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Computation over Topological Spaces

e (Admissible) representation in 2¢ or N“.
.- - quotient of the digital code space. [TTE, QCB, ...]

e« Embedding in T for T = {0, 1, L}.
.- - Ssubspace of a code space with bottoms [T].
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Computation over Topological Spaces

Embedding in T for T = {0, 1, L }.
.- subspace of a code space with bottoms.

This work started with

o Gray-embedding of the unit interval [0,1]
IM2-machines which are working on (subsets of) T.

As generalization, we studied

o Dyadic subbase,
Domain representation as minimal limit sets,
Uniform domain and uniform space.

In this talk, we connect them. that iIs,

o Construct a domain representation from a dyadic subbase.
Derive uniformity structure from it.

3/31



Computation over Topological Spaces

Embedding in T for T = {0, 1, L }.
.- subspace of a code space with bottoms.

This work started with

e (1) Gray-embedding of the unit interval [0,1]
e (3) IM2-machines which are working on (subsets of) T+.

As generalization, we studied

e (2) Dyadic subbase,
e (4) Domain representation as minimal limit sets,
e (6) Uniform domain and uniform space.

In this talk, we connect them. that iIs,

e (5) Construct a domain representation from a dyadic subbase.
e (7) Derive uniformity structure from it.

3/31



Computation over Topological Spaces

Embedding in T for T = {0, 1, L }.
.- subspace of a code space with bottoms.

This work started with

e (1) Gray-embedding of the unit interval [0,1]
e (3) IM2-machines which are working on (subsets of) T.

As generalization, we studied

e (2) Dyadic subbase,
e (4) Domain representation as minimal limit sets,
e (6) Uniform domain and uniform space.

In this talk, we connect them. that iIs,

e (5) Construct a domain representation from a dyadic subbase.
e (7) Derive uniformity structure from it.

4/31



Gray-embedding of I(= [0, 1]))

Binary Expansion Gray Expansion
I ERIRERCRERER SR EEE T I
bit 2 -_ = - — —_— e
bit 1 S —_—
bit O

0 1/2 1 0 1/2 1
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Gray-embedding of I(= [0, 1]))

Binary Expansion Gray Expansion
 ERIRERCRES s bk
bit 2 - 40— — O O
bit 1 — = 0 — +—=
bit O 0 —% |

0 1/2 1 0 1/2 1

o pu(1/2) = 11000.. ..
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Gray-embedding of I(= [0, 1]))

Bit 3

bit 2

bit 1

bit O

Binary Expansion Gray Expansion
------- Lo IE I ETIC
— =40 — — 00
—+ 0 —_— %
0 —%
L
e pe(1/2) = 11000. ... To

e (. topological embedding of I in T%, which @
IS a subset of T¥ at most one L exists In
each sequence. ([T],[Glanantonio])

e Topology of T: product topology, (= the Scott Topology on (T¥, <)
5/31
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Which kind of embeddings in  T%?

e Every second-countable space can be embed in P, = {1, L}*,
and therefore automatically embed in T“.
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Which kind of embeddings in  T%?

e Every second-countable space can be embed in P, = {1, L}*,
and therefore automatically embed in T“.

e Our embedding has the property that

Sno =1{z € X | ¢(z)(n)
Sni =12 € X | p(z)(n)
(n=0,1,2,...).

are regular open such that .S, o and S,, ; are exteriors of
each other, and they form a subbase of X. ()

Sn,O Sn,l

0}
1}
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Which kind of embeddings in  T%?

e Every second-countable space can be embed in P, = {1, L}*,
and therefore automatically embed in T“.

e Our embedding has the property that

Suo = {2 € X | p(x)(n) = 0}
Sn1={z € X | p(x)(n) = 1} Ong " Snt
(n=0,1,2,...).
are regular open such that .S, o and S,, ; are exteriors of
each other, and they form a subbase of X. ()

regular open = interior of closure is itself.

Sn1 ={x € X | ¢(z)(n) = L} is nowhere dense.
(it does not contain an open set).

