Domain Representations Derived from Dyadic Subbases

Hideki Tsuiki
Kyoto University

Workshop on Constructive Aspects of Logic and Mathematics March 11, 2010, Kanazawa

Computation over Topological Spaces

- (Admissible) representation in 2^{ω} or \mathbb{N}^{ω}.
... quotient of the digital code space. [TTE, QCB, ...]
- Embedding in \mathbb{T}^{ω} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms [T].

Computation over Topological Spaces

Embedding in \mathbb{T}^{ω} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- Gray-embedding of the unit interval $[0,1]$
- IM2-machines which are working on (subsets of) \mathbb{T}^{w}.

As generalization, we studied

- Dyadic subbase,
- Domain representation as minimal limit sets,
- Uniform domain and uniform space.

In this talk, we connect them. that is,

- Construct a domain representation from a dyadic subbase.
- Derive uniformity structure from it.

Computation over Topological Spaces

Embedding in \mathbb{T}^{ω} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- (1) Gray-embedding of the unit interval $[0,1]$
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω}.

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Computation over Topological Spaces

Embedding in \mathbb{T}^{w} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω}.

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Gray-embedding of $\mathbb{I}(=[0,1]))$

Gray-embedding of $\mathbb{I}(=[0,1]))$

Gray-embedding of $\mathbb{I}(=[0,1]))$

Gray-embedding of $\mathbb{I}(=[0,1]))$

Gray-embedding of $\mathbb{I}(=[0,1]))$

Binary Expansion
Gray Expansion

bit 1

bit 0

- $\varphi_{G}(1 / 2)=\perp 1000 \ldots$..
- φ_{G} : topological embedding of \mathbb{I} in \mathbb{T}_{1}^{ω}, which is a subset of \mathbb{T}^{ω} at most one \perp exists in
 each sequence. ([T],[Gianantonio])
- Topology of \mathbb{T}^{ω} : product topology, (= the Scott Topology on $\left(\mathbb{T}^{\omega}, \leq\right)$

Computation over Topological Spaces

Embedding in \mathbb{T}^{w} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω}.

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Which kind of embeddings in \mathbb{T}^{ω} ?

- Every second-countable space can be embed in $P_{\omega}=\{1, \perp\}^{\omega}$, and therefore automatically embed in \mathbb{T}^{ω}.

Which kind of embeddings in \mathbb{T}^{ω} ?

- Every second-countable space can be embed in $P_{\omega}=\{1, \perp\}^{\omega}$, and therefore automatically embed in \mathbb{T}^{ω}.
- Our embedding has the property that

$$
\begin{aligned}
S_{n, 0} & =\{x \in X \mid \varphi(x)(n)=0\} \\
S_{n, 1} & =\{x \in X \mid \varphi(x)(n)=1\} \\
& \quad(n=0,1,2, \ldots)
\end{aligned}
$$

are regular open such that $S_{n, 0}$ and $S_{n, 1}$ are exteriors of each other, and they form a subbase of X.

Which kind of embeddings in \mathbb{T}^{ω} ?

- Every second-countable space can be embed in $P_{\omega}=\{1, \perp\}^{\omega}$, and therefore automatically embed in \mathbb{T}^{ω}.
- Our embedding has the property that

$$
\begin{aligned}
S_{n, 0} & =\{x \in X \mid \varphi(x)(n)=0\} \\
S_{n, 1} & =\{x \in X \mid \varphi(x)(n)=1\} \\
& \quad(n=0,1,2, \ldots)
\end{aligned}
$$

are regular open such that $S_{n, 0}$ and $S_{n, 1}$ are exteriors of each other, and they form a subbase of X.

- regular open $=$ interior of closure is itself.
- $S_{n, \perp}=\{x \in X \mid \varphi(x)(n)=\perp\}$ is nowhere dense. (it does not contain an open set).
- The fact $\varphi(x)(n)=\perp$ is not computable. (open set as finitely observable property.) $\perp=$ uncomputable.

Which kind of embeddings in \mathbb{T}^{ω} ? (cont.)

- If $\varphi(x)(n)=\perp$, then x is on the boundary of 0 and 1 .
- cl $S_{n, 0}=S_{n, 0} \cup S_{n, \perp}$, $\mathrm{cl} S_{n, 1}=S_{n, 1} \cup S_{n, \perp}$.
- Through this kind of embedding in \mathbb{T}^{ω} (with a condition), we can talk about the boundary of basic open sets which are important ex. for dimension theory.
- It is related to domain representation and computation! (as we will see.)

