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� (Admissible) representation in 2! or N ! .� � � quotient of the digital code space. [TTE, QCB, ...]� Embedding in T ! for T = f0; 1;?g.� � � subspace of a code space with bottoms [T].
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Embedding in T ! for T = f0; 1;?g.� � � subspace of a code space with bottoms.
This work started with� Gray-embedding of the unit interval [0,1]� IM2-machines which are working on (subsets of) T! .

As generalization, we studied� Dyadic subbase,� Domain representation as minimal limit sets,� Uniform domain and uniform space.

In this talk, we connect them. that is,� Construct a domain representation from a dyadic subbase.� Derive uniformity structure from it.
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Embedding in T ! for T = f0; 1;?g.� � � subspace of a code space with bottoms.
This work started with� (1) Gray-embedding of the unit interval [0,1]� (3) IM2-machines which are working on (subsets of) T! .
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� Every second-countable space can be embed in P! = f1;?g!,
and therefore automatically embed in T! .

� Sn;0 = fx 2 X j '(x)(n) = 0gSn;1 = fx 2 X j '(x)(n) = 1g(n = 0; 1; 2; : : :): Sn;0 Sn;1

Sn;0 Sn;1X (��)�� Sn;? = fx 2 X j '(x)(n) = ?g

� '(x)(n) = ? ?
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� Every second-countable space can be embed in P! = f1;?g!,
and therefore automatically embed in T! .� Our embedding has the property thatSn;0 = fx 2 X j '(x)(n) = 0gSn;1 = fx 2 X j '(x)(n) = 1g(n = 0; 1; 2; : : :): Sn;0 Sn;1

are regular open such that Sn;0 and Sn;1 are exteriors of
each other, and they form a subbase of X. (��)� regular open = interior of closure is itself.� Sn;? = fx 2 X j '(x)(n) = ?g is nowhere dense.

(it does not contain an open set).� The fact '(x)(n) = ? is not computable. (open set as
finitely observable property.) ? = uncomputable.
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� If '(x)(n) = ?, then x is on the boundary of 0 and 1.� 
l Sn;0 = Sn;0 [ Sn;?,
l Sn;1 = Sn;1 [ Sn;?.� Through this kind of embedding in T! (with a condition), we
can talk about the boundary of basic open sets which are
important ex. for dimension theory.� It is related to domain representation and computation! (as we
will see.)

Sn;0 Sn;1
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On the other hand, from a subbase S = fSn;i j n < !; i < 2g which
satisfies property (��), we can define embedding 'S : X ! T! as

'S(x)(n) = 8<: 0 (x 2 Sn;0)1 (x 2 Sn;1)? (otherwise)
Definition 1 S = fSn;i j n < !; i < 2g is a dyadic subbase of X if

1. S forms a subbase,

2. Sn;i: regular open.

3. Sn;1 = ext Sn;0 (thus, Sn;0 = ext Sn;1).

Sn;0 Sn;1
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� For p 2 T! , we call each appearance of 0 or 1 in p a digit of p.� K(T!) = fp 2 T! : p has finite number of digits.g.� T! forms an !-algebraic domain with K(T!) the set of compact
elements.� L(T!) = T nK(T!).� p � q if p(n) = 
 implies q(n) = 

for 
 = 0; 1.� dom(p) = fn : p(n) 6= ?g.

K(T!)
L(T!)

X

T!

SX 'S(X) � L(T!)
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� For p 2 T! , we call each appearance of 0 or 1 in p a digit of p.� K(T!) = fp 2 T! : p has finite number of digits.g.� T! forms an !-algebraic domain with K(T!) the set of compact
elements.� L(T!) = T nK(T!).� p � q if p(n) = 
 implies q(n) = 

for 
 = 0; 1.� dom(p) = fn : p(n) 6= ?g.

K(T!)
L(T!)X

T!

Proposition For a dyadic subbas S
of a Hausdorff space X, 'S(X) � L(T!).
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For a dyadic subbase S of X and d 2 K(T!), defineS(d) = \n2dom(d)Sn;d(n)

="d \ 'S(X)

�S(d) = \n2dom(d) 
l Sn;d(n) = \n2dom(d)(Sn;d(n) [ Sn;?)

=#"d \ 'S(X)

� fS(d) j d 2 K(T!)g: base of X.

� S(d) �S(d) X

K(T!)
L(T!)

T!
d

S(d)�S(d)
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Definition 2 We say that a dyadic subbase is
proper if 
l S(d) = �S(d) for every d 2 K(T!).� Closure of basic open sets are defined

order-theoretically.� It means that Sn;i and Sm;j are not touching!

Sn;i Sm;j

SX(1) x 6= y 2 X x ySn;i Sn;1�in i(2) p 2"'S(X)x p � 'S(x)
K(T!)

L(T!)X
T!
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1 0 ? 1 0 0
0 1 2 3 4 5

0 1 2 3 4 5
1 0

We may input from blue head first.
Two possible inputs if we have digits on both heads.) Indeterministic (non-deterministic) behavior.



IM2-machine
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  M

...

...

input tapes

output tape

work tape

state

1 0

1 1
� Generalization of Type-2 machine with

2-heads input/output access.� Indeterministic (i.e. nondeterministic)
behavior depending on the head used
to input.! defines a multi-valued function.
note: Multi-valuedness is essential for
real number computation
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� Infinite-State: obtained as ideal completion of the finite states.� Subdomain of T! .� The set of minimal elements of the limit elements
homeomorphic to I.� The same domain as that of Signed Digit Representation.� Admissible Representation of I.



