Comparing non-standard axioms with axioms of second-order arithmetic

Keita Yokoyama

Mathematical Institute, Tohoku University

March 9, 2010

Outline

Introduction

- Non-standard analysis
- Related topics
- Subsystems of second-order arithmetic
- 2 Non-standard second-order arithmetic
 - Non-standard second-order arithmetic
 - Axioms for non-standard analysis
 - Non-standard analysis in NSOA
- 3 Non-standard axioms and Reverse Mathematics
 - Reverse Mathematics for non-standard analysis
 - Transfer principle
 - Standard part principle

Introduction

Non-standard second-order arithmetic Non-standard axioms and Reverse Mathematics Non-standard analysis Related topics Subsystems of second-order arithmetic

Outline

Introduction

- Non-standard analysis
- Related topics
- Subsystems of second-order arithmetic
- 2 Non-standard second-order arithmetic
 - Non-standard second-order arithmetic
 - Axioms for non-standard analysis
 - Non-standard analysis in NSOA
- 3 Non-standard axioms and Reverse Mathematics
 - Reverse Mathematics for non-standard analysis
 - Transfer principle
 - Standard part principle

Introduction

Non-standard analysis Related topics Subsystems of second-order arithmetic

Non-standard analysis was introduced by Abraham Robinson in 1960s (based on model theory).

 Expanding the universe (N ⊆ N*, R ⊆ R*), we can use infinitesimals (infinitely large and small numbers).

Introduction

Non-standard analysis Related topics Subsystems of second-order arithmetic

Example (Bolzano Weierstraß theorem).

Let $\langle a_n \mid n \in \mathbb{N} \rangle$ be a real sequence.

Let $\langle a_n^* | n \in \mathbb{N}^* \rangle$ be the non-standard expansion of $\langle a_n | n \in \mathbb{N} \rangle$. Then, for any infinitely large number $\omega \in \mathbb{N}^* \setminus \mathbb{N}$, there exists a subsequence $\langle a_{n_i} | i \in \mathbb{N} \rangle$ which converges to $r := \operatorname{st}(a_{\omega}^*)$.

We can do mathematics only by using bounded formulas or less complicated $(\Sigma^0_1\cup\Pi^0_1)$ formulas.

Non-standard analysis Related topics Subsystems of second-order arithmetic

Related topics

- Comparing axioms of non-standard arithmetic and second-order arithmetic (Keisler, Henson, Kaufmann,...).
- Comparing axioms of non-standard arithmetic and weak axioms of arithmetic (Inpense, Sanders).
- (Model theoretic) non-standard arguments for reverse mathematics in WKL₀ and ACA₀ (Tanaka, Yamzaki, Sakamoto, Y).
- Reverse Mathematics for analysis.

Non-standard analysis Related topics Subsystems of second-order arithmetic

Question

Which axioms are essentially needed for non-standard analysis?

Non-standard analysis Related topics Subsystems of second-order arithmetic

language of second order arithmetic (\mathcal{L}_2)

Definition (language of second order arithmetic)

number variables: x, y, z, ...constant symbols: 0, 1 relation symbols: =, <, \in set variables: X, Y, Z, ...function symbols: $+, \cdot$

Non-standard analysis Related topics Subsystems of second-order arithmetic

Classes of formulas

bounded formula: all quantifiers are of the form $\forall x < y, \exists x < y$. arithmetical formulas:(θ : bounded formula)

$$\Sigma_n^0 \text{ formula: } \exists x_1 \forall x_2 \dots x_n \theta$$

$$\Pi_n^0 \text{ formula: } \forall x_1 \exists x_2 \dots x_n \theta$$

analytic formula: $(\varphi: \text{ arithmetical formula})$

$$\Sigma_n^1 \text{ formula: } \exists X_1 \forall X_2 \dots X_n \varphi$$

$$\Pi_n^1 \text{ formula: } \forall X_1 \exists X_2 \dots X_n \varphi$$

Non-standard analysis Related topics Subsystems of second-order arithmetic

Subsystems of second-order arithmetic

- RCA₀: "discrete ordered semi ring"+Σ⁰₁ induction+recursive comprehension.
- WWKL₀: RCA₀ + weak weak König's lemma.
- WKL₀: RCA₀ + weak König's lemma.
- ACA₀: RCA₀ + arithmetical comprehension.
- ATR₀: RCA₀ + arithmetical transfinite recursion.
- $\Pi_1^1 CA_0$: RCA₀ + Π_1^1 comprehension.

