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1 Introduction

The universe of discourse:
Real numbers and real functions

Purpose:

A general treatment of sequen-
tral computability of some Euclidean-
discontinuous functions

Sequential computable of f: {x,} computable
— {f(xn)} computable
Does not hold for a discontinuous function

A continuous function f is computable if f is sequentially
computable and is effectively continuous



Two methods:
Limiting recursion and effective
uniformity

Our concern: Equivalence of sequential com-
putabilities of the two methods under certain con-
ditions for various examples

Preceding works: Equivalence proofs for con-
crete cases

Here: To distill a set of (suffi-
cient) conditions under which the
equivalence holds in a general set-
ting



2 Preliminaries

A number-theoretic function is called limaiting re-
cursive (Gold) if it is recursive in the limits of
recursive functions

(Sequence of real numbers)

A sequence of real numbers {x,, }
is E-computable/weakly E-computable:

It is approximated by a recursive (dou-
ble) sequence of rational numbers (in the
Euclidean topology)

with a recursive modulus of convergence/

with a limiting recursive modulus of con-
vergence



(Effective uniformity on a set X)

U,: X - P(X)

U= {U,} is an effective unifor-
maity on X: It is a uniformity and
the correspondences of indices are
recursive.

There are recursive functions oy, as, a3 which
satisfy the following.

Ve € X. N, Uy(x) = {x}
Vn,mVe € X.Uy, (nm) () C Uy(z) N Up(x)
vnve,y € X.x € Uy,n)(y) = y € Uy(x)
VnVz,y,z € X.x € Uyymn) (Y)AY € Unyn)(2) = = € Uy(2)



(X,{U,}) is a (uniform) toplogical space with
{U,(x)} as the system of fundamental neighbor-
hoods.

(X,{U,}): an effective uniform
space.

Effective U-convergence:
Convergence (of {r,,z} to {x.,})
with respect to the topology U with
a recursive modulus of convergence

VmVnVk > v(m,n).rm, € Up(zn)

~ recursive

U-computability structure & C
P(X¥):

S is closed under recursive re-
enumeration and U-effective con-
vergence.

A sequence in S is called U-computable.



3 Framework

E-computable: Euclidean computable

U= (R,{U,}): Effective uniform
space on the domain of real num-
bers

Assumption [A] on U:
A-1 A recursive sequence of ra-
tional numbers is U-computable.
A-2 E-computable numbers and
U-computable numbers coincide.
A-3 Every U-computable sequence
is E-computable.



Condition [C] on U:

Any E-computable sequence {x,,}
is U-approximated by a Ud-computable
sequence {z,,} and a limiting re-

cursive modulus of convergence
({zm} is weakly U-computable by {z,,,} and v)

VYm,nVp > v(m,n).zmp € U, ()

Proposition 3.1 If {x,,} is U-computable,
then v can be recursive, since z,, = T,
will do.

Our Framework: [A] and [C].



4 Two notions of sequential computability of a
function

(L-sequential computability)
A real function f is L-sequentially
computable:

For any E-computable sequence
of real numbers {x,,} (weakly U-
computable by {z,,,} and v by [C]),
{f(x)} is weakly E-computable

(more precisely)

approximated by a recursive sequence of
rational numbers {s,,,} with a modulus
of convergence 1 which is recursive in v

Remark: In fact, £L-sequential computability of a function
f should be defined independent of any uniformity. With
each concrete example we have worked on, it was so de-
fined, namely, a limiting modulus of convergence is defined
independent of any uniformity, and later some conditions
correspondig to those in the framework have been demon-
strated. In an abstract setting, however, we must set those
conditions as assumptions.



(U-sequential computability)

f is U-sequentially computable:
For any U-computable sequence

of real numbers {x,,}, {f(x,)} is

E-computable.
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5 Mutual relationship of the two notions

Theorem 1. (From L to U):
If f is L-sequentially computable,
then f is U-sequentially computable

Proof By the framework and Proposition
3.1

Note For Theorem 1, we do not need
to assume any kind of continuity on the
function f.
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(Proof) of Theorem 1

Suppose f is L-sequentially computable, and let {z,,} be
U-computable. By [A], {x,,} is E-computable, and hence,
by [C], a limiting recursive v is associated with it. So, by
L-sequential computability, there is a recursive sequence of
rational numbers {t,,,} and a function n which is recursive
in v satisfying

1

vm,pvg 2 n(m, p).|f(Tm) — tma| < -

By virtue of Proposition 3.1, one can take a recursive v

for a U-computable sequence {z,,}, and so we can take a

recursive n so that {f(x,,)} is E-computable by {t,,,} and
1, and hence f is U-sequentially computable.
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(Effective U-continuity)

f is effectively U-continuous:
There is a {-computable sequence

{e;} and a recursive function ~;

Vp. Ui Uyip)(€i) = R;
Vp, i,z € Uyip)(€:)

> 1f (@)~ Fe)l <
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Condition [D] on a function f:

D-1: f is effectively U-continuous
with {e;} and ~

D-2: For E-computable {x,,} with
v, there is a function ¢, recursive
in v,

vp, m.xr,, € U*y(L(m,p),p)(eL(m,p))°

D-3: For E-computable {z,,} with
v, there is a function e, recursive
in v,

Vi,m,n.x,, € U,(e;)
— Us(m,i,n) (wm) C Un(ez)
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Theorem 2. (From U to £) As-
sume that [D] holds for f. If f is
U-sequentially computable, then f
is L-sequentially computable

(Note) D-1, that is, effective U-continuity of f, is a natural
condition, since the reason why we consider a uniformity
is to make f continuous in the new topology so that the
problem can be reduced to computability of a continuous
function.