Dyadic Subbase

On the other hand, from a subbase $S=\left\{S_{n, i} \mid n<\omega, i<2\right\}$ which satisfies property $(* *)$, we can define embedding $\varphi_{S}: X \rightarrow \mathbb{T}^{\omega}$ as

$$
\varphi_{S}(x)(n)= \begin{cases}0 & \left(x \in S_{n, 0}\right) \\ 1 & \left(x \in S_{n, 1}\right) \\ \perp & \text { (otherwise) }\end{cases}
$$

Definition $1 S=\left\{S_{n, i} \mid n<\omega, i<2\right\}$ is a dyadic subbase of X if

1. S forms a subbase,
2. $S_{n, i}$: regular open.
3. $S_{n, 1}=\operatorname{ext} S_{n, 0}$ (thus, $S_{n, 0}=\operatorname{ext} S_{n, 1}$).

Order Structure of \mathbb{T}^{ω}

- For $p \in \mathbb{T}^{\omega}$, we call each appearance of 0 or 1 in p a digit of p.
- $K\left(\mathbb{T}^{\omega}\right)=\left\{p \in \mathbb{T}^{\omega}: p\right.$ has finite number of digits. $\}$.
- \mathbb{T}^{ω} forms an ω-algebraic domain with $K\left(\mathbb{T}^{\omega}\right)$ the set of compact elements.
- $L\left(\mathbb{T}^{\omega}\right)=\mathbb{T} \backslash K\left(\mathbb{T}^{\omega}\right)$.
- $p \leq q$ if $p(n)=c$ implies $q(n)=c$ for $c=0,1$.
- $\operatorname{dom}(p)=\{n: p(n) \neq \perp\}$.

Order Structure of \mathbb{T}^{ω}

- For $p \in \mathbb{T}^{\omega}$, we call each appearance of 0 or 1 in p a digit of p.
- $K\left(\mathbb{T}^{\omega}\right)=\left\{p \in \mathbb{T}^{\omega}: p\right.$ has finite number of digits. $\}$.
- \mathbb{T}^{ω} forms an ω-algebraic domain with $K\left(\mathbb{T}^{\omega}\right)$ the set of compact elements.
- $L\left(\mathbb{T}^{\omega}\right)=\mathbb{T} \backslash K\left(\mathbb{T}^{\omega}\right)$.

$S(d)$ and $\bar{S}(d)$ in the domain \mathbb{T}^{w}

For a dyadic subbase S of X and $d \in K\left(\mathbb{T}^{\omega}\right)$, define

$$
\begin{aligned}
& S(d)=\bigcap_{n \in \operatorname{dom}(d)} S_{n, d(n)} \\
& \bar{S}(d)=\bigcap_{n \in \operatorname{dom}(d)} \operatorname{cl} S_{n, d(n)}=\bigcap_{n \in \operatorname{dom}(d)}\left(S_{n, d(n)} \cup S_{n, \perp}\right)
\end{aligned}
$$

- $\left\{S(d) \mid d \in K\left(\mathbb{T}^{\omega}\right)\right\}$: base of X.

$S(d)$ and $\bar{S}(d)$ in the domain \mathbb{T}^{w}

For a dyadic subbase S of X and $d \in K\left(\mathbb{T}^{\omega}\right)$, define

$$
\begin{aligned}
& S(d)=\bigcap_{n \in \operatorname{dom}(d)} S_{n, d(n)}=\uparrow d \cap \varphi_{S}(X) \\
& \bar{S}(d)=\bigcap_{n \in \operatorname{dom}(d)} \operatorname{cl} S_{n, d(n)}=\bigcap_{n \in \operatorname{dom}(d)}\left(S_{n, d(n)} \cup S_{n, \perp}\right) \quad=\downarrow \uparrow d \cap \varphi_{S}(X)
\end{aligned}
$$

- $\left\{S(d) \mid d \in K\left(\mathbb{T}^{\omega}\right)\right\}$: base of X.
- $S(d)$ and $\bar{S}(d)$ are defined order-theoretically.

$K\left(\mathbb{T}^{\omega}\right)$

$S(d)$ and $\bar{S}(d)$ in the domain \mathbb{T}^{ω}

For a dyadic subbase S of X and $d \in K\left(\mathbb{T}^{\omega}\right)$, define

$$
\begin{aligned}
& S(d)=\bigcap_{n \in \operatorname{dom}(d)} S_{n, d(n)}=\uparrow d \cap \varphi_{S}(X) \\
& \bar{S}(d)=\bigcap_{n \in \operatorname{dom}(d)} \operatorname{cl} S_{n, d(n)}=\bigcap_{n \in \operatorname{dom}(d)}\left(S_{n, d(n)} \cup S_{n, \perp}\right) \quad=\downarrow \uparrow d \cap \varphi_{S}(X)
\end{aligned}
$$

- $\left\{S(d) \mid d \in K\left(\mathbb{T}^{\omega}\right)\right\}$: base of X.
- $S(d)$ and $\bar{S}(d)$ are defined order-theoretically.

