbf{N} \rightarrow \tau \rightarrow \tau) \rightarrow \tau$ with computation rules $\mathcal{R} 0 f g=f, \mathcal{R}(\mathrm{Sn}) f g=g n(\mathcal{R} n f g)$,

Terms

- Terms are built from (typed) variables and (typed) constants (constructors C or defined constants D, see below):

$$
M, N::=x^{\rho}\left|\mathrm{C}^{\rho}\right| D^{\rho}\left|\left(\lambda_{x^{\rho}} M^{\sigma}\right)^{\rho \rightarrow \sigma}\right|\left(M^{\rho \rightarrow \sigma} N^{\rho}\right)^{\sigma} .
$$

- Every defined constant D comes with a system of computation rules $D \vec{P}_{i}\left(\vec{y}_{i}\right)=M_{i}$ with $\mathrm{FV}\left(M_{i}\right) \subseteq \vec{y}_{i}$.
- $\vec{P}_{i}\left(\vec{y}_{i}\right)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context $\mathrm{C} \vec{P}$ (of base type). We assume that \vec{P}_{i} and \vec{P}_{j} for $i \neq j$ are non-unifiable.
Examples:
- Predecessor $\mathrm{P}: \mathbf{N} \rightarrow \mathbf{N}$, defined by $\mathrm{P} 0=0, \mathrm{P}(\mathrm{Sn})=n$,
- Gödel's primitive recursion operators
$\mathcal{R}_{\mathrm{N}}^{\tau}: \mathbf{N} \rightarrow \tau \rightarrow(\mathbf{N} \rightarrow \tau \rightarrow \tau) \rightarrow \tau$ with computation rules
$\mathcal{R} 0 f g=f, \mathcal{R}(\mathrm{~S} n) f g=g n(\mathcal{R} n f g)$, and
- the least-fixed-point operators Y_{ρ} of type $(\rho \rightarrow \rho) \rightarrow \rho$ defined by the computation rule $Y_{\rho} f=f\left(Y_{\rho} f\right)$.

Denotational semantics

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \rightarrow \sigma$ we inductively define a set $\llbracket \lambda_{\vec{x}} M \rrbracket$ of tokens of type $\vec{\rho} \rightarrow \sigma$.

For every constructor C and defined constant D :

with one rule (D) for every computation rule $D \vec{P}(\vec{y})=M$. Note:

Denotational semantics

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \rightarrow \sigma$ we inductively define a set $\llbracket \lambda_{\vec{x}} M \rrbracket$ of tokens of type $\vec{\rho} \rightarrow \sigma$.
$\frac{U_{i} \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_{i} \rrbracket}(V)$,

For every constructor C and defined constant D :

with one rule (D) for every computation rule $D \vec{P}(\vec{y})=M$. Note:

Denotational semantics

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \rightarrow \sigma$ we inductively define a set $\llbracket \lambda_{\vec{x}} M \rrbracket$ of tokens of type $\vec{\rho} \rightarrow \sigma$.

$$
\frac{U_{i} \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_{i} \rrbracket}(V), \quad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{x}} M \rrbracket \quad(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} N \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{x}}(M N) \rrbracket}(A)
$$

For every constructor C and defined constant D :

with one rule (D) for every computation rule $D \vec{P}(\vec{y})=M$. Note:

Denotational semantics

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \rightarrow \sigma$ we inductively define a set $\llbracket \lambda_{\vec{x}} M \rrbracket$ of tokens of type $\vec{\rho} \rightarrow \sigma$.

$$
\frac{U_{i} \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_{i} \rrbracket}(V), \quad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{x}} M \rrbracket \quad(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} N \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{x}}(M N) \rrbracket}(A)
$$

For every constructor C and defined constant D :
$\frac{\vec{V} \vdash \overrightarrow{b^{*}}}{\left(\vec{U}, \vec{V}, \mathrm{C} \overrightarrow{b^{*}}\right) \in \llbracket \lambda_{\vec{x}} \mathrm{C} \rrbracket}(\mathrm{C})$,
with one rule (D) for every computation rule $D \vec{P}(\vec{y})=M$. Note:
\square

Denotational semantics

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \rightarrow \sigma$ we inductively define a set $\llbracket \lambda_{\vec{x}} M \rrbracket$ of tokens of type $\vec{\rho} \rightarrow \sigma$.

$$
\frac{U_{i} \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_{i} \rrbracket}(V), \quad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{x}} M \rrbracket \quad(\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} N \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{x}}(M N) \rrbracket}(A)
$$

For every constructor C and defined constant D :
$\frac{\vec{V} \vdash \overrightarrow{b^{*}}}{\left(\vec{U}, \vec{V}, \mathrm{C} \overrightarrow{b^{*}}\right) \in \llbracket \lambda_{\vec{x}} \mathrm{C} \rrbracket}($

$$
\frac{(\vec{U}, \vec{V}, b) \in \llbracket \lambda_{\vec{x}, \vec{y}} M \rrbracket \quad \vec{W} \vdash \vec{P}(\vec{V})}{(\vec{U}, \vec{W}, b) \in \llbracket \lambda_{\vec{x}} D \rrbracket}(D),
$$

with one rule (D) for every computation rule $D \vec{P}(\vec{y})=M$. Note:

$$
\begin{aligned}
& (\vec{U}, b) \text { denotes }\left(U_{1}, \ldots\left(U_{n}, b\right) \ldots\right) \\
& (\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} M \rrbracket \text { means }(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket \text { for all } b \in V
\end{aligned}
$$

Theorem

- For every term $M, \llbracket \lambda_{\vec{x}} M \rrbracket$ is an ideal.
- If a term M converts to M^{\prime} by $\beta \eta$-conversion or application of a computation rule, then $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket$.

A consequence of (A) is continuity of application:

$$
c \in \llbracket M N \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N]_{\bar{x}}^{u}}\left((V, c) \in \llbracket M \prod_{\vec{x}}^{\vec{u}}\right) .
$$

Theorem

- For every term $M, \llbracket \lambda_{\vec{x}} M \rrbracket$ is an ideal.
- If a term M converts to M^{\prime} by $\beta \eta$-conversion or application of a computation rule, then $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket$.

A consequence of (A) is continuity of application:

$$
c \in \mathbb{M N N} \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{u}}}\left((V, c) \in \llbracket M \prod_{\vec{x}}^{\vec{u}}\right)
$$

Theorem

- For every term $M, \llbracket \lambda_{\vec{x}} M \rrbracket$ is an ideal.
- If a term M converts to M^{\prime} by $\beta \eta$-conversion or application of a computation rule, then $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket$.

Let

$$
\llbracket M \rrbracket_{\vec{x}}^{\vec{u}}:=\bigcup_{\vec{U} \subseteq \vec{u}} \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} \quad \text { with } \quad \llbracket M \rrbracket_{\vec{x}}^{\vec{U}}:=\left\{b \mid(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket\right\} .
$$

A consequence of (A) is continuity of application:

$$
c \in \llbracket M N \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{x}}}\left((V, c) \in \llbracket M \rrbracket_{\vec{\sim}}^{\vec{u}}\right) .
$$

Theorem

- For every term $M, \llbracket \lambda_{\vec{x}} M \rrbracket$ is an ideal.
- If a term M converts to M^{\prime} by $\beta \eta$-conversion or application of a computation rule, then $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket$.