The fact ¢(x)(n) = L is not computable. (open set as
finitely observable property.) L. = uncomputable. 7731



Which kind of embeddings in  T¥? (cont.)

o If o(x)(n) = L, then z is on the boundary of 0 and 1.

o cl Spo=5n0USn 1,
leﬂhlzz;gnJlJ;gnAJ

e Through this kind of embedding in T (with a condition), we
can talk about the boundary of basic open sets which are
Important ex. for dimension theory.

e |t is related to domain representation and computation! (as we
will see.)
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Dyadic Subbase

On the other hand, from a subbase S ={5,; | n < w,? < 2} which
satisfies property (xx), we can define embedding ¢s : X — T as

ps(x)(n)

<

y

\

0 (CE - Sn,O)
1 (QE - Sn,l)
1 (otherwise)

Definition 1 S = {S,; | n < w,i < 2} is a dyadic subbase of X if

1. S forms a subbase,

2. S,;. regular open.

3. Sn,l = ext Sn,O (thUS, Sn,O = ext Sn,l)-

Sn,O Sn,l
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Order Structure of T%

e For p € T¥, we call each appearance of O or 1 in p a digit of p.
o K(T¥) = {p € T¢ : p has finite number of digits. }.

e T forms an w-algebraic domain with K (T*) the set of compact
elements.

® lﬂtﬁw) ::PH1\.P((T?U). Tw

o p < qifp(n)=cimplies ¢(n) =c L(T*)
forc=0,1.

e dom(p) = {n:p(n) # L}.

K(T%)
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Order Structure of T%

e For p € T¥, we call each appearance of O or 1 in p a digit of p.
o K(T¥) = {p € T¢ : p has finite number of digits. }.

e T forms an w-algebraic domain with K (T*) the set of compact
elements.

® [Atﬁw) ::PH1\.P((T?U). Tw

o p < qifp(n)=cimplies ¢(n) =c L(T*)
forc=0,1.

e dom(p) = {n:p(n) # L}.

Proposition For a dyadic subbas S
of a Hausdorff space X, ¢s(X) C L(T¥).

K(T%)

X [ |
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S(d) and S(d) in the domain T¥

For a dyadic subbase S of X and d € K(T%), define

Sd)= () Suaw
nedom(d)

S(d) — m cl Sn,d(n) — m (Sn,d(n) U Sn,J_)
nedom(d) nedom(d)

e {S(d)|de K(T*)}: base of X.
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S(d) and S(d) in the domain T¥

For a dyadic subbase S of X and d € K(T%), define

S(d) = ﬂ Sndn) =TdNps(X)

nedom(d)
S(d) — ﬂ cl Sn,d(n) — ﬂ (Sn,d(n) U Sn,J_) :l/Td A QOS(X)
nedom(d) nedom(d)
e {S(d)|de K(T*)}: base of X. ™
e S(d) and S(d) are
defined order-theoretically.  L(T*) X
\_ ]

K(T) \/
d
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S(d) —

S(d)
K(T) \/
d

11/31



Proper dyadic subbases

Definition 2 We say that a dyadic subbase is
proper if cl S(d) = S(d) for every d € K(T%).

e Closure of basic open sets are defined
order-theoretically.
e |t means that S,,; and 5., ; are not touching!
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Proper dyadic subbases

Definition 3 We say that a dyadic subbase is
proper if cl S(d) = S(d) for every d € K(T%).

e Closure of basic open sets are defined
order-theoretically.
e |t means that S,,; and 5., ; are not touching!

Proposition 2 Suppose that S is a
proper dyadic subbase of a Haus-
dorff space X.

(1) If 2 #y € X, then x and y are
separated by S,,; and S, ;_; for
some n and i.
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Proper dyadic subbases

Definition 4 We say that a dyadic subbase Is
proper if cl S(d) = S(d) for every d € K(T%).

e Closure of basic open sets are defined
order-theoretically.
e |t means that S,,; and 5., ; are not touching!

Tu)

Proposition 3 Suppose that S'is a L(T*)

proper dyadic subbase of a Haus- ¥

dorff space X.

(1) If 2 #y € X, then x and y are

separated by S,,; and S, ;_; for
some n and . K(T%)

(2) Forp etps(X), there is unique
x such that p > vs(x).
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How can we input/output Gray-code?

Real number computation : the limit of approximations (shrinking
open intervals).
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How can we output Gray-code?
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open intervals).
Q 1 2 3 4 5

0 1 2 3 4 5

Q 1 2 3 4 5

0 1 2 3 4 5
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How can we output Gray-code?

Real number computation as a limit of approximations (shrinking

open intervals).

0 1 2 3 4 5
T

0 1 2 4
0

I

0 1 2 4
1

I

0 1 2 4
T
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How can we output Gray-code?
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How can we output Gray-code?