The conditions in D-2 and D-3 hold for the examples in
preceding works (and in fact the corresponding functions
are recursive: for example, e(m,i,n) = n)

For some examples the theorem holds even without U-
continuity of f



Proof Suppose f is U-sequentically computable.

Let {x,,} be E-computable, and let p be a positive in-
teger. We want to approximate {f(z,,)} with a recursive
rational (double) sequence with a modulus of conbergence
recursive in v

(i) By [C], there are a U-computable sequence {z,,,} and
a limiting recursive function v such that

Ym,nVq > v(m,n).z2mq € Up(zm)
Since f is U-sequentially computable and {z,,,} is U-
computable, {f(zmp)} is E-computable. From this follows:

(ii) There are a recursive sequence of rational numbers
{Smq} and a recursive function 3 so taht

1
vV, m, qvl > B(m, q,n).|f(Zmq) — Smal| < on

(iii) Put t,,4 := SmgpB(m,q,q)"

(iv) By D-2, there is an ¢, recursive in v, such that z,, €
U»y(i,p+2)(ei) hOldS, where 7 = L(m,p _|_ 2).
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(v) From (iv) and D-3, there is a function € which is re-
cursive in v so that with n = vy(z, p + 2),

Ue(m,isy(ip+2)) (®m) C Uy(ipr2)(€:)-
For short, put g9(m,i,p) = e(m,¢,v(i,p + 2)).
(vi) In (i), put n = eo(m,1, p) to obtain

q Z V(m’ s0("’”’7 i’ p)) — Zmgq € er(m,i,p)(mm)°

(vii) From (v) and (vi), we obtain

q > v(m,eo(m,i,p)) = 2mq € Uy(ipt2)(€:)-

(viii) From D-1 with & = z,,, and p = p 4+ 2, we obtain

Zmgq € U’y(i,p+2)(ei) — |f(qu) - f(ez)| < 2p+2.

(ix) From (vii) and (viii), follows

q Z V(ma EO(maiap)) — |f(qu) - .f(el)| < 2p+2°
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(x) In D-1, put * = x,, and p = p + 2. Since by (iv)
Tm € Uy pr2)(e;), it follows

|f (2m) — f(e:)] <

op+2°

(xi) From (ii) and (iii) with n = q and | = 3(m,q, q), we

have
1

|f(qu) - quﬁ(m,q,q)| < 27

or

1
£ (ma) = tonal < 5

(xii) Define
d(m, p) := max(v(m, eo(m,i,p)),p + 2),

and notice that

1 1
q208(m,p) > q2p+2— <o,

q > 6(m,p) = q > v(m,eo(m,i,p)).

(xiii) Summing up (ix)~(xii), we obtain, presuming that
g 2 9(m,p),

< |f(@m) — fe)| + [f(e:) = f(Zma)| + [ f(Zma) — tmal
3 1
S ez S o

{tmq} is a recursive sequence of rational numbers. Since
t = t(m, p) is recursive in v, so is §(m,p). (xiii) therefore
proves that {f(z,)} is weakly E-computable by {t,,,} and
J.
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6 Examples

Example: the floor function [x] and
other piecewise continuous func-
tions

Example: d-function; heaviside func-
tion

Example: Fine continuous func-
tions
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Application of the gereral theory to the
floor function

Let a be a recursive injection whose range is not recursive.

b — 1 — 3 if m = a(l) for some (unique) I,
™1 otherwise.

{b,,} is E-computable, but {[b,,]} is not.
It is weakly E-computable.
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U = (R, {Un}):
Un(@) = (& — w01+ 1)

if ze€[l,l+1),n=0,1,2,--

Effective uniformity

The floor function is UY-continuous

Computability structure S:
recursive sequences of rational numbers;
the U-effective limits of recursive se-

quences of rational numbers

{b,,} is not U-computable
[A] and [C] hold
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E-computable sequence {x,,} — {jm}, re-
cursive in v,

Tm € [jmv Jm + 1)
Condition D hold for [x]

Proof D-1: {e;} =the set of all integers

v(l,p) =0

Then z € U, () = Uo(l) = [I,1 4 1)
implies [x] — [I] = 0.

D-2: E-computable {x,,} —

t(m,p) = jm

D-3: Evaluate a ¢ = ¢m,n such that
T + 57 < Jm + 3m

Put e(m,i,n) = qun if ¢ = jn; = 1
otherwise

22



Fact: [x] is U- sequentially computable
(hence L-sequentially computable)

Proof If {«x,,} is U-computable with {r,,,}
and o and x,,, € [l,14 1), then r,4(m,0) €
[I,1 + 1) and hence [z,,] = [Pma(m,0)] = L.
Since {7,q(m,0)} is a recursive sequence
of rational numbers, {[rpnq(m,0)]} is
E-computable, hence so is {[x,]}.

Note L-sequential computability of [x] has been
directly shown in [YBW]
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7 Limiting recursion versus effective uniformity

(Limiting recursion method)
Advantage:

One attempts to compute the function
values mechanically

The merit of this method: Simplicity

The only tool in need beyond the re-
cursive function is taking the limit of a
recursive function

A straight extension of the computa-
tion of continuous functions

Disadvantage: It does not seem to rep-
resent the mental activity of a mathe-
matician (at least of mine) computing the
function value at a point of discontinuity
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(Effective uniformity method)

With each function a (an effective) uni-
form space in which it becomes continu-
ous is associated

The theory of computability structure
and computability of continuous functions
can be applied

Except for recursive functions, we do
not need any special tool beyond ordi-
nary mathematical knowledge

Intuitive
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