Let

$$
\llbracket M \rrbracket_{\vec{x}}^{\vec{u}}:=\bigcup_{\vec{U} \subseteq \vec{u}} \llbracket M \rrbracket_{\vec{x}}^{\vec{u}} \quad \text { with } \quad \llbracket M \rrbracket_{\vec{x}}^{\vec{U}}:=\left\{b \mid(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket\right\} .
$$

A consequence of (A) is continuity of application:

$$
c \in \llbracket M N \rrbracket_{\vec{\sim}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{u}}}\left((V, c) \in \llbracket M \rrbracket_{\vec{x}}^{\vec{u}}\right) .
$$

Total functionals

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_{1} \approx x_{2}$ between them are defined inductively.

Total functionals

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_{1} \approx x_{2}$ between them are defined inductively.

- For an algebra ι, the total ideals x are those of the form $\mathrm{C} \vec{z}$ with C a constructor of ι and \vec{z} total.
- $x_{1} \approx_{\iota} x_{2}$ iff both are of the form $\mathrm{C} \vec{z}_{i}$ with the same constructor C of ι, and $z_{1 j} \approx_{\iota} z_{2 j}$ for all j.
- $f \in G_{\rho \rightarrow \sigma}$ iff $\forall_{z \in G_{\rho}}\left(f z \in G_{\sigma}\right)$.
- For $f, g \in G_{\rho \rightarrow \sigma}$ define $f \approx_{\rho \rightarrow \sigma} g$ by $\forall_{x \in G_{\rho}}\left(f x \approx_{\sigma} g x\right)$.

Theorem (Ershov 1974, Longo \& Moggi 1984) $x \approx_{\rho} y$ implies $f x \approx_{\sigma} f y$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \rightarrow \sigma}$.

Total functionals

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_{1} \approx x_{2}$ between them are defined inductively.

- For an algebra ι, the total ideals x are those of the form $\mathrm{C} \vec{z}$ with C a constructor of ι and \vec{z} total.
- $x_{1} \approx_{\iota} x_{2}$ iff both are of the form $\mathrm{C} \vec{z}_{i}$ with the same constructor C of ι, and $z_{1 j} \approx_{\iota} z_{2 j}$ for all j.

\square $x \approx_{\rho} y$ implies $f x \approx_{\sigma} f y$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \rightarrow \sigma}$.

Total functionals

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_{1} \approx x_{2}$ between them are defined inductively.

- For an algebra ι, the total ideals x are those of the form $\mathrm{C} \vec{z}$ with C a constructor of ι and \vec{z} total.
- $x_{1} \approx_{\iota} x_{2}$ iff both are of the form $\mathrm{C} \vec{z}_{i}$ with the same constructor C of ι, and $z_{1 j} \approx_{\iota} z_{2 j}$ for all j.
- $f \in G_{\rho \rightarrow \sigma}$ iff $\forall_{z \in G_{\rho}}\left(f z \in G_{\sigma}\right)$.

\square $x \approx_{\rho} y$ implies $f x \approx_{\sigma} f y$, for $x, y \in G_{\rho}$ and $f \in G_{\rho \rightarrow \sigma}$.

Total functionals

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_{1} \approx x_{2}$ between them are defined inductively.

- For an algebra ι, the total ideals x are those of the form $\mathrm{C} \vec{z}$ with C a constructor of ι and \vec{z} total.
- $x_{1} \approx_{\iota} x_{2}$ iff both are of the form $\mathrm{C} \vec{z}_{i}$ with the same constructor C of ι, and $z_{1 j} \approx_{\iota} z_{2 j}$ for all j.
- $f \in G_{\rho \rightarrow \sigma}$ iff $\forall_{z \in G_{\rho}}\left(f z \in G_{\sigma}\right)$.
- For $f, g \in G_{\rho \rightarrow \sigma}$ define $f \approx_{\rho \rightarrow \sigma} g$ by $\forall_{x \in G_{\rho}}\left(f x \approx_{\sigma} g x\right)$.

Total functionals

The total ideals x of type ρ (notation $x \in G_{\rho}$) and an equivalence relation $x_{1} \approx x_{2}$ between them are defined inductively.

- For an algebra ι, the total ideals x are those of the form $\mathrm{C} \vec{z}$ with C a constructor of ι and \vec{z} total.
- $x_{1} \approx_{\iota} x_{2}$ iff both are of the form $\mathrm{C} \vec{z}_{i}$ with the same constructor C of ι, and $z_{1 j} \approx_{\iota} z_{2 j}$ for all j.
- $f \in G_{\rho \rightarrow \sigma}$ iff $\forall_{z \in G_{\rho}}\left(f z \in G_{\sigma}\right)$.
- For $f, g \in G_{\rho \rightarrow \sigma}$ define $f \approx_{\rho \rightarrow \sigma} g$ by $\forall_{x \in G_{\rho}}\left(f x \approx_{\sigma} g x\right)$.

Theorem (Ershov 1974, Longo \& Moggi 1984)
$x \approx_{\rho} y$ implies $f x \approx_{\sigma}$ fy, for $x, y \in G_{\rho}$ and $f \in G_{\rho \rightarrow \sigma}$.

Density

The total functionals are dense (w.r.t. the Scott topology) in the space of all partial continuous functionals of type ρ.

Proof.
By induction on ρ.

Density

The total functionals are dense (w.r.t. the Scott topology) in the space of all partial continuous functionals of type ρ.
Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)
For every type $\rho=\rho_{1} \rightarrow \ldots \rightarrow \rho_{p} \rightarrow \iota$ we have decidable formulas
$\operatorname{TExt}_{\rho}$ and $\operatorname{Sep}_{\rho}^{i}(i=1, \ldots, p)$ such that

- $\forall U \in \operatorname{Con}_{\rho}\left(U \subseteq\left\{a \mid \operatorname{TExt}_{\rho}(U, a)\right\} \in G_{\rho}\right)$ and

Density

The total functionals are dense (w.r.t. the Scott topology) in the space of all partial continuous functionals of type ρ.
Theorem (Kreisel 1959, Ershov 1974, U. Berger 1993)
For every type $\rho=\rho_{1} \rightarrow \ldots \rightarrow \rho_{p} \rightarrow \iota$ we have decidable formulas $\operatorname{TExt}_{\rho}$ and $\operatorname{Sep}_{\rho}^{i}(i=1, \ldots, p)$ such that

- $\forall U \in \operatorname{Con}_{\rho}\left(U \subseteq\left\{a \mid \operatorname{TExt}_{\rho}(U, a)\right\} \in G_{\rho}\right)$ and
- $\forall U, V \in \operatorname{Con}_{\rho}\left(U X_{\rho} V \rightarrow \vec{z}_{U, V} \in G \wedge U \vec{z}_{U, V} X_{\iota} V \vec{z}_{U, V}\right)$, where $\vec{z}_{U, V}=z_{U, V, 1}, \ldots, z_{U, V, p}$ and $z_{U, V, i}=\left\{a \mid \operatorname{Sep}_{\rho}^{i}(U, V, a)\right\}$.

Proof.
By induction on ρ.

Definability

There will be two kinds of (natural) numbers:

- total tokens in \mathbf{N}, i.e., $\mathrm{S}^{n} 0$ ("index numbers" $n \in \mathbb{N}$), and
- total ideals \bar{n} of type \mathbf{N}.

Fix enumerations

- $\left(e_{n}\right)_{n \in \mathbb{N}}$ of all tokens, and
- $\left(E_{n}\right)_{n \in \mathbb{N}}$ of all formal neighborhoods,
one for each type.

