Domain Representations Derived from Dyadic Subbases

Hideki Tsuiki Kyoto University

Workshop on Constructive Aspects of Logic and Mathematics March 11, 2010, Kanazawa

- (Admissible) representation in 2^ω or ℕ^ω.
 … quotient of the digital code space. [TTE, QCB, …]
- Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms [T].

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- Gray-embedding of the unit interval [0,1]
- IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .

As generalization, we studied

- Dyadic subbase,
- Domain representation as minimal limit sets,
- Uniform domain and uniform space.

- Construct a domain representation from a dyadic subbase.
- Derive uniformity structure from it.

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .
- As generalization, we studied
 - (2) Dyadic subbase,
 - (4) Domain representation as minimal limit sets,
 - (6) Uniform domain and uniform space.

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

•
$$\varphi_G(1/2) = \pm 1000...$$

- $\varphi_G(1/2) = \pm 1000...$
- φ_G: topological embedding of I in T^ω₁, which is a subset of T^ω at most one ⊥ exists in each sequence. ([T],[Gianantonio])
- \mathbb{T}_1^{ω}
- Topology of \mathbb{T}^{ω} : product topology, (= the Scott Topology on $(\mathbb{T}^{\omega}, \leq)$.

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Which kind of embeddings in \mathbb{T}^{ω} ?

• Every second-countable space can be embed in $P_{\omega} = \{1, \perp\}^{\omega}$, and therefore automatically embed in \mathbb{T}^{ω} .

Which kind of embeddings in \mathbb{T}^{ω} ?

- Every second-countable space can be embed in P_ω = {1, ⊥}^ω, and therefore automatically embed in T^ω.
- Our embedding has the property that

$$S_{n,0} = \{ x \in X \mid \varphi(x)(n) = 0 \}$$

$$S_{n,1} = \{ x \in X \mid \varphi(x)(n) = 1 \}$$

$$(n = 0, 1, 2, \ldots).$$

are regular open such that $S_{n,0}$ and $S_{n,1}$ are exteriors of each other, and they form a subbase of X. (**)

Which kind of embeddings in \mathbb{T}^{ω} ?

- Every second-countable space can be embed in P_ω = {1, ⊥}^ω, and therefore automatically embed in T^ω.
- Our embedding has the property that

$$S_{n,0} = \{ x \in X \mid \varphi(x)(n) = 0 \}$$

$$S_{n,1} = \{ x \in X \mid \varphi(x)(n) = 1 \}$$

$$(n = 0, 1, 2, \ldots).$$

are regular open such that $S_{n,0}$ and $S_{n,1}$ are exteriors of each other, and they form a subbase of X.

- regular open = interior of closure is itself.
- S_{n,⊥} = {x ∈ X | φ(x)(n) = ⊥} is nowhere dense.
 (it does not contain an open set).
- The fact $\varphi(x)(n) = \bot$ is not computable. (open set as finitely observable property.) $\bot =$ uncomputable.

**

Which kind of embeddings in \mathbb{T}^{ω} ? (cont.)

- If $\varphi(x)(n) = \bot$, then x is on the boundary of 0 and 1.
- cl $S_{n,0} = S_{n,0} \cup S_{n,\perp}$, cl $S_{n,1} = S_{n,1} \cup S_{n,\perp}$.
- Through this kind of embedding in \mathbb{T}^{ω} (with a condition), we can talk about the boundary of basic open sets which are important ex. for dimension theory.
- It is related to domain representation and computation! (as we will see.)

$$S_{n,0}$$
 $S_{n,1}$

Dyadic Subbase

On the other hand, from a subbase $S = \{S_{n,i} \mid n < \omega, i < 2\}$ which satisfies property (**), we can define embedding $\varphi_S : X \to \mathbb{T}^{\omega}$ as

$$\varphi_S(x)(n) = \begin{cases} 0 & (x \in S_{n,0}) \\ 1 & (x \in S_{n,1}) \\ \bot & (\text{otherwise}) \end{cases}$$

Definition 1 $S = \{S_{n,i} \mid n < \omega, i < 2\}$ is a dyadic subbase of X if

- 1. S forms a subbase,
- 2. $S_{n,i}$: regular open.

3.
$$S_{n,1} = \text{ext } S_{n,0}$$
 (thus, $S_{n,0} = \text{ext } S_{n,1}$).

Order Structure of \mathbb{T}^{ω}

- For $p \in \mathbb{T}^{\omega}$, we call each appearance of 0 or 1 in p a digit of p.
- $K(\mathbb{T}^{\omega}) = \{ p \in \mathbb{T}^{\omega} : p \text{ has finite number of digits.} \}.$
- \mathbb{T}^{ω} forms an ω -algebraic domain with $K(\mathbb{T}^{\omega})$ the set of compact elements.