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

Outline

Introduction

- Non-standard analysis
- Related topics
- Subsystems of second-order arithmetic
- 2 Non-standard second-order arithmetic
 - Non-standard second-order arithmetic
 - Axioms for non-standard analysis
 - Non-standard analysis in NSOA
- 3 Non-standard axioms and Reverse Mathematics
 - Reverse Mathematics for non-standard analysis
 - Transfer principle
 - Standard part principle

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

Language of non-standard second order arithmetic

Definition (Language \mathcal{L}_2^*)

Language of non-standard second order arithmetic (\mathcal{L}_2^*) are the following:

- s number variables: x^s, y^s, \ldots, x^s
- * number variables: $x^*, y^*, \ldots, y^*, \ldots$
- s set variables: $X^s, Y^s, \ldots,$
- * set variables: X^*, Y^*, \ldots ,
- s symbols: $0^s, 1^s, =^s, +^s, \cdot^s, <^s, \in^s$,
- * symbols: $0^*, 1^*, =^*, +^*, \cdot^*, <^*, \in^*$, function symbol: $\sqrt{.}$

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

s-structure and *-structure

 M^{s} : range of $x^{s}, y^{s}, ..., M^{s}$: range of $x^{s}, y^{s}, ..., S^{s}$

$$V^{s} = (M^{s}, S^{s}; 0^{s}, 1^{s}, \dots): s-\mathcal{L}_{2} \text{ structure.}$$

$$V^{*} = (M^{*}, S^{*}; 0^{*}, 1^{*}, \dots): *-\mathcal{L}_{2} \text{ structure.}$$

$$\sqrt{M^{s} \cup S^{s}} \rightarrow M^{*} \cup S^{*}: \text{ embedding.}$$

We usually regard M^{s} as a subset of M^{*} .

Notations:

Let φ be an \mathcal{L}_2 -formula.

- φ^s : \mathcal{L}_2^* formula constructed by adding s to any \mathcal{L}_2 symbols in φ .
- $\varphi^* : \mathcal{L}_2^*$ formula constructed by adding * to any \mathcal{L}_2 symbols in φ .

•
$$\check{x}^{s} := \sqrt{(x^{s})}$$
.

•
$$\check{X}^{s} := \sqrt{(X^{s})}.$$

We usually omit ^s and ^{*} of relations $=, \leq, \in$. We often say " φ holds in V^{s} (in V^{s})" when φ^{s} (φ^{s}) holds.

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

classes of formulas

$$\begin{split} & \sum_{0}^{S} \text{ formula: all quantifiers are of the form } \forall x^{s} < y^{s}, \exists x^{s} < y^{s}, \\ & \forall x^{*} < y^{*}, \exists x^{*} < y^{*}. \\ & S \text{ formulas:}(\theta: \sum_{0}^{S} \text{ formula}) \\ & \sum_{n}^{S} \text{ formula: } \exists x_{1}^{s} \forall x_{2}^{s} \dots x_{n}^{s} \theta \\ & \Pi_{n}^{S} \text{ formula: } \forall x_{1}^{s} \exists x_{2}^{s} \dots x_{n}^{s} \theta \\ & \dagger \text{ formula:}(\varphi: S \text{ formula}) \\ & \sum_{n}^{\dagger} \text{ formula:} \exists x_{1}^{*} \forall x_{2}^{*} \dots x_{n}^{*} \varphi \\ & \Pi_{n}^{\dagger} \text{ formula:} \forall x_{1}^{*} \exists x_{2}^{*} \dots x_{n}^{*} \varphi \end{split}$$