Definability

There will be two kinds of (natural) numbers:

- total tokens in \mathbf{N}, i.e., $\mathrm{S}^{n} 0$ ("index numbers" $n \in \mathbb{N}$), and
- total ideals \bar{n} of type \mathbf{N}.

Fix enumerations

- $\left(e_{n}\right)_{n \in \mathbb{N}}$ of all tokens, and
- $\left(E_{n}\right)_{n \in \mathbb{N}}$ of all formal neighborhoods, one for each type.

The parallel conditional pcond: $\mathbf{B} \rightarrow \rho \rightarrow \rho \rightarrow \rho$

It is defined by the clauses

$$
\begin{aligned}
& U \vdash \mathrm{t} \rightarrow V \vdash a \rightarrow(U, V, W, a) \in \text { pcond, } \\
& U \vdash \mathrm{ff} \rightarrow W \vdash a \rightarrow(U, V, W, a) \in \text { pcond, }, \\
& V \vdash a \rightarrow W \vdash a \rightarrow(U, V, W, a) \in \text { pcond. }
\end{aligned}
$$

We also need the least-fixed-point axiom, which says that any set of tokens (U, V, W, a) satisfying these is a superset of pcond.

Lemma (Properties of pcond)
pcond is an ideal, and

$$
\begin{aligned}
& \mathrm{tt} \in z \rightarrow \operatorname{pcond}(z, x, y)=x \\
& \mathrm{ff} \in z \rightarrow \operatorname{pcond}(z, x, y)=y \\
& a \in x \rightarrow a \in y \rightarrow a \in \operatorname{pcond}(z, x, y)
\end{aligned}
$$

The parallel conditional pcond: $\mathbf{B} \rightarrow \rho \rightarrow \rho \rightarrow \rho$

It is defined by the clauses

$$
\begin{aligned}
& U \vdash \mathrm{tt} \rightarrow V \vdash a \rightarrow(U, V, W, a) \in \text { pcond, } \\
& U \vdash \mathrm{ff} \rightarrow W \vdash a \rightarrow(U, V, W, a) \in \text { pcond, } \\
& V \vdash a \rightarrow W \vdash a \rightarrow(U, V, W, a) \in \text { pcond. }
\end{aligned}
$$

We also need the least-fixed-point axiom, which says that any set of tokens (U, V, W, a) satisfying these is a superset of pcond.

Lemma (Properties of pcond) pcond is an ideal, and

The parallel conditional pcond: $\mathbf{B} \rightarrow \rho \rightarrow \rho \rightarrow \rho$

It is defined by the clauses

$$
\begin{aligned}
& U \vdash \mathrm{tt} \rightarrow V \vdash a \rightarrow(U, V, W, a) \in \text { pcond, } \\
& U \vdash \mathrm{ff} \rightarrow W \vdash a \rightarrow(U, V, W, a) \in \text { pcond, } \\
& V \vdash a \rightarrow W \vdash a \rightarrow(U, V, W, a) \in \text { pcond. }
\end{aligned}
$$

We also need the least-fixed-point axiom, which says that any set of tokens (U, V, W, a) satisfying these is a superset of pcond.

Lemma (Properties of pcond)
pcond is an ideal, and

$$
\begin{aligned}
& \mathrm{tt} \in z \rightarrow \operatorname{pcond}(z, x, y)=x, \\
& \mathrm{ff} \in z \rightarrow \operatorname{pcond}(z, x, y)=y, \\
& a \in x \rightarrow a \in y \rightarrow a \in \operatorname{pcond}(z, x, y) .
\end{aligned}
$$

A continuous variant of the union for \mathbf{N}

For ideals in \mathbf{N}, the union (\sim maximum) is not continuous.
Continuous variant: $\cup_{\mathbf{N}}^{\#}: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$, defined by the clauses

$$
\begin{aligned}
& U \vdash e_{n} \rightarrow V \vdash n \rightarrow U \vdash a \rightarrow(U, V, a) \in \cup_{\mathbf{N}}^{\#}, \\
& \left\{e_{n}\right\} \vdash a \rightarrow V \vdash n \rightarrow(U, V, a) \in \cup_{\mathbf{N}}^{\#},
\end{aligned}
$$

plus the least-fixed-point axiom.
Lemma (Properties of $\cup_{N}^{\#}$)
$\cup_{\mathbf{N}}^{\#}$ is an ideal, and

$$
\begin{aligned}
& \forall_{a \in x}\left(a \uparrow e_{n}\right) \rightarrow x \cup_{N}^{\#} \bar{n}=x \cup\left\{e_{n}\right\}, \\
& e_{n} \in x \cup_{N}^{\#} \bar{n} .
\end{aligned}
$$

A continuous variant of the union for \mathbf{N}

For ideals in \mathbf{N}, the union (\sim maximum) is not continuous.
Continuous variant: $\cup_{\mathbf{N}}^{\#}: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$, defined by the clauses

$$
\begin{aligned}
& U \vdash e_{n} \rightarrow V \vdash n \rightarrow U \vdash a \rightarrow(U, V, a) \in \cup_{\mathbf{N}}^{\#}, \\
& \left\{e_{n}\right\} \vdash a \rightarrow V \vdash n \rightarrow(U, V, a) \in \cup_{\mathbf{N}}^{\#},
\end{aligned}
$$

plus the least-fixed-point axiom.
Lemma (Properties of $\cup_{N}^{\#}$)
$\cup_{\mathbf{N}}^{\#}$ is an ideal, and

$$
\begin{aligned}
& \forall_{a \in x}\left(a \uparrow e_{n}\right) \rightarrow x \cup_{\mathbf{N}}^{\#} \bar{n}=x \cup \overline{\left\{e_{n}\right\}}, \\
& e_{n} \in x \cup_{\mathbf{N}}^{\#} \bar{n} .
\end{aligned}
$$

A continuous variant of consistency

Define $\uparrow_{\rho}^{\#}$ of type $\rho \rightarrow \mathbf{N} \rightarrow \mathbf{B}$ by the clauses

$$
\begin{aligned}
& U \vdash E_{n} \rightarrow V \vdash n \rightarrow(U, V, \mathrm{tt}) \in \uparrow_{\rho}^{\#}, \\
& a \in U \rightarrow b \in E_{n} \rightarrow V \vdash n \rightarrow a \not \subset b \rightarrow(U, V, \mathrm{ff}) \in \uparrow_{\rho}^{\#} .
\end{aligned}
$$

Again we require the least-fixed-point axiom.
Lemma (Properties of $\uparrow_{\rho}^{\#}$)
$\uparrow_{\rho}^{\#}$ is an ideal, and

A continuous variant of consistency

Define $\uparrow_{\rho}^{\#}$ of type $\rho \rightarrow \mathbf{N} \rightarrow \mathbf{B}$ by the clauses

$$
\begin{aligned}
& U \vdash E_{n} \rightarrow V \vdash n \rightarrow(U, V, \mathrm{tt}) \in \uparrow_{\rho}^{\#}, \\
& a \in U \rightarrow b \in E_{n} \rightarrow V \vdash n \rightarrow a \not \subset b \rightarrow(U, V, \mathrm{ff}) \in \uparrow_{\rho}^{\#} .
\end{aligned}
$$

Again we require the least-fixed-point axiom.
Lemma (Properties of $\uparrow_{\rho}^{\#}$)
$\uparrow_{\rho}^{\#}$ is an ideal, and

$$
\begin{aligned}
& \mathrm{tt} \in x \uparrow_{\rho}^{\#} \bar{n} \leftrightarrow x \supseteq E_{n}, \\
& \mathrm{ff} \in x \uparrow_{\rho}^{\#} \bar{n} \leftrightarrow \exists_{a \in x, b \in E_{n}}(a \not x b) .
\end{aligned}
$$