•
$$L(\mathbb{T}^{\omega}) = \mathbb{T} \setminus K(\mathbb{T}^{\omega}).$$

• $p \leq q$ if $p(n) = c$ implies $q(n) = c$ $L(\mathbb{T}^{\omega})$
for $c = 0, 1.$
• $\operatorname{dom}(p) = \{n : p(n) \neq \bot\}.$

 $K(\mathbb{T}^{\omega})$

Order Structure of \mathbb{T}^{ω}

- For $p \in \mathbb{T}^{\omega}$, we call each appearance of 0 or 1 in p a digit of p.
- $K(\mathbb{T}^{\omega}) = \{ p \in \mathbb{T}^{\omega} : p \text{ has finite number of digits.} \}.$
- \mathbb{T}^{ω} forms an ω -algebraic domain with $K(\mathbb{T}^{\omega})$ the set of compact elements.

• dom
$$(p) = \{n : p(n) \neq \bot\}.$$

Proposition For a dyadic subbas S of a Hausdorff space X, $\varphi_S(X) \subset L(\mathbb{T}^{\omega})$.

S(d) and $ar{S}(d)$ in the domain \mathbb{T}^{ω}

For a dyadic subbase S of X and $d \in K(\mathbb{T}^{\omega})$, define

$$S(d) = \bigcap_{\substack{n \in \text{dom}(d)}} S_{n,d(n)}$$
$$\bar{S}(d) = \bigcap_{\substack{n \in \text{dom}(d)}} \text{cl } S_{n,d(n)} = \bigcap_{\substack{n \in \text{dom}(d)}} (S_{n,d(n)} \cup S_{n,\perp})$$

•
$$\{S(d) \mid d \in K(\mathbb{T}^{\omega})\}$$
: base of X.

S(d) and $\bar{S}(d)$ in the domain \mathbb{T}^{ω}

For a dyadic subbase S of X and $d\in K(\mathbb{T}^{\omega}),$ define

$$S(d) = \bigcap_{\substack{n \in \text{dom}(d)}} S_{n,d(n)} = \uparrow d \cap \varphi_S(X)$$

$$\bar{S}(d) = \bigcap_{\substack{n \in \text{dom}(d)}} \text{cl } S_{n,d(n)} = \bigcap_{\substack{n \in \text{dom}(d)}} (S_{n,d(n)} \cup S_{n,\perp}) = \downarrow \uparrow d \cap \varphi_S(X)$$

•
$$\{S(d) \mid d \in K(\mathbb{T}^{\omega})\}$$
: base of X

• S(d) and $\overline{S}(d)$ are defined order-theoretically.

S(d) and $\bar{S}(d)$ in the domain \mathbb{T}^{ω}

For a dyadic subbase S of X and $d\in K(\mathbb{T}^{\omega}),$ define

$$S(d) = \bigcap_{\substack{n \in \text{dom}(d)}} S_{n,d(n)} = \uparrow d \cap \varphi_S(X)$$

$$\bar{S}(d) = \bigcap_{\substack{n \in \text{dom}(d)}} \text{cl } S_{n,d(n)} = \bigcap_{\substack{n \in \text{dom}(d)}} (S_{n,d(n)} \cup S_{n,\perp}) = \downarrow \uparrow d \cap \varphi_S(X)$$

•
$$\{S(d) \mid d \in K(\mathbb{T}^{\omega})\}$$
: base of X

• S(d) and $\overline{S}(d)$ are defined order-theoretically.

11/31

S(d) and $\bar{S}(d)$ in the domain \mathbb{T}^{ω}

For a dyadic subbase S of X and $d\in K(\mathbb{T}^{\omega}),$ define

$$S(d) = \bigcap_{\substack{n \in \text{dom}(d)}} S_{n,d(n)} = \uparrow d \cap \varphi_S(X)$$

$$\bar{S}(d) = \bigcap_{\substack{n \in \text{dom}(d)}} \text{cl } S_{n,d(n)} = \bigcap_{\substack{n \in \text{dom}(d)}} (S_{n,d(n)} \cup S_{n,\perp}) = \downarrow \uparrow d \cap \varphi_S(X)$$

•
$$\{S(d) \mid d \in K(\mathbb{T}^{\omega})\}$$
: base of X

• S(d) and $\overline{S}(d)$ are defined order-theoretically.

 \mathbb{T}^{ω}

Definition 2 We say that a dyadic subbase is proper if $cl S(d) = \overline{S}(d)$ for every $d \in K(\mathbb{T}^{\omega})$.