$S(d)$ and $\bar{S}(d)$ in the domain \mathbb{T}^{ω}

For a dyadic subbase S of X and $d \in K\left(\mathbb{T}^{\omega}\right)$, define

$$
\begin{aligned}
& S(d)=\bigcap_{n \in \operatorname{dom}(d)} S_{n, d(n)}=\uparrow d \cap \varphi_{S}(X) \\
& \bar{S}(d)=\bigcap_{n \in \operatorname{dom}(d)} \operatorname{cl} S_{n, d(n)}=\bigcap_{n \in \operatorname{dom}(d)}\left(S_{n, d(n)} \cup S_{n, \perp}\right)=\downarrow \uparrow d \cap \varphi_{S}(X)
\end{aligned}
$$

- $\left\{S(d) \mid d \in K\left(\mathbb{T}^{\omega}\right)\right\}$: base of X.
- $S(d)$ and $\bar{S}(d)$ are defined order-theoretically. $\quad L\left(\mathbb{T}^{\omega}\right)$

Proper dyadic subbases

Definition 2 We say that a dyadic subbase is proper if $\mathrm{cl} S(d)=\bar{S}(d)$ for every $d \in K\left(\mathbb{T}^{\omega}\right)$.

- Closure of basic open sets are defined order-theoretically.

- It means that $S_{n, i}$ and $S_{m, j}$ are not touching!

Proper dyadic subbases

Definition 3 We say that a dyadic subbase is proper if $\mathrm{cl} S(d)=\bar{S}(d)$ for every $d \in K\left(\mathbb{T}^{\omega}\right)$.

- Closure of basic open sets are defined order-theoretically.

- It means that $S_{n, i}$ and $S_{m, j}$ are not touching!

Proposition 2 Suppose that S is a proper dyadic subbase of a Hausdorff space X.
(1) If $x \neq y \in X$, then x and y are separated by $S_{n, i}$ and $S_{n, 1-i}$ for some n and i.

Proper dyadic subbases

Definition 4 We say that a dyadic subbase is proper if $\mathrm{cl} S(d)=\bar{S}(d)$ for every $d \in K\left(\mathbb{T}^{\omega}\right)$.

- Closure of basic open sets are defined order-theoretically.

- It means that $S_{n, i}$ and $S_{m, j}$ are not touching!

Proposition 3 Suppose that S is a proper dyadic subbase of a Hausdorff space X.
(1) If $x \neq y \in X$, then x and y are separated by $S_{n, i}$ and $S_{n, 1-i}$ for some n and i.
(2) For $p \in \uparrow \varphi_{S}(X)$, there is unique x such that $p \geq \varphi_{S}(x)$.

Proper dyadic subbases

Definition 5 We say that a dyadic subbase is proper if $\mathrm{cl} S(d)=\bar{S}(d)$ for every $d \in K\left(\mathbb{T}^{\omega}\right)$.

- Closure of basic open sets are defined order-theoretically.

- It means that $S_{n, i}$ and $S_{m, j}$ are not touching!

Proposition 4 Suppose that S is a proper dyadic subbase of a Hausdorff space X.
(1) If $x \neq y \in X$, then x and y are separated by $S_{n, i}$ and $S_{n, 1-i}$ for some n and i.
(2) For $p \in \uparrow \varphi_{S}(X)$, there is unique x such that $p \geq \varphi_{S}(x)$.

Computation over Topological Spaces

Embedding in \mathbb{T}^{w} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω}.

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

How can we input/output Gray-code?

Real number computation : the limit of approximations (shrinking open intervals).

0.5

1

How can we input/output Gray-code?

Real number computation : the limit of approximations (shrinking open intervals).

$0 \quad 0.5$

How can we input/output Gray-code?

Real number computation : the limit of approximations (shrinking open intervals).

How can we input/output Gray-code?

Real number computation : the limit of approximations (shrinking open intervals).

$$
=0.5
$$

1

How can we input/output Gray-code?

Real number computation : the limit of approximations (shrinking open intervals).

$$
\bar{\mp} 0.5
$$

1

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

$$
=-5-5=-5=-5=5
$$

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we output Gray-code?