A continuous variant of existence

Define \exists of type $(\mathbf{N} \rightarrow \mathbf{B}) \rightarrow \mathbf{B}$ by the clauses

$$
\begin{aligned}
& U \vdash\left(\left\{S^{n} 0\right\}, \text { tt }\right) \rightarrow(U, \mathrm{tt}) \in \exists, \\
& U \vdash\left(\left\{S^{n} *\right\}, \text { ff }\right) \rightarrow \forall_{i<n}\left(U \vdash\left(\left\{\mathrm{~S}^{i} 0\right\}, \text { ff }\right)\right) \rightarrow(U, \text { ff }) \in \exists,
\end{aligned}
$$

plus the least-fixed-point axiom.
Lemma (Properties of \exists)
\exists is an ideal, and

$$
\begin{aligned}
& \mathrm{tt} \in \exists x \leftrightarrow \exists_{n}\left(\left(\left\{\mathrm{~S}^{n} 0\right\}, \mathrm{tt}\right) \in x\right), \\
& \mathrm{ff} \in \exists x \leftrightarrow \exists_{n}\left(\left(\left\{\mathrm{~S}^{n} *\right\}, \mathrm{ff}\right) \in x \wedge \forall_{i<n}\left(\left(\left\{\mathrm{~S}^{i} 0\right\}, \mathrm{ff}\right) \in x\right) .\right.
\end{aligned}
$$

A continuous variant of existence

Define \exists of type $(\mathbf{N} \rightarrow \mathbf{B}) \rightarrow \mathbf{B}$ by the clauses

$$
\begin{aligned}
& U \vdash\left(\left\{S^{n} 0\right\}, \mathrm{tt}\right) \rightarrow(U, \mathrm{tt}) \in \exists \\
& U \vdash\left(\left\{S^{n} *\right\}, \text { ff }\right) \rightarrow \forall_{i<n}\left(U \vdash\left(\left\{\mathrm{~S}^{i} 0\right\}, \text { ff }\right)\right) \rightarrow(U, \text { ff }) \in \exists,
\end{aligned}
$$

plus the least-fixed-point axiom.
Lemma (Properties of \exists)
\exists is an ideal, and

$$
\begin{aligned}
& \mathrm{tt} \in \exists x \leftrightarrow \exists_{n}\left(\left(\left\{\mathrm{~S}^{n} 0\right\}, \mathrm{tt}\right) \in x\right), \\
& \mathrm{ff} \in \exists x \leftrightarrow \exists_{n}\left(\left(\left\{\mathrm{~S}^{n} *\right\}, \mathrm{ff}\right) \in x \wedge \forall_{i<n}\left(\left(\left\{\mathrm{~S}^{i} 0\right\}, \mathrm{ff}\right) \in x\right) .\right.
\end{aligned}
$$

Definability

$\Phi: \rho \rightarrow \iota$ is called "recursive in $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$ " if it can be defined by a term involving the constructors for ι and \mathbf{N}, the fixed point operators Y_{ρ}, and predecessor, $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$.

Definability

$\Phi: \rho \rightarrow \iota$ is called "recursive in $\cup_{\mathbf{N}}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$ " if it can be defined by a term involving the constructors for ι and \mathbf{N}, the fixed point operators Y_{ρ}, and predecessor, $\cup_{N}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$.
Theorem (Plotkin 1977)
For an algebra ι with at most unary constructors (e.g., N, B or \mathbf{P}) and $\Phi: \rho \rightarrow \iota$ a partial continuous functional, the following are equivalent.
(a) Φ is computable.
(b) Φ is recursive in $\cup_{N}^{\#}$, pcond and $\uparrow_{\rho}^{\#}$.
(c) Φ is recursive in $\cup_{N}^{\#}$, pcond and \exists.

Proof of the definability theorem

(a) \rightarrow (b). Let $\Phi: \rho \rightarrow \iota$ be computable:

$$
\Phi=\left\{\left(E_{f n}, e_{g n}\right) \mid n \in \mathbb{N}\right\} \text { with } f, g \text { prim. rec. functions }
$$

\bar{f} : continuous extension of f to ideals, such that $\overline{f n}=\bar{f} \bar{n}$. Show:
Φ definable by $\Phi \varphi=Y w_{\varphi} \overline{0}$ with w_{φ} of type $(\mathbf{N} \rightarrow \iota) \rightarrow \mathbf{N} \rightarrow \iota$:

$$
w_{\varphi} \psi x:=\operatorname{pcond}\left(\varphi \uparrow_{\rho}^{\#} \bar{f} x, \psi(x+1) \cup_{N}^{\#} \bar{g} x, \psi(x+1)\right) .
$$

Proof of the definability theorem (continued)

Write w for w_{φ}. Prove

$$
\begin{equation*}
\forall_{n}\left(a \in w^{k+1} \emptyset \bar{n} \rightarrow \exists_{n \leq I \leq n+k}\left(\varphi \supseteq E_{f l} \wedge\left\{e_{g \prime}\right\} \vdash a\right)\right) . \tag{1}
\end{equation*}
$$

by induction on k. Step $k \mapsto k+1$:

$$
a \in w^{k+2} \emptyset \bar{n}=w\left(w^{k+1} \emptyset\right) \bar{n}=\operatorname{pcond}\left(\varphi \uparrow_{\rho}^{\#} \overline{f n}, v \cup_{N}^{\#} \overline{g n}, v\right)
$$

with $v:=w^{k+1} \emptyset(\bar{n}+1)$. Then either $a \in v(\rightarrow$ done by IH $)$ or else

$$
\varphi \supseteq E_{f n} \wedge\left\{e_{g n}\right\} \vdash a
$$

Now $\Phi \varphi \supseteq Y w \overline{0}$ follows easily. Assume $a \in Y w \overline{0}$. Then $a \in w^{k+1} \bar{\emptyset} \overline{0}$ for some k. By (1) there is an I with $0 \leq I \leq k$ such that $\varphi \supseteq E_{f l}$ and $\left\{e_{g l}\right\} \vdash a$. But this implies $a \in \Phi \varphi$.

Proof of the definability theorem (continued)

Converse: assume $a \in \Phi \varphi$. Then $(U, a) \in \Phi$ for some $U \subseteq \varphi$. By assumption on $\Phi: U=E_{f n}$ and $a=e_{g n}$ for some n. We show

$$
a \in w^{k+1} \emptyset(\overline{n-k}) \quad \text { for } k \leq n
$$

by induction on k. Step $k \mapsto k+1$: by definition of $w\left(:=w_{\varphi}\right)$

$$
\begin{aligned}
v^{\prime} & :=w^{k+2} \emptyset(\overline{n-k-1}) \\
& =w\left(w^{k+1} \emptyset\right)(\overline{n-k-1}) \\
& =\operatorname{pcond}\left(\varphi \uparrow_{\rho}^{\#} \overline{f(n-k-1)}, v \cup_{\mathbf{N}}^{\#} \overline{g(n-k-1)}, v\right)
\end{aligned}
$$

with $v:=w^{k+1} \emptyset(\overline{n-k})$. By IH: $a \in v$; we show $a \in v^{\prime}$. If a and $e_{g(n-k-1)}$ are inconsistent, $a \in \Phi \varphi$ and $\left(E_{f(n-k-1)}, e_{g(n-k-1)}\right) \in \Phi$ imply that $\varphi \cup E_{f(n-k-1)}$ is inconsistent, hence $\mathrm{ff} \in \varphi \uparrow_{\rho}^{\#} \overline{f(n-k-1)}$ and therefore $v^{\prime}=v$.