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

Axioms for non-standard analysis

Definition (Saturation principles)

$$\begin{split} \Sigma_{j}^{i} \mathrm{WSAT}^{0} : & (\forall x^{\mathrm{s}} \exists y^{*} \varphi(\check{x}^{\mathrm{s}}, y^{*})^{*} \to \exists y^{*} \forall x^{\mathrm{s}} \varphi(\check{x}^{\mathrm{s}}, y^{*})^{*}) \\ & \text{for any } \Sigma_{j}^{i} \text{formula } \varphi(x, y). \\ \Sigma_{j}^{i} \mathrm{WSAT}^{1} : & (\forall x^{\mathrm{s}} \exists Y^{*} \varphi(\check{x}^{\mathrm{s}}, Y^{*})^{*} \to \exists Y^{*} \forall x^{\mathrm{s}} \varphi(\check{x}^{\mathrm{s}}, Y^{*})^{*}) \\ & \text{for any } \Sigma_{j}^{i} \text{formula } \varphi(x, Y). \end{split}$$

Definition (Transfer principles)

$$\begin{split} \Sigma_{j}^{i} & \text{EQ}: \quad \left(\varphi^{\text{s}} \leftrightarrow \varphi^{*}\right) \\ & \text{for any } \Sigma_{j}^{i} \text{ sentence } \varphi. \\ \Sigma_{j}^{i} & \text{TP}: \quad \forall x^{\text{s}} \forall X^{\text{s}} (\varphi(x^{\text{s}}, X^{\text{s}})^{\text{s}} \leftrightarrow \varphi(\check{x}^{\text{s}}, \check{X}^{\text{s}})^{*}) \\ & \text{for any } \Sigma_{j}^{i} \text{ formula } \varphi(x, X). \end{split}$$

Definition (Standard part principles)

$$\begin{aligned} \text{fst} : & \forall X^*(\text{card}(X^*) \in M^{\text{s}} \\ & \to \exists Y^{\text{s}} \forall x^{\text{s}}(x^{\text{s}} \in Y^{\text{s}} \leftrightarrow \check{x^{\text{s}}} \in X^*). \\ \text{ST} : & \forall X^* \exists Y^{\text{s}} \forall x^{\text{s}}(x^{\text{s}} \in Y^{\text{s}} \leftrightarrow \check{x^{\text{s}}} \in X^*). \\ \text{LMP} : & \forall H^* \in \mathbb{N}^* \setminus \mathbb{N}^{\text{s}} \forall T^* \subseteq 2^{ 0 \\ & \to \exists \sigma^* \in T^* \ln(\sigma^*) = H^* \land \sigma^* \cap \mathbb{N}^{\text{s}} \in V^{\text{s}} \end{aligned}$$

(An NS-tree which has a positive measure has a standard path.)

Definition (Basic axioms)

emb : "
$$\sqrt{}$$
 is an injective homomorphism".

e:
$$\forall x^* \forall y^s (x^* < \check{y^s} \rightarrow \exists z^s (x^* = \check{z^s})).$$

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

HKK transformation

Definition (Henson, Kaufmann, Keisler)

Let φ be an \mathcal{L}_2 formula. Then, φ^{\dagger} is an \mathcal{L}_2^* formula obtained by replacing each x_i by x_i^s , each X_i by x_i^* , and

 $x \in Y \mapsto x^s \in \operatorname{code}(y^*)$

where code(a) is a finite set coded by a.

† maps Σ_j^0 formulas to Σ_j^S formulas, and Σ_j^1 formulas to $\Sigma_j^†$ formulas. We define

$$\Sigma_j^{\dagger}$$
-CA = $(\Sigma_j^{1}$ -CA)^{\dagger}, Σ_j^{\dagger} -SEP = $(\Sigma_j^{1}$ -SEP)^{\dagger},...

Systems of non-standard second-order arithmetic

We define systems of non-standard second order arithmetic as follows.