Real number computation as a limit of approximations (shrinking open intervals).

How can we input Gray-code?

We may input from blue head first.
Two possible inputs if we have digits on both heads.
\Rightarrow Indeterministic (non-deterministic) behavior.

IM2-machine

input tapes

output tape

- Generalization of Type-2 machine with 2-heads input/output access.
- Indeterministic (i.e. nondeterministic) behavior depending on the head used to input. \rightarrow defines a multi-valued function. note: Multi-valuedness is essential for real number computation

The Poset of Finite/Infinite states

The Poset of Finite/Infinite states

- Infinite-State: obtained as ideal completion of the finite states.

The Poset of Finite/Infinite states

- Infinite-State: obtained as ideal completion of the finite states.
- Subdomain of \mathbb{T}^{ω}.

The Poset of Finite/Infinite states

- Infinite-State: obtained as ideal completion of the finite states.
- Subdomain of \mathbb{T}^{ω}.
- The set of minimal elements of the limit elements homeomorphic to \mathbb{I}.

The Poset of Finite/Infinite states

- Infinite-State: obtained as ideal completion of the finite states.
- Subdomain of \mathbb{T}^{ω}.
- The set of minimal elements of the limit elements homeomorphic to \mathbb{I}.
- The same domain as that of Signed Digit Representation.
- Admissible Representation of \mathbb{I}.

Computation over Topological Spaces

Embedding in \mathbb{T}^{w} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω}.

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Minimal-Limit Sets of a Domain

- D is an algebraic subdomain of T^{ω}.
- $L(D)$ has enough minimal elements. (for all $q \in P$, exists a minimal p s.t. $p \leq q$.)
- X is densely embed in $\min (L(D))$ (and $L(D)$ and $D)$.
- We can derive an admissible representation of X.

Our Goal

Construct such a domain representation from a dyadic subbase of X.

Computation over Topological Spaces

Embedding in \mathbb{T}^{w} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω}.

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

Domain D_{S}

- Let X be a Hausdorff space and $S=\left\{S_{n, i}: n<\omega, i<2\right\}$ be a proper dyadic subbase of X.
- For $p \in \mathbb{T}^{\omega}$, let $p_{<m} \in K\left(\mathbb{T}^{\omega}\right)$ be $p_{<m}(n)=p(n)(n<m)$ and $p_{<m}(n)=\perp(n \geq m)$.
- $K_{S}=\left\{\varphi_{S}(x)_{<m}: x \in X, m \in \mathbb{N}\right\} \subset K\left(T^{\omega}\right)$.
- $D_{S}=$ the ideal completion of K_{S}.
D_{S}
- D_{S} is a subdomain of \mathbb{T}^{ω}.
- $K_{S}=K\left(D_{S}\right)$.
- $\varphi_{S}(X) \subset L\left(D_{S}\right)$.

$$
K\left(D_{S}\right)
$$

When does X become the set of minimal-limit elements?

Finite-Branching Domain

Theorem 5 Suppose that $K(D)$ is finite-branching. (1) $L(D)$ is compact.
(2) $L(D)$ has enough minimal elements.
(3) $\min (L(D))$ is compact.

Adhesive Space, $\mathrm{T}_{2 \frac{1}{4}}$ space.

- Def. A space X is adhesive if X has at least two points and closures of any two open sets have non-empty intersection.
- Note There is an adhesive Hausdorff space.
- Def. A space X is $\mathrm{T}_{2 \frac{1}{4}}$ if it is Hausdorff and no open subspace is adhesive.
- Proposition $\mathrm{A}_{2 \frac{1}{2}}$ space is $\mathrm{T}_{2 \frac{1}{4}}$ and a $T_{2 \frac{1}{4}}$ space is T_{2}.
- Proposition If X is $\mathrm{T}_{2 \frac{1}{4}}$,
 then $K\left(D_{S}\right)$ is finite-branching.
- Corollary If X is $\mathrm{T}_{2 \frac{1}{4}}$,
(1) $L\left(D_{S}\right)$ is compact and it has enough minimal elements.

$$
K\left(D_{S}\right)
$$

(2) $\min \left(L\left(D_{S}\right)\right)$ is compact.

If X is regular, $\varphi_{S}(X) \subset \min \left(L\left(D_{S}\right)\right)$

Theorem 6 (1) If S is a proper dyadic subbase of a regular space X, then $\varphi_{S}(X) \subset \min \left(L\left(D_{S}\right)\right.$).
(2) If S is a proper dyadic subbase of a compact regular space X, then $\varphi_{S}(X)=\min \left(L\left(D_{S}\right)\right)$.