Proof of the definability theorem (continued)

If a and $e_{g(n-k-1)}$ are consistent, a and $e_{g(n-k-1)}$ are comparable, since the underlying algebra ι has at most unary constructors.

- $\left\{e_{g(n-k-1)}\right\} \vdash a$. Then $v \cup_{N}^{\#} \overline{g(n-k-1)} \supseteq\left\{e_{g(n-k-1)}\right\} \vdash a$, and hence $a \in v^{\prime}$ because of $a \in v$.
$-\{a\} \vdash e_{g(n-k-1)}$. Then $e_{g(n-k-1)} \in v$ because of $a \in v$, hence $v \cup_{\mathrm{N}}^{\#} \overline{g(n-k-1)}=v$ and therefore again $a \in v^{\prime}$.
Now the converse inclusion $\Phi \varphi \subseteq Y w_{\varphi} \overline{0}$ can be seen easily. Since $a \in \Phi \varphi$, the claim just proved for $k:=n$ gives $a \in w_{\varphi}^{n+1} \emptyset \overline{0}$, and this implies $a \in Y w_{\varphi} \overline{0}$.

TCF^{+}

- Theory of Computable Functionals plus their finite approximations, i.e., tokens and formal neighborhoods.
- Since continuous functionals (i.e., ideals) are possibly infinite sets of tokens, TCF^{+}contains set variables x^{ρ}.
- The only existence axiom for sets will be \sum-comprehension.

TCF^{+}

- Theory of Computable Functionals plus their finite approximations, i.e., tokens and formal neighborhoods.
- Since continuous functionals (i.e., ideals) are possibly infinite sets of tokens, TCF^{+}contains set variables x^{ρ}.
- The only existence axiom for sets will be \sum-comprehension.

TCF^{+}

- Theory of Computable Functionals plus their finite approximations, i.e., tokens and formal neighborhoods.
- Since continuous functionals (i.e., ideals) are possibly infinite sets of tokens, TCF^{+}contains set variables x^{ρ}.
- The only existence axiom for sets will be \sum-comprehension.

Types and token types

Recall that (object) types are built from base types ι by $\rho \rightarrow \sigma$. addition for every (object) type ρ we have token types (named τ):

- Tok $_{\rho}^{*}$ (extended tokens of type ρ),
- $\operatorname{Tok}_{\rho}^{*}$ (tokens of type ρ),
- LTok_{ρ} (lists of tokens of type ρ),
- LTok ${ }_{\rho}^{*}$ (lists of extended tokens of type ρ).

We inductively define the extended tokens of \mathbf{D}, given by the constructors 0^{D} (axiom) and $\mathrm{C}^{\mathrm{D} \rightarrow \mathrm{D} \rightarrow \mathrm{D}}$ (rule). The clauses are

Similarly for $\operatorname{Tok}_{\rho}^{*}$, LTok $_{\rho}$, LTok $_{\rho}^{*}$.

Types and token types

Recall that (object) types are built from base types ι by $\rho \rightarrow \sigma$. In addition for every (object) type ρ we have token types (named τ):

- $\operatorname{Tok}_{\rho}^{*}$ (extended tokens of type ρ),
- $\operatorname{Tok}_{\rho}^{*}$ (tokens of type ρ),
- $\operatorname{LTok}_{\rho}$ (lists of tokens of type ρ),
- LTok ${ }_{\rho}^{*}$ (lists of extended tokens of type ρ).

Similarly for Tok $_{\rho}^{*}$, LTok $_{\rho}$, LTok $_{\rho}^{*}$.

Types and token types

Recall that (object) types are built from base types ι by $\rho \rightarrow \sigma$. In addition for every (object) type ρ we have token types (named τ):

- $\operatorname{Tok}_{\rho}^{*}$ (extended tokens of type ρ),
- Tok_{ρ}^{*} (tokens of type ρ),
- $\operatorname{LTok}_{\rho}$ (lists of tokens of type ρ),
- LTok ${ }_{\rho}^{*}$ (lists of extended tokens of type ρ).

We inductively define the extended tokens of \mathbf{D}, given by the constructors $0^{\mathbf{D}}$ (axiom) and $\mathrm{C}^{\mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}}$ (rule). The clauses are

$$
\begin{aligned}
& \operatorname{Tok}_{\mathbf{D}}^{*}(*), \quad \operatorname{Tok}_{\mathbf{D}}^{*}\left(0^{\mathbf{D}}\right), \\
& \operatorname{Tok}_{\mathbf{D}}^{*}\left(a_{1}^{*}\right) \rightarrow \operatorname{Tok}_{\mathbf{D}}^{*}\left(a_{2}^{*}\right) \rightarrow \operatorname{Tok}_{\mathbf{D}}^{*}\left(C^{\mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}}{\left.a_{1}^{*} a_{2}^{*}\right)}^{\text {. }} .\right.
\end{aligned}
$$

Similarly for Tok $_{\rho}^{*}$, LTok $_{\rho}$, LTok $_{\rho}^{*}$.

Types and token types

Recall that (object) types are built from base types ι by $\rho \rightarrow \sigma$. In addition for every (object) type ρ we have token types (named τ):

- $\operatorname{Tok}_{\rho}^{*}$ (extended tokens of type ρ),
- $\operatorname{Tok}_{\rho}^{*}$ (tokens of type ρ),
- $\operatorname{LTok}_{\rho}$ (lists of tokens of type ρ),
- LTok ${ }_{\rho}^{*}$ (lists of extended tokens of type ρ).

We inductively define the extended tokens of \mathbf{D}, given by the constructors $0^{\mathbf{D}}$ (axiom) and $\mathrm{C}^{\mathrm{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}}$ (rule). The clauses are

$$
\begin{aligned}
& \operatorname{Tok}_{\mathbf{D}}^{*}(*), \quad \operatorname{Tok}_{\mathbf{D}}^{*}\left(0^{\mathbf{D}}\right), \\
& \operatorname{Tok}_{\mathbf{D}}^{*}\left(a_{1}^{*}\right) \rightarrow \operatorname{Tok}_{\mathbf{D}}^{*}\left(a_{2}^{*}\right) \rightarrow \operatorname{Tok}_{\mathbf{D}}^{*}\left(C^{\mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D}} a_{1}^{*} a_{2}^{*}\right) .
\end{aligned}
$$

Similarly for $\operatorname{Tok}_{\rho}^{*}$, LTok $_{\rho}$, LTok $_{\rho}^{*}$.