Definition

$$\begin{split} \mathsf{RCA_0}^{\mathsf{ns}} =& (\mathsf{RCA_0})^{\mathsf{s}} + (\mathsf{RCA_0})^{\mathsf{s}} + \mathsf{emb} + \mathsf{e} + \mathsf{fst} + \Sigma_1^0 \mathsf{WSAT}^0 \\ & + \Sigma_1^1 \mathsf{EQ} + \Sigma_0^0 \mathsf{TP}. \\ \mathsf{WWKL_0}^{\mathsf{ns}} =& \mathsf{RCA_0}^{\mathsf{ns}} + \mathsf{LMP}. \\ \mathsf{WKL_0}^{\mathsf{ns}} =& \mathsf{RCA_0}^{\mathsf{ns}} + \mathsf{ST}. \\ \mathsf{ACA_0}^{\mathsf{ns}} =& \mathsf{RCA_0}^{\mathsf{ns}} + \mathsf{ST} + \Sigma_1^1 \mathsf{TP} + \Sigma_0^1 \mathsf{WSAT}^0. \\ \mathsf{ATR_0}^{\mathsf{ns}} =& \mathsf{ACA_0}^{\mathsf{ns}} + \Sigma_1^{\dagger} \mathsf{SEP} + \Sigma_2^1 \mathsf{TP}. \\ \mathsf{\Pi_1}^1 \mathsf{CA_0}^{\mathsf{ns}} =& \mathsf{ACA_0}^{\mathsf{ns}} + \Sigma_1^{\dagger} \mathsf{CA} + \Sigma_2^1 \mathsf{TP} + \Sigma_1^1 \mathsf{WSAT}^1. \end{split}$$

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

Non-standard analysis in NSOA

- Within RCA₀^{ns}, we can define real numbers, open sets, continuous functions, complete separable metric spaces,... in both s-structure and *-structure.
- We can also define 'non-standard concepts' such as standard part, monad, s-continuous, ...
- Then, ...

- WWKL₀^{ns} proves:
 - Lebesgue measure is the standard part of Loeb measure.
 - Riemann integral can be infinitesimally approximated by hyperfinite Riemann sum.
- WKL0^{ns} proves:
 - Every continuous function can be infinitesimally approximated by hyperfinite broken line.
 - Every compact separable metric space is a standard part of a non-standard metric space whose points are all standard.

• ACA₀^{ns} proves:

- If {a^s_n} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a^{*}_ω) is an accumulation value of {a^s_n}.
- If {*f_n*} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(*f^{*}_ω*) is an accumulation value of {*f^s_n*}.
- $\Pi_1^1 CA_0^{ns}$ proves:

•

 For every closed set C of a complete separable metric space, there exists a non-standard sequence {c_n^{*}} such that for any non-standard ω, st({c_i^{*} | i < ω}) = C.

Conservativity

Non-standard second-order arithmetic Axioms for non-standard analysis Non-standard analysis in NSOA

Moreover,

Theorem

 T^{ns} is a conservative extension of T for $T \in \{RCA_0, WWKL_0, WKL_0, ACA_0, ATR_0, \Pi_1^1CA_0\},$ *i.e.*, $T^{ns} \vdash \varphi^s$ implies $T \vdash \varphi$ for any \mathcal{L}_2 sentence φ .

By this theorem, we can use non-standard analysis for standard analysis in SOA.

Introduction Reverse Mathematics for non-standard analysis
Non-standard second-order arithmetic
Non-standard axioms and Reverse Mathematics

Outline

Introduction

- Non-standard analysis
- Related topics
- Subsystems of second-order arithmetic
- 2 Non-standard second-order arithmetic
 - Non-standard second-order arithmetic
 - Axioms for non-standard analysis
 - Non-standard analysis in NSOA
- 3 Non-standard axioms and Reverse Mathematics
 - Reverse Mathematics for non-standard analysis
 - Transfer principle
 - Standard part principle

Introduction	Reverse Mathematics for non-standard analysis
Non-standard second-order arithmetic	Transfer principle
Non-standard axioms and Reverse Mathematics	Standard part principle

Question

Which axioms are essentially needed for non-standard analysis?

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis

- WWKL0^{ns} proves:
 - Lebesgue measure is the standard part of Loeb measure.
 - Riemann integral can be infinitesimally approximated by hyperfinite Riemann sum.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis

- Within RCA₀^{ns},
 - "Lebesgue measure is the standard part of Loeb measure"
 ⇔ WWKL₀^{ns}.
 - "Riemann integral can be infinitesimally approximated by hyperfinite Riemann sum"
 ⇔ WWKL₀^{ns}.