Computation over Topological Spaces

Embedding in \mathbb{T}^{w} for $\mathbb{T}=\{0,1, \perp\}$.
... subspace of a code space with bottoms.
This work started with

- (1) Gray-embedding of the unit interval [0,1]
- (3) IM2-machines which are working on (subsets of) \mathbb{T}^{ω}.

As generalization, we studied

- (2) Dyadic subbase,
- (4) Domain representation as minimal limit sets,
- (6) Uniform domain and uniform space.

In this talk, we connect them. that is,

- (5) Construct a domain representation from a dyadic subbase.
- (7) Derive uniformity structure from it.

A sequence of covering induced by $K\left(D_{S}\right)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_{S}=\mu_{n}(n=0,1, \ldots)$ of coverings defined as follows.
D_{S}

- Is it defining a uniformity on X ? (It is, for the Gray-subbase of \mathbb{I}.)

A sequence of covering induced by $K\left(D_{S}\right)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_{S}=\mu_{n}(n=0,1, \ldots)$ of coverings defined as follows.
D_{S}

- Is it defining a uniformity on X ?
(It is, for the Gray-subbase of \mathbb{I}.)

A sequence of covering induced by $K\left(D_{S}\right)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_{S}=\mu_{n}(n=0,1, \ldots)$ of coverings defined as follows.

$$
D_{S}
$$

- Is it defining a uniformity on X ?
(It is, for the Gray-subbase of \mathbb{I}.)

A sequence of covering induced by $K\left(D_{S}\right)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_{S}=\mu_{n}(n=0,1, \ldots)$ of coverings defined as follows. D_{S}

- Is it defining a uniformity on X ? (It is, for the Gray-subbase of \mathbb{I}.)

A sequence of covering induced by $K\left(D_{S}\right)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_{S}=\mu_{n}(n=0,1, \ldots)$ of coverings defined as follows.

$$
D_{S}
$$

- Is it defining a uniformity on X ?
(It is, for the Gray-subbase of \mathbb{I}.)

A sequence of covering induced by $K\left(D_{S}\right)$

- Suppose that X is regular (and thus metrizable), and S a proper dyadic subbase of X.
- We have a sequence $\mu_{S}=\mu_{n}(n=0,1, \ldots)$ of coverings defined as follows.

$$
D_{S}
$$

- Is it defining a uniformity on X ?
(It is, for the Gray-subbase of \mathbb{I}.)

Uniformity (via uniform coverings [Tukey40],[Isbel|64])

Def. A family \mathcal{U} of coverings of X is a uniformity if
(1) when μ and ν are in $\mathcal{U}, \mu \cap \nu$ is in \mathcal{U},
(2) when $\mu \succ \nu$ and $\nu \in \mathcal{U}, \mu$ is in \mathcal{U},
(3) every element of \mathcal{U} has a star-refinement in \mathcal{U}, and
(4) for each x and $y \in X$, there is a covering $\mu \in \mathcal{U}$ no element of which contains both x and y.

- For a covering μ and $A \subset X, S t(A, \mu)=\cup\{V \in \mu \mid V \cap A \neq \emptyset\}$.
- The collection $\{S t(U, \mu) \mid U \in \mu\}$ is also a covering, called the star of μ and denoted by μ^{*}.
- If μ^{*} is a refinement of ν, we call that μ is a star-refinement of ν and write $\nu \succ^{*} \mu$.
- A sequence of covering $\mu_{0} \succ \mu_{1} \succ \mu_{2} \succ \ldots$ is a countable base of a uniformity \mathcal{U} if for all $\nu \in \mathcal{U}$, there is a n such that $\nu \succ^{*} \mu_{m 29 / 31}$

Proper Dyadic subbase and uniformity

Theorem 7 If X is a Compact Hausdorff Space, the sequence of covering μ_{S} is a base of the uniformity.

For the case X is not compact, μ_{S} may not be a base of a uniformity, in general.

An example of an Adhesive Hausdorff Space

- $D=$ the set of dyadic rationals of $[0,1]$,
$P=[0,1] \backslash D$,
$X=P \cup \mathbb{N}$.
- A neighbourhood base of $x \in P$: Euclidean neighbourhoods of x restricted to P.
- A neighbourhood base of $x \in \mathbb{N}$: Euclidean neighbourhoods of $\left\{k / 2^{x}: k\right.$ is odd $\}$ restricted to P extended with $\{x\}$.
- Every regular closed set contains $\{n \in \mathbb{N}: n \geq m\}$ for some $m \in \mathbb{N}$.