Functions of token-valued types $\vec{\tau} \rightarrow \tau$

Example: $\dot{\epsilon}_{\mathbf{D}}: \operatorname{Tok}_{\mathbf{D}}^{*} \rightarrow$ LTok $_{\mathbf{D}}^{*} \rightarrow$ Tok $_{\mathbf{B}}$. Recursion equations:

$$
\begin{aligned}
& \left(a^{*} \dot{\epsilon}_{\mathbf{D}} \text { nil) }:=\mathrm{ff},\right. \\
& \left(a^{*} \dot{\epsilon}_{\mathbf{D}}\left(b^{*}:: \mathbf{D} U\right)\right):=\left(a^{*}==_{\mathbf{D}} b^{*}\right) \vee_{\mathbf{B}} a^{*} \dot{\in} U,
\end{aligned}
$$

where equality $=_{\mathrm{D}}: \operatorname{Tok}_{\mathrm{D}}^{*} \rightarrow \operatorname{Tok}_{\mathrm{D}}^{*} \rightarrow \operatorname{Tok}_{\mathrm{B}}$ is defined by

and $\vee_{\mathbf{B}}, \wedge_{\mathbf{B}}: \operatorname{Tok}_{\mathbf{B}} \rightarrow \operatorname{Tok}_{\mathbf{B}} \rightarrow \operatorname{Tok}_{\mathbf{B}}$ are defined by $\mathrm{t} \vee_{\mathbf{B}} b:=\mathrm{tt}$, ff $\vee_{\mathrm{B}} b:=b$, ff $\wedge_{\mathrm{B}} b:=\mathrm{ff}$ and $\mathrm{tt} \wedge_{\mathrm{B}} b:=b$.

Functions of token-valued types $\vec{\tau} \rightarrow \tau$

Example: $\dot{\epsilon}_{\mathbf{D}}: \operatorname{Tok}_{\mathrm{D}}^{*} \rightarrow$ LTok $_{\mathrm{D}}^{*} \rightarrow$ Tok $_{\mathbf{B}}$. Recursion equations:

$$
\begin{aligned}
& \left(a^{*} \dot{\epsilon}_{\mathbf{D}} \text { nil) }:=\mathrm{ff},\right. \\
& \left(a^{*} \dot{\epsilon}_{\mathbf{D}}\left(b^{*}:: \mathrm{D} U\right)\right):=\left(a^{*}=\mathbf{D} b^{*}\right) \vee_{\mathbf{B}} a^{*} \dot{\in} U,
\end{aligned}
$$

where equality $=\mathbf{D}: \operatorname{Tok}_{\mathbf{D}}^{*} \rightarrow \operatorname{Tok}_{\mathbf{D}}^{*} \rightarrow \operatorname{Tok}_{\mathbf{B}}$ is defined by

$$
\begin{aligned}
& (*=\mathbf{D} *):=(0=\mathbf{D} 0):=\mathrm{tt}, \\
& (*=\mathbf{D} 0):=\left(*==_{\mathbf{D}} \mathrm{Ca} a_{1}^{*} a_{2}^{*}\right):=\mathrm{ff}, \\
& (0=\mathbf{D} *):=\left(0=\mathbf{D} C a_{1}^{*} a_{2}^{*}\right):=\mathrm{ff}, \\
& \left(\mathrm{C} a_{1}^{*} a_{2}^{*}=\mathbf{D} *\right):=\left(\mathrm{C} a_{1}^{*} a_{2}^{*}=\mathbf{D} 0\right):=\mathrm{ff}, \\
& \left(\mathrm{C} a_{1}^{*} a_{2}^{*}=\mathbf{D} C b_{1}^{*} b_{2}^{*}\right):=\left(a_{1}^{*}=\mathbf{D} b_{1}^{*}\right) \wedge_{\mathbf{B}}\left(a_{2}^{*}=\mathbf{D} b_{2}^{*}\right),
\end{aligned}
$$

and $\vee_{\mathbf{B}}, \wedge_{\mathbf{B}}: \operatorname{Tok}_{\mathbf{B}} \rightarrow \operatorname{Tok}_{\mathbf{B}} \rightarrow \operatorname{Tok}_{\mathbf{B}}$ are defined by $\mathrm{t} \vee_{\mathbf{B}} b:=\mathrm{tt}$, ff $\vee_{\mathbf{B}} b:=b$, ff $\wedge_{\mathbf{B}} b:=\mathrm{ff}$ and $\mathrm{tt} \wedge_{\mathbf{B}} b:=b$.

Functions of token-valued types $\vec{\tau} \rightarrow \tau$

Example: $\dot{\epsilon}_{\mathbf{D}}: \operatorname{Tok}_{\mathrm{D}}^{*} \rightarrow$ LTok $_{\mathrm{D}}^{*} \rightarrow$ Tok $_{\mathbf{B}}$. Recursion equations:

$$
\begin{aligned}
& \left(a^{*} \dot{\epsilon}_{\mathbf{D}} \text { nil) }:=\mathrm{ff},\right. \\
& \left(a^{*} \dot{\epsilon}_{\mathbf{D}}\left(b^{*}:: \mathrm{D} U\right)\right):=\left(a^{*}=\mathbf{D} b^{*}\right) \vee_{\mathbf{B}} a^{*} \dot{\in} U,
\end{aligned}
$$

where equality $=\mathbf{D}: \operatorname{Tok}_{\mathbf{D}}^{*} \rightarrow \operatorname{Tok}_{\mathbf{D}}^{*} \rightarrow \operatorname{Tok}_{\mathbf{B}}$ is defined by

$$
\begin{aligned}
& (*=\mathbf{D} *):=(0=\mathbf{D} 0):=\mathrm{tt}, \\
& (*=\mathbf{D} 0):=\left(*==_{\mathbf{D}} \mathrm{Ca} a_{1}^{*} a_{2}^{*}\right):=\mathrm{ff}, \\
& (0=\mathbf{D} *):=\left(0=\mathbf{D} C a_{1}^{*} a_{2}^{*}\right):=\mathrm{ff}, \\
& \left(\mathrm{C} a_{1}^{*} a_{2}^{*}=\mathbf{D} *\right):=\left(\mathrm{C} a_{1}^{*} a_{2}^{*}=\mathbf{D} 0\right):=\mathrm{ff}, \\
& \left(\mathrm{C} a_{1}^{*} a_{2}^{*}=\mathbf{D} C b_{1}^{*} b_{2}^{*}\right):=\left(a_{1}^{*}=\mathbf{D} b_{1}^{*}\right) \wedge_{\mathbf{B}}\left(a_{2}^{*}=\mathbf{D} b_{2}^{*}\right),
\end{aligned}
$$

and $\vee_{\mathbf{B}}, \wedge_{\mathbf{B}}: \operatorname{Tok}_{\mathbf{B}} \rightarrow \operatorname{Tok}_{\mathbf{B}} \rightarrow \operatorname{Tok}_{\mathbf{B}}$ are defined by $\mathrm{t} \vee_{\mathbf{B}} b:=\mathrm{tt}$, ff $\vee_{\mathbf{B}} b:=b$, ff $\wedge_{\mathbf{B}} b:=\mathrm{ff}$ and $\mathrm{tt} \wedge_{\mathbf{B}} b:=b$.
Similarly: $\vdash:$ LTok $_{\mathbf{D}} \rightarrow \operatorname{Tok}_{\mathbf{D}}^{*} \rightarrow \operatorname{Tok}_{\mathbf{B}}$, Con LTok $_{\mathbf{D}} \rightarrow \operatorname{Tok}_{\mathbf{B}}$ etc.

Tokens of higher type

Tokens of a function type $\rho \rightarrow \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ.

```
functions }\mp@subsup{\pi}{1}{},\mp@subsup{\pi}{2}{}\mathrm{ . Consistency of lists of tokens, application WU
and entailment W\vdash(U,a) can be defined as described as above.
    - Variables a* for Tok
    - From these, the symbols for token-valued functions and
    constants for the constructors for tokens, extended tokens and
    lists of these we can build terms of token types.
* We identify terms of token type if they have the same normal
    form w.r.t. the defining primitive recursion equations for the
    token-valued functions involved.
```


Tokens of higher type

Tokens of a function type $\rho \rightarrow \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ. Both projections are given by functions π_{1}, π_{2}.