This means that LMP is equivalent to "approximation for measure and integral".

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis

- Within RCA₀^{ns},
 - "Lebesgue measure is the standard part of Loeb measure"
 ⇔ WWKL₀^{ns}.
 - "Riemann integral can be infinitesimally approximated by hyperfinite Riemann sum"
 ⇔ WWKL₀^{ns}.

This means that LMP is equivalent to "approximation for measure and integral".

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis

- WKL⁰^{ns} proves:
 - Every continuous function can be infinitesimally approximated by hyperfinite broken line.
 - Every compact separable metric space is a standard part of a non-standard metric space whose points are all standard.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis

- Within RCA₀^{ns},
 - Every continuous function can be infinitesimally approximated by hyperfinite broken line.
 WKL 2^{ns}
 - $\Leftrightarrow WKL_0^{ns}$.
 - Every compact separable metric space is a standard part of a non-standard metric space whose points are all standard.
 ⇔ WKL₀^{ns}.

This means that ST is equivalent to "approximation for continuous functions".

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis

- Within RCA₀^{ns},
 - Every continuous function can be infinitesimally approximated by hyperfinite broken line.
 WKLo^{ns}.
 - Every compact separable metric space is a standard part of a non-standard metric space whose points are all standard.
 ⇔ WKL₀^{ns}.

This means that ST is equivalent to "approximation for continuous functions".

Reverse Mathematics for non-standard analysis

- ACA₀^{ns} proves:
 - If $\{a_n^s\}$ is a bounded sequence of standard real numbers, then for some non-standard ω , st (a_{ω}^*) is an accumulation value of $\{a_n^s\}$.
 - If {*f_n*} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(*f^{*}_ω*) is an accumulation value of {*f^s_n*}.
- $\Pi_1^1 CA_0^{ns}$ proves:
 - For every closed set C of a complete separable metric space, there exists a non-standard sequence {c^{*}_n} such that for any non-standard ω, st({c^{*}_i | i < ω}) = C.

Reverse Mathematics for non-standard analysis?

- Within RCA₀^{ns},
 - "If {a_n^s} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a_ω^{*}) is an accumulation value of {a_n^s}"
 ⇒ ACA₀^{ns}.
 - "If {*f_n*} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(*f^{*}_ω*) is an accumulation value of {*f^s_n*}"
 ⇒ ACA₀^{ns}.
- Within RCA₀^{ns},
 - For every closed set C of a complete separable metric space, there exists a non-standard sequence {c_n^{*}} such that for any non-standard ω, st({c_i^{*} | i < ω}) = C.
 ⇒ Π¹₁CA₀^{ns}.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis?

- Within RCA₀^{ns},
 - "If {a_n^s} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a_ω^{*}) is an accumulation value of {a_n^s}"
 ⇒ ACA_n^{ns}.
 - "If {*f_n*} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(*f^{*}_ω*) is an accumulation value of {*f^s_n*}"
 ⇒ ACA₀^{ns}.

Why?

⇒ These are provable within WKL₀^{ns} + Σ_0^1 TP, but Σ_1^1 TP is not provable from WKL₀^{ns} + Σ_0^1 TP. In fact, Σ_1^1 TP is non-standard over WKL₀^{ns} + Σ_0^1 TP, *i.e.*, WKL₀^{ns} + Σ_0^1 TP+(TA²)^s does not prove Σ_1^1 TP.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis?

- Within RCA₀^{ns},
 - "If {a_n^s} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a_ω^{*}) is an accumulation value of {a_n^s}"
 ⇒ ACA_n^{ns}.
 - "If {*f_n*} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(*f^{*}_ω*) is an accumulation value of {*f^s_n*}"
 ⇒ ACA₀^{ns}.

Why?

⇒ These are provable within WKL₀^{ns} + Σ_0^1 TP, but Σ_1^1 TP is not provable from WKL₀^{ns} + Σ_0^1 TP.

In fact, Σ_1^1 TP is non-standard over WKL₀^{ns} + Σ_0^1 TP, *i.e.*, WKL₀^{ns} + Σ_0^1 TP+(TA²)^s does not prove Σ_1^1 TP.