Computation over Topological Spaces

19 / 31

Embedding in T ! for T = f0; 1;?g.� � � subspace of a code space with bottoms.
This work started with� (1) Gray-embedding of the unit interval [0,1]� (3) IM2-machines which are working on (subsets of) T! .

As generalization, we studied� (2) Dyadic subbase,� (4) Domain representation as minimal limit sets,� (6) Uniform domain and uniform space.

In this talk, we connect them. that is,� (5) Construct a domain representation from a dyadic subbase.� (7) Derive uniformity structure from it.



Minimal-Limit Sets of a Domain
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K(D)
L(D)X

D

K(D)
L(D)X

D
Compact Case Non-Compact Case.� D is an algebraic subdomain of T !.� L(D) has enough minimal elements.

(for all q 2 P , exists a minimal p s.t. p � q.)� X is densely embed in min(L(D)) (and L(D) and D).� We can derive an admissible representation of X.
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Construct such a domain representation from
a dyadic subbase of X.
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As generalization, we studied� (2) Dyadic subbase,� (4) Domain representation as minimal limit sets,� (6) Uniform domain and uniform space.

In this talk, we connect them. that is,� (5) Construct a domain representation from a dyadic subbase.� (7) Derive uniformity structure from it.



Domain DS
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� Let X be a Hausdorff space and S = fSn;i : n < !; i < 2g be a
proper dyadic subbase of X.� For p 2 T! , let p<m 2 K(T!) be p<m(n) = p(n)(n < m) andp<m(n) = ?(n � m).� KS = f'S(x)<m : x 2 X;m 2 N g � K(T !):� DS = the ideal completion of KS.� DS is a subdomain of T! .� KS = K(DS).� 'S(X) � L(DS). K(DS)

L(DS)X
DS

When does X become the set of minimal-limit elements?



Finite-Branching Domain
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Theorem 5 Suppose that K(D) is finite-branching.
(1) L(D) is compact.
(2) L(D) has enough minimal elements.
(3) min(L(D)) is compact.

K(D)
L(D)

D



Adhesive Space, T214 space.
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� Def. A space X is adhesive if X has at least two points and
closures of any two open sets have non-empty intersection.� Note There is an adhesive Hausdorff space.� Def. A space X is T2 14 if it is Hausdorff and no open subspace
is adhesive.� Proposition A T2 12 space is T2 14 and
a T2 14 space is T2.� Proposition If X is T2 14 ,
thenK(DS) is finite-branching.� Corollary If X is T2 14 ,
(1) L(DS) is compact and
it has enough minimal elements.
(2) min(L(DS)) is compact.

K(DS)
L(DS)X

DS



If X is regular, 'S(X) � min(L(DS))
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Theorem 6 (1) If S is a proper dyadic subbase of a regular spaceX, then 'S(X) � min(L(DS)).
(2) If S is a proper dyadic subbase of a compact regular space X,
then 'S(X) = min(L(DS)).

K(DS)
L(DS)X

DS

K(DS)
L(DS)X

DS

Non-Compact Case Compact Case.



Computation over Topological Spaces
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Embedding in T ! for T = f0; 1;?g.� � � subspace of a code space with bottoms.
This work started with� (1) Gray-embedding of the unit interval [0,1]� (3) IM2-machines which are working on (subsets of) T! .

As generalization, we studied� (2) Dyadic subbase,� (4) Domain representation as minimal limit sets,� (6) Uniform domain and uniform space.

In this talk, we connect them. that is,� (5) Construct a domain representation from a dyadic subbase.� (7) Derive uniformity structure from it.



A sequence of covering induced by K(DS)
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� Suppose that X is regular (and thus metrizable), and S a
proper dyadic subbase of X.� We have a sequence �S = �n(n = 0; 1; : : :) of coverings
defined as follows.

K(DS)
L(DS)X

DS

?0 ?10??1 0101?1 011

�0�1�2
�3� � �

?0 ?10??1 0101?1 011

�0�1�2
�3� � �

� Is it defining a uniformity on X?
(It is, for the Gray-subbase of I.)
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Uniformity (via uniform coverings [Tukey40],[Isbell64] )
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Def. A family U of coverings of X is a uniformity if

(1) when � and � are in U , � \ � is in U ,
(2) when � � � and � 2 U , � is in U ,
(3) every element of U has a star-refinement in U , and
(4) for each x and y 2 X, there is a covering � 2 U no element of

which contains both x and y.

� For a covering � and A � X, St(A; �) = [fV 2 � j V \ A 6= ;g.� The collection fSt(U; �) j U 2 �g is also a covering, called the
star of � and denoted by ��.� If �� is a refinement of �, we call that � is a star-refinement of �

and write � �� �.� A sequence of covering �0 � �1 � �2 � : : : is a countable base
of a uniformity U if for all � 2 U , there is a n such that � �� �n.



Proper Dyadic subbase and uniformity
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Theorem 7 If X is a Compact Hausdorff Space, the sequence of
covering �S is a base of the uniformity.

For the case X is not compact, �S may not be a base of a
uniformity, in general.



An example of an Adhesive Hausdorff Space
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� D = the set of dyadic rationals of [0; 1℄,P = [0; 1℄ nD,X = P [ N .� A neighbourhood base of x 2 P : Euclidean neighbourhoods ofx restricted to P .� A neighbourhood base of x 2 N : Euclidean neighbourhoods offk=2x : k is oddg restricted to P extended with fxg.� Every regular closed set contains fn 2 N : n � mg for somem 2 N .
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