- Variables a^{*} for $\operatorname{Tok}_{\rho}^{*}$, a for $\operatorname{Tok}_{\rho}, U$ for LTok ${ }_{\rho}$.
- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

Tokens of higher type

Tokens of a function type $\rho \rightarrow \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ. Both projections are given by functions π_{1}, π_{2}. Consistency of lists of tokens, application WU and entailment $W \vdash(U, a)$ can be defined as described as above.

- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

Tokens of higher type

Tokens of a function type $\rho \rightarrow \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ. Both projections are given by functions π_{1}, π_{2}. Consistency of lists of tokens, application WU and entailment $W \vdash(U, a)$ can be defined as described as above.

- Variables a^{*} for $\operatorname{Tok}_{\rho}^{*}$, a for $\operatorname{Tok}_{\rho}, U$ for LTok $_{\rho}$.
- From these, the symbols for token-valued functions and
constants for the constructors for tokens, extended tokens and
lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

Tokens of higher type

Tokens of a function type $\rho \rightarrow \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ. Both projections are given by functions π_{1}, π_{2}. Consistency of lists of tokens, application $W U$ and entailment $W \vdash(U, a)$ can be defined as described as above.

- Variables a^{*} for $\operatorname{Tok}_{\rho}^{*}$, a for $\operatorname{Tok}_{\rho}, U$ for LTok $_{\rho}$.
- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

Tokens of higher type

Tokens of a function type $\rho \rightarrow \sigma$ are pairs (U, a) of lists of tokens of type ρ and tokens of type σ. Both projections are given by functions π_{1}, π_{2}. Consistency of lists of tokens, application WU and entailment $W \vdash(U, a)$ can be defined as described as above.

- Variables a^{*} for $\operatorname{Tok}_{\rho}^{*}$, a for $\operatorname{Tok}_{\rho}, U$ for LTok .
- From these, the symbols for token-valued functions and constants for the constructors for tokens, extended tokens and lists of these we can build terms of token types.
- We identify terms of token type if they have the same normal form w.r.t. the defining primitive recursion equations for the token-valued functions involved.

Formulas

- Prime Δ-formulas: atom (p), with p term of token type $\operatorname{Tok}_{\mathbf{B}}$. Examples: $a \uparrow_{\rho} b, a \dot{\epsilon}_{\rho} U, U \vdash_{\rho} a$ (i.e., atom $\left(a \uparrow_{\rho} b\right)$ etc.)
- \triangle-formulas: from prime \triangle-formulas by $\rightarrow, \wedge, V, \forall_{a \in U}, \exists_{a \in U}$, with a a variable for tokens and U a term for a list of tokens.
- Variables x^{ρ} and constants of (object) type ρ, intended to denote sets of tokens. Constants: $\llbracket \lambda_{\vec{x}} M \rrbracket, \cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$
- Prime \sum-formulas: prime Δ-formulas or of the form $r \in_{\rho} x$, with r : $\operatorname{Tok}_{\rho}$ a term and x a variable or constant of type ρ.
- \sum-formulas: (i) prime \sum-formulas, (ii) $A_{0} \rightarrow B$ with A_{0} a \triangle and B a \sum-formula, and (iii) closed under $\wedge, \vee, \forall_{a \in U}, \exists_{a \dot{\in} U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime \sum-formulas or $G_{\rho} x$ (totality of x) or $x \approx_{\rho} y$ (equivalence of x and y); x, y variables or constants.
- Formulas: from prime formulas by $\rightarrow, \wedge, \vee, \forall, \exists$.

Formulas

- Prime Δ-formulas: atom (p), with p term of token type $\operatorname{Tok}_{\mathbf{B}}$. Examples: $a \uparrow_{\rho} b, a \dot{\epsilon}_{\rho} U, U \vdash_{\rho} a\left(i . e ., \operatorname{atom}\left(a \uparrow_{\rho} b\right)\right.$ etc.)
- Δ-formulas: from prime Δ-formulas by $\rightarrow, \wedge, \vee, \forall_{a \in U}, \exists_{a \in U}$, with a a variable for tokens and U a term for a list of tokens.

Formulas

- Prime Δ-formulas: atom (p), with p term of token type $\operatorname{Tok}_{\mathbf{B}}$. Examples: $a \uparrow_{\rho} b, a \dot{\epsilon}_{\rho} U, U \vdash_{\rho} a$ (i.e., atom $\left(a \uparrow_{\rho} b\right)$ etc.)
- Δ-formulas: from prime Δ-formulas by $\rightarrow, \wedge, \vee, \forall_{a \in U}, \exists_{a \in U}$, with a a variable for tokens and U a term for a list of tokens.
- Variables x^{ρ} and constants of (object) type ρ, intended to denote sets of tokens. Constants: $\llbracket \lambda_{\vec{x}} M \rrbracket, \cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$.

Formulas

- Prime Δ-formulas: atom (p), with p term of token type $\operatorname{Tok}_{\mathbf{B}}$. Examples: $a \uparrow_{\rho} b, a \dot{\epsilon}_{\rho} U, U \vdash_{\rho} a$ (i.e., atom $\left(a \uparrow_{\rho} b\right)$ etc.)
- Δ-formulas: from prime Δ-formulas by $\rightarrow, \wedge, \vee, \forall_{a \in U}, \exists_{a \in U}$, with a a variable for tokens and U a term for a list of tokens.
- Variables x^{ρ} and constants of (object) type ρ, intended to denote sets of tokens. Constants: $\llbracket \lambda_{\vec{x}} M \rrbracket, \cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$.
- Prime Σ-formulas: prime Δ-formulas or of the form $r \in_{\rho} x$, with $r: \operatorname{Tok}_{\rho}$ a term and x a variable or constant of type ρ.
and B a \sum-formula, and (iii) closed under and existential quantifiers over variables of a token type.
\square $x \approx_{\rho} y$ (equivalence of x and y); x, y variables or constants.

Formulas

- Prime Δ-formulas: atom (p), with p term of token type $\operatorname{Tok}_{\mathbf{B}}$. Examples: $a \uparrow_{\rho} b, a \dot{\epsilon}_{\rho} U, U \vdash_{\rho} a\left(i . e ., \operatorname{atom}\left(a \uparrow_{\rho} b\right)\right.$ etc.)
- Δ-formulas: from prime Δ-formulas by $\rightarrow, \wedge, \vee, \forall_{a \in U}, \exists_{a \in U}$, with a a variable for tokens and U a term for a list of tokens.
- Variables x^{ρ} and constants of (object) type ρ, intended to denote sets of tokens. Constants: $\llbracket \lambda_{\vec{x}} M \rrbracket, \cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$.
- Prime Σ-formulas: prime Δ-formulas or of the form $r \in_{\rho} x$, with $r: \operatorname{Tok}_{\rho}$ a term and x a variable or constant of type ρ.
- Σ-formulas: (i) prime Σ-formulas, (ii) $A_{0} \rightarrow B$ with A_{0} a Δ and B a Σ-formula, and (iii) closed under $\wedge, \vee, \forall_{a \dot{\in} U}, \exists_{a \dot{\in} U}$ and existential quantifiers over variables of a token type.