Real number computation as a limit of approximations (shrinking
open intervals).

0O 1 2 3 4 §
________________ RN
S — []
0 1 2 3 4 §
ol L oli]ilL
i B
0O 1 2 3 4 §
AN
Il
0O 1 2 3 4 §5
1[1]ololo]o
0 05 1 u
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How can we input Gray-code?

0] 2 3 4 5
110|L{2(0]0

0 1 2 3 4 5
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How can we input Gray-code?

0
1

N O
0 = o
I (@}
& O pn

el &)
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How can we input Gray-code?

ok
o

W - W
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How can we input Gray-code?

O p

=)

o
N O E-D

= W
N WO
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How can we input Gray-code?

=)
o
N O E-D
= W
(@SN
o7 O

16 /31



How can we input Gray-code?
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How can we input Gray-code?

0 2 3 4 5
110({L]|1]0]|0
1
2
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How can we input Gray-code?

0 1 2 3 4 5
110({L]|1]0]|0
I
0 1 2 3 4 5

110

We may input from blue head first.
Two possible inputs if we have digits on both heads.
= Indeterministic (non-deterministic) behavior.
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IM2-machine
| nput tapes
10
M — 1 State

\\ e Indeterministic (i.e. nondeterministic)

e Generalization of Type-2 machine with
2-heads input/output access.

| work tape

behavior depending on the head used

to input.

111 - — defines a multi-valued function.

out put tape note: Multi-valuedness is essential for
real number computation
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The Poset of Finite/Infinite states

N N N

b

18 /31



The Poset of Finite/Infinite states

N N N

b

e Infinite-State: obtained as ideal completion of the finite states.
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N N N

b

e Infinite-State: obtained as ideal completion of the finite states.
e Subdomain of Tv.
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The Poset of Finite/Infinite states

0100. 100. ..
/; ;\

————————————————————————— /—4—-%-—-—-—-—-—-—-—-—-—-—-—-—-—-

NN
\@\

\Q\

V\/\/\/\/\/
N

e Infinite-State: obtained as ideal completion of the finite states.
e Subdomain of T¥.
e The set of minimal elements of the limit elements

homeomorphic to I.
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The Poset of Finite/Infinite states

0100. 1100.

\/ limt
b1000. \.
__________________________ +_\Y_____________

000 00b1 001 0b10 011 01bl 016 blOO 1 11b1 11 1b10 101 10b1 100

/\0/\/\/\/\/\/
\@\0/1/ \O\bV \‘/O
\@\1;/]/

e Infinite-State: obtained as ideal completion of the finite states.

e Subdomain of Tv.

e The set of minimal elements of the limit elements
homeomorphic to I.

e The same domain as that of Signed Digit Representation.

e Admissible Representation of I.
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Computation over Topological Spaces

Embedding in T for T = {0, 1, L }.
.- subspace of a code space with bottoms.

This work started with

e (1) Gray-embedding of the unit interval [0,1]
e (3) IM2-machines which are working on (subsets of) T.

As generalization, we studied

e (2) Dyadic subbase,
e (4) Domain representation as minimal limit sets,
e (6) Uniform domain and uniform space.

In this talk, we connect them. that iIs,

e (5) Construct a domain representation from a dyadic subbase.
e (7) Derive uniformity structure from it.
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Minimal-Limit Sets of a Domain

" bl (il
N NS

Compact Case Non-Compact Case.

e D Is an algebraic subdomain of 7.

e (D) has enough minimal elements.
(for all ¢ € P, exists a minimal p s.t. p < q.)

e X is densely embed in min(L(D)) (and L(D) and D).

e We can derive an admissible representation of X. 0581



Construct such a domain representation from
a dyadic subbase of X.
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e Let X be a Hausdorff space and S = {S,; : n < w,? < 2} be a
proper dyadic subbase of X.

e Forpe T, letp.,, € K(T¥) be p,,(n) = p(n)(n < m) and
Pem(n) = L(n > m).

o Kg ={ps(®)cm:z€ X,meN} C K(TV).
D
e Dy = the ideal completion of Ks. >

| | L(Ds)
e D¢ IS a subdomain of Tv.
X

® KS — K(DS)

® gpS(X) C L(DS)
K(Ds)

When does X become the set of minimal-limit elements®
23/ 31



Finite-Branching Domain

Theorem 5 Suppose that K (D) is finite-branching.
(1) L(D) is compact.