- Closure of basic open sets are defined order-theoretically.
- It means that $S_{n,i}$ and $S_{m,j}$ are not touching!

Definition 3 We say that a dyadic subbase is proper if $cl S(d) = \overline{S}(d)$ for every $d \in K(\mathbb{T}^{\omega})$.

- Closure of basic open sets are defined order-theoretically.
- It means that $S_{n,i}$ and $S_{m,j}$ are not touching!

Proposition 2 Suppose that *S* is a proper dyadic subbase of a Hausdorff space *X*.

(1) If $x \neq y \in X$, then x and y are separated by $S_{n,i}$ and $S_{n,1-i}$ for some n and i.

Definition 4 We say that a dyadic subbase is proper if $cl S(d) = \overline{S}(d)$ for every $d \in K(\mathbb{T}^{\omega})$.

- Closure of basic open sets are defined order-theoretically.
- It means that $S_{n,i}$ and $S_{m,j}$ are not touching!

 $S_{n,i}$ $S_{m,j}$

 \mathbb{T}^{ω} $L(\mathbb{T}^{\omega})$ $K(\mathbb{T}^{\omega})$

Proposition 3 Suppose that S is a proper dyadic subbase of a Hausdorff space X.

(1) If $x \neq y \in X$, then x and y are separated by $S_{n,i}$ and $S_{n,1-i}$ for some n and i.

(2) For $p \in \uparrow \varphi_S(X)$, there is unique x such that $p \ge \varphi_S(x)$.

Definition 5 We say that a dyadic subbase is proper if $cl S(d) = \overline{S}(d)$ for every $d \in K(\mathbb{T}^{\omega})$.

- Closure of basic open sets are defined order-theoretically.
- It means that $S_{n,i}$ and $S_{m,j}$ are not touching!

Proposition 4 Suppose that S is a proper dyadic subbase of a Haus-dorff space X.

(1) If $x \neq y \in X$, then x and y are separated by $S_{n,i}$ and $S_{n,1-i}$ for some n and i.

(2) For $p \in \uparrow \varphi_S(X)$, there is unique x such that $p \ge \varphi_S(x)$.

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

	· ·	
0	0.5	1

	 			 	_
	 		_		
		_			
0		0.5	5	 	1

	 			 	-
		_			
)	 	0.5	5	 	1

We may input from blue head first.

Two possible inputs if we have digits on both heads.

 \Rightarrow Indeterministic (non-deterministic) behavior.

IM2-machine

output tape

- Generalization of Type-2 machine with 2-heads input/output access.
- Indeterministic (i.e. nondeterministic) behavior depending on the head used to input.

 \rightarrow defines a multi-valued function.

note: Multi-valuedness is essential for real number computation

• Infinite-State: obtained as ideal completion of the finite states.

- Infinite-State: obtained as ideal completion of the finite states.
- Subdomain of \mathbb{T}^{ω} .

- Infinite-State: obtained as ideal completion of the finite states.
- Subdomain of \mathbb{T}^{ω} .
- The set of minimal elements of the limit elements homeomorphic to I.

- Infinite-State: obtained as ideal completion of the finite states.
- Subdomain of \mathbb{T}^{ω} .
- The set of minimal elements of the limit elements homeomorphic to I.
- The same domain as that of Signed Digit Representation.
- Admissible Representation of I.

Computation over Topological Spaces

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Minimal-Limit Sets of a Domain

- D is an algebraic subdomain of T^{ω} .
- L(D) has enough minimal elements.
 (for all q ∈ P, exists a minimal p s.t. p ≤ q.)
- X is densely embed in $\min(L(D))$ (and L(D) and D).
- We can derive an admissible representation of X.

Construct such a domain representation from a dyadic subbase of X.

Computation over Topological Spaces

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Domain D_S

- Let X be a Hausdorff space and $S = \{S_{n,i} : n < \omega, i < 2\}$ be a proper dyadic subbase of X.
- For $p \in \mathbb{T}^{\omega}$, let $p_{< m} \in K(\mathbb{T}^{\omega})$ be $p_{< m}(n) = p(n)(n < m)$ and $p_{< m}(n) = \bot (n \ge m)$.
- $K_S = \{\varphi_S(x)_{< m} : x \in X, m \in \mathbb{N}\} \subset K(T^{\omega}).$
- D_S = the ideal completion of K_S . • D_S is a subdomain of \mathbb{T}^{ω} . • $K_S = K(D_S)$. • $\varphi_S(X) \subset L(D_S)$. When does X become the set of minimal-limit elements?

Finite-Branching Domain

Theorem 5 Suppose that K(D) is finite-branching.

(1) L(D) is compact. (2) L(D) has enough minimal elements. (3) $\min(L(D))$ is compact.