Formulas

- Prime Δ-formulas: atom (p), with p term of token type $\mathrm{Tok}_{\mathbf{B}}$. Examples: $a \uparrow_{\rho} b, a \dot{\epsilon}_{\rho} U, U \vdash_{\rho} a\left(i . e ., \operatorname{atom}\left(a \uparrow_{\rho} b\right)\right.$ etc.)
- Δ-formulas: from prime Δ-formulas by $\rightarrow, \wedge, \vee, \forall_{a \in U}, \exists_{a \in U}$, with a a variable for tokens and U a term for a list of tokens.
- Variables x^{ρ} and constants of (object) type ρ, intended to denote sets of tokens. Constants: $\llbracket \lambda_{\vec{x}} M \rrbracket, \cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$.
- Prime Σ-formulas: prime Δ-formulas or of the form $r \in_{\rho} x$, with $r: \operatorname{Tok}_{\rho}$ a term and x a variable or constant of type ρ.
- Σ-formulas: (i) prime Σ-formulas, (ii) $A_{0} \rightarrow B$ with A_{0} a Δ and B a Σ-formula, and (iii) closed under $\wedge, \vee, \forall_{a \dot{\in} U}, \exists_{a \dot{\in} U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime \sum-formulas or $G_{\rho} x$ (totality of x) or $x \approx_{\rho} y$ (equivalence of x and y); x, y variables or constants.

Formulas

- Prime Δ-formulas: atom (p), with p term of token type $\mathrm{Tok}_{\mathbf{B}}$. Examples: $a \uparrow_{\rho} b, a \dot{\epsilon}_{\rho} U, U \vdash_{\rho} a$ (i.e., $\operatorname{atom}\left(a \uparrow_{\rho} b\right)$ etc.)
- Δ-formulas: from prime Δ-formulas by $\rightarrow, \wedge, \vee, \forall_{a \in U}, \exists_{a \in U}$, with a a variable for tokens and U a term for a list of tokens.
- Variables x^{ρ} and constants of (object) type ρ, intended to denote sets of tokens. Constants: $\llbracket \lambda_{\vec{x}} M \rrbracket, \cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}$.
- Prime Σ-formulas: prime Δ-formulas or of the form $r \in_{\rho} x$, with $r: \operatorname{Tok}_{\rho}$ a term and x a variable or constant of type ρ.
- Σ-formulas: (i) prime Σ-formulas, (ii) $A_{0} \rightarrow B$ with A_{0} a Δ and B a Σ-formula, and (iii) closed under $\wedge, \vee, \forall_{a \dot{\in} U}, \exists_{a \dot{\in} U}$ and existential quantifiers over variables of a token type.
- Prime formulas: prime \sum-formulas or $G_{\rho} x$ (totality of x) or $x \approx_{\rho} y$ (equivalence of x and y); x, y variables or constants.
- Formulas: from prime formulas by $\rightarrow, \wedge, \vee, \forall, \exists$.

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathrm{F} \rightarrow \mathrm{A}$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& \Lambda(t+) \rightarrow \Lambda(f f) \rightarrow \Lambda(a), \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(C a^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right) .
\end{aligned}
$$

- atom(tt).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for A \sum-formula (ρ an object type)
- For every constant $\llbracket \lambda_{\vec{x}} M \rrbracket,(V),(A),(C),(D),+$ Ifp axioms.
- Defining clauses and Ifp axioms for $\cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}, \exists$.
- The clauses defining the totality predicates G_{ρ} and the equivalence relations $x_{1} \approx_{\rho} x_{2}$, together with their Ifp axioms.

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:
$A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(\mathrm{a})$,
$A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(C a^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right)$.
- atom(tt).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for $A \sum$-formula (ρ an object type)
- For every constant $\llbracket \lambda_{\vec{x}} M \rrbracket,(V),(A),(C),(D),+I f p$ axioms.
- Defining clauses and Ifp axioms for $\cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}, \exists$.
- The clauses defining the totality predicates G_{ρ} and the equivalence relations $x_{1} \approx_{\rho} x_{2}$, together with their Ifp axioms.

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(a) \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(\mathrm{Ca}^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right) .
\end{aligned}
$$

- atom(t).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for A \sum-formula (ρ an object type)
- For every constant $\llbracket \lambda_{\vec{x}} M \rrbracket,(V),(A),(C),(D),+$ Ifp axioms.
- Defining clauses and Ifp axioms for $\cup_{N}^{\#}$, pcond, $\uparrow_{\rho}^{\#}, \exists$
- The clauses defining the totality predicates G_{ρ} and the equivalence relations $x_{1} \approx_{\rho} x_{2}$, together with their Ifp axioms.

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(a), \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(\mathrm{Ca}^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right) .
\end{aligned}
$$

- atom(tt).

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(a), \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(\mathrm{Ca}^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right) .
\end{aligned}
$$

- atom(tt).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for $A \sum$-formula (ρ an object type)

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(a) \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(\mathrm{Ca}^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right) .
\end{aligned}
$$

- atom(tt).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for $A \sum$-formula (ρ an object type)
- For every constant $\llbracket \lambda_{\vec{x}} M \rrbracket,(V),(A),(C),(D),+$ Ifp axioms.

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(a) \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(\mathrm{Ca}^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right) .
\end{aligned}
$$

- atom(tt).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for $A \sum$-formula (ρ an object type)
- For every constant $\llbracket \lambda_{\vec{x}} M \rrbracket,(V),(A),(C),(D),+$ Ifp axioms.
- Defining clauses and Ifp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}, \exists$.

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(a), \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(\mathrm{Ca}^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right) .
\end{aligned}
$$

- atom(tt).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for $A \sum$-formula (ρ an object type)
- For every constant $\llbracket \lambda_{\vec{x}} M \rrbracket,(V),(A),(C),(D),+$ Ifp axioms.
- Defining clauses and Ifp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}, \exists$.
- The clauses defining the totality predicates G_{ρ} and the equivalence relations $x_{1} \approx_{\rho} x_{2}$, together with their Ifp axioms.

Axioms of TCF^{+}

- Based on minimal logic. Define $\mathbf{F}:=$ atom(ff) ("falsum").
- $\mathbf{F} \rightarrow A$ ("ex-falso-quodlibet") for prime non- Δ prime formulas.
- Usual axioms of Heyting arithmetic, adapted to token types:

$$
\begin{aligned}
& A(\mathrm{tt}) \rightarrow A(\mathrm{ff}) \rightarrow A(a) \\
& A(*) \rightarrow A(0) \rightarrow \forall_{a^{*}, b^{*}}\left(A\left(a^{*}\right) \rightarrow A\left(b^{*}\right) \rightarrow A\left(\mathrm{Ca}^{*} b^{*}\right)\right) \rightarrow A\left(a^{*}\right)
\end{aligned}
$$

- atom(tt).
- $\exists_{x} \forall_{a}\left(a \in_{\rho} x \leftrightarrow A\right)$ for $A \sum$-formula (ρ an object type)
- For every constant $\llbracket \lambda_{\vec{x}} M \rrbracket,(V),(A),(C),(D),+$ Ifp axioms.
- Defining clauses and Ifp axioms for $\cup_{\mathbf{N}}^{\#}$, pcond, $\uparrow_{\rho}^{\#}, \exists$.
- The clauses defining the totality predicates G_{ρ} and the equivalence relations $x_{1} \approx_{\rho} x_{2}$, together with their Ifp axioms.

Theorem
TCF^{+}proves the density theorem and the definability theorem.

Conclusion, future work

- A semantical approach to type theory.
- TCF^{+}allows to study the Scott-Ershov model of partial continuous functionals and their formal neighborhoods.
- Tested for two basic theorems: density, definability
- Further case studies are necessary (e.g., adequacy).
- Program extraction from formalized proofs.