(2) L(D) has enough minimal elements.

(3) min(L(D)) is compact.

24 ] 31



Adhesive Space, T% space.

Def. A space X is adhesive if X has at least two points and
closures of any two open sets have non-empty intersection.

Note There is an adhesive Hausdorff space.

Def. A space X Is T2i If it Is Hausdorff and no open subspace
IS adhesive.

Proposition A T,1 space IS T,1 and

Dg
aT,. spaceis Ts.
22 SP 2 L(Ds)
Proposition If X Is Ty, % SMZS;S[
A

thenK (Dyg) is finite-branching.

Corollary If X Is Ty,

(1) L(Dg) is compact and (D
It has enough minimal elements. (Ds)

(2) min(L(Dg)) is compact. -



If X is regular, ¢s(X) C min(L(Dsg))

Theorem 6 (1) If S is a proper dyadic subbase of a regular space

X, then gﬁs(X) C mm(L(DS))

(2) If S'is a proper dyadic subbase of a compact regular space X,
then ¢ps(X) = min(L(Dyg)).

L(Ds)

X

K(Ds)

Dg

o]
N

Non-Compact Case

Dg
K(Ds) \/

L(Ds)

X

Compact Case.

26 / 31
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A sequence of covering induced by K (Dg)

e Suppose that X is regular (and thus metrizable), and S a
proper dyadic subbase of X.

e \We have a sequence us = u,(n =0,1,...) of coverings
defined as follows.

Ds
" Vool g/
X
K(Ds) \/ \/
e Is it defining a uniformity on X?
(It is, for the Gray-subbase of I.)
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\\ /
01 011
\{/(/
0 1

01
N /7 N\
0 11

N /
i
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e Suppose that X is regular (and thus metrizable), and S a
proper dyadic subbase of X.

e \We have a sequence us = u,(n =0,1,...) of coverings

defined as follows.
Ds

BN e N Y

N A6

/

l NOY 1 01 y4 ] l NOY 1 01 y4 ]
K(Ds) N2 NN
0 11 0 11
% %
1 1
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e Suppose that X is regular (and thus metrizable), and S a
proper dyadic subbase of X.

e \We have a sequence us = u,(n =0,1,...) of coverings
defined as follows.

Dg
o Mvﬂvﬂﬂ &ﬂvﬂ
X
//.L.\l\ 01 11 011 //l .//;,.\l\ 01 11 011 //l
3 3
N N
9 l NO L[] 01 / | ll’l'2 l NO L[] 01 // |
K(DgV NN / NN/ N S
Il’l']- l N 0O 11/ | Il’l']- l N 0O 11/ |
ILI/ l \\\J_/// | ILI/ l \\\J_/// |
0 N 4 0 N 4

e Is it defining a uniformity on X?
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Uniformity (via uniform coverings [Tukey40],[Isbell64] )

Def. A family ¢/ of coverings of X Is a uniformity if

(1) whenpandvareinld, pNrvisinl,

(2) whenpu =vandveld, pisinld,

(3) every element of ¢/ has a star-refinement in ¢/, and

(4) for each x and y € X, there is a covering u € U no element of
which contains both = and y.

e Foracoveringpand A C X, St(A,u) =U{Veu|VnNA=#QD}.

e The collection {St(U,u) | U € u} is also a covering, called the
star of 1 and denoted by #*.

e If u* IS a refinement of v, we call that ;. Is a star-refinement of v
and write v >=* L.

e A sequence of covering uo = p1 = 2 > ... 1S a countable base
of a uniformity ¢/ if for all v € U, there is a n such that v >* 11,59, 31



Proper Dyadic subbase and uniformity

Theorem 7 If X i1s a Compact Hausdorff Space, the sequence of
covering s IS a base of the uniformity.

For the case X Is not compact, ;s may not be a base of a
uniformity, in general.
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An example of an Adhesive Hausdorff Space

e D =the set of dyadic rationals of |0, 1],
P=10,1]\ D,
X =PUN.

e A neighbourhood base of + € P: Euclidean neighbourhoods of
x restricted to P.

e A neighbourhood base of x € N: Euclidean neighbourhoods of
{k/2" : k is odd} restricted to P extended with {x}.

e Every regular closed set contains {n € N : n > m} for some
m € N.
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