Adhesive Space, $T_{2\frac{1}{4}}$ space.

- **Def.** A space *X* is adhesive if *X* has at least two points and closures of any two open sets have non-empty intersection.
- Note There is an adhesive Hausdorff space.
- Def. A space X is T_{2¹/4} if it is Hausdorff and no open subspace is adhesive.
- Proposition A $T_{2\frac{1}{2}}$ space is $T_{2\frac{1}{4}}$ and a $T_{2\frac{1}{4}}$ space is T_2 . $L(D_S)$
- **Proposition** If X is $T_{2\frac{1}{4}}$, then $K(D_S)$ is finite-branching.
- Corollary If X is T_{2¹/4},
 (1) L(D_S) is compact and it has enough minimal elements.
 (2) min(L(D_S)) is compact.

If X is regular, $\varphi_S(X) \subset \min(L(D_S))$

Theorem 6 (1) If *S* is a proper dyadic subbase of a regular space *X*, then $\varphi_S(X) \subset \min(L(D_S))$.

(2) If *S* is a proper dyadic subbase of a compact regular space *X*, then $\varphi_S(X) = \min(L(D_S))$.

Computation over Topological Spaces

Embedding in \mathbb{T}^{ω} for $\mathbb{T} = \{0, 1, \bot\}$ subspace of a code space with bottoms.

This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω} .

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

A sequence of covering induced by $K(D_S)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_S = \mu_n (n = 0, 1, ...)$ of coverings defined as follows. D_S

Is it defining a uniformity on X?
 (It is, for the Gray-subbase of I.)

A sequence of covering induced by $K(D_S)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_S = \mu_n (n=0,1,\ldots)$ of coverings defined as follows. D_S

Is it defining a uniformity on X? (It is, for the Gray-subbase of I.)

A sequence of covering induced by $K(D_S)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_S = \mu_n (n = 0, 1, ...)$ of coverings defined as follows. D_S

Is it defining a uniformity on X?
 (It is, for the Gray-subbase of I.)
A sequence of covering induced by $K(D_S)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_S = \mu_n (n=0,1,\ldots)$ of coverings defined as follows. D_S

Is it defining a uniformity on X?
(It is, for the Gray-subbase of I.)

A sequence of covering induced by $K(D_S)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_S = \mu_n (n=0,1,\ldots)$ of coverings defined as follows. D_S

Is it defining a uniformity on X? (It is, for the Gray-subbase of I.)

A sequence of covering induced by $K(D_S)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_S = \mu_n (n=0,1,\ldots)$ of coverings defined as follows. D_S

Is it defining a uniformity on X? (It is, for the Gray-subbase of I.)

Uniformity (via uniform coverings [Tukey40],[Isbell64])

Def. A family \mathcal{U} of coverings of X is a *uniformity* if

- (1) when μ and ν are in \mathcal{U} , $\mu \cap \nu$ is in \mathcal{U} ,
- (2) when $\mu \succ \nu$ and $\nu \in \mathcal{U}$, μ is in \mathcal{U} ,
- (3) every element of \mathcal{U} has a star-refinement in \mathcal{U} , and
- (4) for each x and $y \in X$, there is a covering $\mu \in \mathcal{U}$ no element of which contains both x and y.
 - For a covering μ and $A \subset X$, $St(A, \mu) = \bigcup \{ V \in \mu \mid V \cap A \neq \emptyset \}$.
 - The collection {St(U, μ) | U ∈ μ} is also a covering, called the star of μ and denoted by μ*.
 - If μ* is a refinement of ν, we call that μ is a star-refinement of ν and write ν ≻* μ.
 - A sequence of covering μ₀ ≻ μ₁ ≻ μ₂ ≻ ... is a countable base of a uniformity U if for all ν ∈ U, there is a n such that ν ≻* μ_{n29/31}

Proper Dyadic subbase and uniformity

Theorem 7 If X is a Compact Hausdorff Space, the sequence of covering μ_S is a base of the uniformity.

For the case X is not compact, μ_S may not be a base of a uniformity, in general.

An example of an Adhesive Hausdorff Space

- D = the set of dyadic rationals of [0, 1], $P = [0, 1] \setminus D$, $X = P \cup \mathbb{N}$.
- A neighbourhood base of x ∈ P: Euclidean neighbourhoods of x restricted to P.
- A neighbourhood base of $x \in \mathbb{N}$: Euclidean neighbourhoods of $\{k/2^x : k \text{ is odd}\}$ restricted to P extended with $\{x\}$.
- Every regular closed set contains $\{n \in \mathbb{N} : n \ge m\}$ for some $m \in \mathbb{N}$.