Reverse Mathematics for non-standard analysis?

- Within RCA₀^{ns},
 - "If {a_n^s} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a_ω^{*}) is an accumulation value of {a_n^s}"
 ⇒ ACA_n^{ns}.
 - "If {f_n} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(f^{*}_ω) is an accumulation value of {f^s_n}"
 ⇒ ACA₀^{ns}.

Why?

⇒ These are provable within WKL₀^{ns} + Σ_0^1 TP, but Σ_1^1 TP is not provable from WKL₀^{ns} + Σ_0^1 TP. In fact, Σ_1^1 TP is non-standard over WKL₀^{ns} + Σ_0^1 TP, *i.e.*, WKL₀^{ns} + Σ_0^1 TP+(TA²)^s does not prove Σ_1^1 TP.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Transfer principle

We need to compare TP with axioms of second-order arithmetic. However, ...

Theorem

$$WKL_0^{ns} + \Sigma_0^1 TP + (TA^2)^s$$
 does not prove $\Sigma_1^1 TP$.

Theorem

- (Impense, Sanders) PRA ⊢ Con(ERNA + Σ⁰₂TP).
 (ERNA: Elementary Recursive Non-standard Analysis)
- 2 $RCA_0^{ns} + ST + \Sigma_2^0 TP \vdash ACA_0$.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Transfer principle

Similarly,

Theorem

$$\mathbf{O} \ \mathsf{RCA}_0^{\mathsf{ns}} + \mathsf{ST} + \Sigma_2^{\mathsf{1}} \mathsf{TP} \equiv_{\Pi_2^{\mathsf{1}}} \mathsf{ACA}_0.$$

$$2 \mathsf{RCA}_0^{\mathsf{ns}} + \mathsf{ST} + \Sigma_2^{\mathsf{1}}\mathsf{TP} + (\mathsf{I}\Sigma_1^{\mathsf{1}})^{\mathsf{s}} \vdash \mathsf{\Pi}_1^{\mathsf{1}}\mathsf{CA}_0.$$

It seems to be impossible to compare the strength of TP with axioms of second-order arithmetic.

(As far as I know,) there is no theorem in non-standard analysis which implies some transfer principle.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Transfer principle

Similarly,

Theorem

$$\mathbf{I} \operatorname{RCA}_{0}^{\operatorname{ns}} + \operatorname{ST} + \Sigma_{2}^{1} \operatorname{TP} \equiv_{\Pi_{2}^{1}} \operatorname{ACA}_{0}.$$

2
$$\operatorname{RCA}_0^{\operatorname{ns}} + \operatorname{ST} + \Sigma_2^1 \operatorname{TP} + (I\Sigma_1^1)^{\operatorname{s}} \vdash \Pi_1^1 \operatorname{CA}_0.$$

It seems to be impossible to compare the strength of TP with axioms of second-order arithmetic.

(As far as I know,) there is no theorem in non-standard analysis which implies some transfer principle.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Transfer principle

Similarly,

Theorem

$$\mathbf{I} \operatorname{RCA}_{0}^{\operatorname{ns}} + \operatorname{ST} + \Sigma_{2}^{1} \operatorname{TP} \equiv_{\Pi_{2}^{1}} \operatorname{ACA}_{0}.$$

2
$$\operatorname{RCA}_0^{\operatorname{ns}} + \operatorname{ST} + \Sigma_2^1 \operatorname{TP} + (I\Sigma_1^1)^{\operatorname{s}} \vdash \Pi_1^1 \operatorname{CA}_0.$$

It seems to be impossible to compare the strength of TP with axioms of second-order arithmetic.

(As far as I know,) there is no theorem in non-standard analysis which implies some transfer principle.

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis?

- Within RCA₀^{ns},
 - "If {a_n^s} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a_ω^{*}) is an accumulation value of {a_n^s}"
 ⇒ ACA_n^{ns}.
 - "If {*f_n*} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(*f^{*}_ω*) is an accumulation value of {*f^s_n*}"
 ⇒ ACA₀^{ns}.

What is essential?

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis!

Definition (Standard part principles)

$$\Sigma_{i}^{\dagger} ST : \exists Y^{s} \forall x^{s} (x^{s} \in Y^{s} \leftrightarrow \varphi(x^{s}))$$

for any Σ_i^{\dagger} formula $\varphi(x^s)$.

Then,

- Within RCA₀^{ns},
 - "If {a_n^s} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a_ω^{*}) is an accumulation value of {a_n^s}"
 ⇒ Σ₀⁺ST.
 - "If {f_n} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(f_ω^{*}) is an accumulation value of {f_n^s}"
 ⇒ Σ₀[†]ST.

This means that $\Sigma_0^{\dagger} \mathrm{ST}$ is equivalent to "approximation for limits".

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis!

Definition (Standard part principles)

$$\Sigma_{i}^{\dagger} \mathrm{ST} : \exists Y^{\mathrm{s}} \forall x^{\mathrm{s}} (x^{\mathrm{s}} \in Y^{\mathrm{s}} \leftrightarrow \varphi(x^{\mathrm{s}}))$$

for any Σ_i^{\dagger} formula $\varphi(x^s)$.

Then,

- Within RCA₀^{ns},
 - "If {a_n^s} is a bounded sequence of standard real numbers, then for some non-standard ω, st(a_ω^{*}) is an accumulation value of {a_n^s}"
 ⇒ Σ₀⁺ST.
 - "If {f_n} is a normal family of holomorphic functions on a bounded domain, then for some non-standard ω, st(f_ω^{*}) is an accumulation value of {f_n^s}"
 ⇒ Σ₀[†]ST.

This means that $\Sigma_0^{\dagger} ST$ is equivalent to "approximation for limits".

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis?

Similarly,

- Within RCA₀^{ns},
 - For every closed set C of a complete separable metric space, there exists a non-standard sequence {c_n^{*}} such that for any non-standard ω, st({c_i^{*} | i < ω}) = C.
 ⇔ Σ₁[†]ST.

This means that $\Sigma_1^{\dagger}ST$ is equivalent to "approximation for closed sets".

Reverse Mathematics for non-standard analysis Transfer principle Standard part principle

Reverse Mathematics for non-standard analysis?

Similarly,

- Within RCA₀^{ns},
 - For every closed set C of a complete separable metric space, there exists a non-standard sequence {c_n^{*}} such that for any non-standard ω, st({c_i^{*} | i < ω}) = C.
 ⇔ Σ₁[†]ST.

This means that $\Sigma_1^\dagger \mathrm{ST}$ is equivalent to "approximation for closed sets".

Systems of non-standard second-order arithmetic

We should redefine systems of non-standard second order arithmetic as follows.

Definition

$$\begin{aligned} \mathsf{RCA}_0^{ns} = (\mathsf{RCA}_0)^s + (\mathsf{RCA}_0)^* + \mathrm{emb} + \mathrm{e} + \mathrm{fst} + \Sigma_1^0 \mathrm{WSAT}^0 \\ &+ \Sigma_1^1 \mathrm{EQ} + \Sigma_0^0 \mathrm{TP}. \\ \\ \mathsf{WWKL}_0^{ns} = \mathsf{RCA}_0^{ns} + \mathrm{LMP}. \\ \mathsf{WKL}_0^{ns} = \mathsf{RCA}_0^{ns} + \mathrm{ST}. \\ \mathsf{ACA}_0^{ns} = \mathsf{RCA}_0^{ns} + \Sigma_0^\dagger \mathrm{ST}. \\ \\ \mathsf{ATR}_0^{ns} = \mathsf{ACA}_0^{ns} + \Sigma_1^\dagger \mathrm{SEP}(?). \\ \\ \Pi_1^1 \mathrm{CA}_0^{ns} = \mathsf{ACA}_0^{ns} + \Sigma_1^\dagger \mathrm{ST}. \end{aligned}$$

Conclusion

- Standard part principles provide the infinitesimal approximation principles.
- Standard part principles correspond to the comprehension axioms in SOA in the viewpoint of Reverse Mathematics.
- The strength of transfer principles is unstable (it depends heavily on the base system).
- Propositions in non-standard analysis usually do NOT require transfer principles.

Question

What is the role of transfer principle in non-standard analysis?