Introduction to quantum Monte Carlo

Pablo López Ríos

QMC school at S.N.Bose Centre

23 March 2015

Pablo López Ríos Introduction to quantum Monte Carlo

・ロン ・回 と ・ 回 と ・ 回 と

Э

Ab initio electronic structure methods Quantum Monte Carlo

Ab initio methods

- Quantum Monte Carlo belongs to category of *ab initio* methods.
- Ab initio electronic structure methods use theory, and no experimental data, to determine the properties of an electronic system.
- Basic theory:

Schrödinger equation for electronic system, static nuclei $\left(\sum_{i}^{N} \frac{1}{2} \nabla_{i}^{2} + \sum_{i < j}^{N} \frac{1}{r_{ij}} - \sum_{i}^{N} \sum_{I}^{N_{n}} \frac{Z_{I}}{r_{iI}}\right) \Phi(\mathbf{R}) = E \Phi(\mathbf{R})$

・ロト ・回ト ・ヨト ・ヨト

Ab initio electronic structure methods Quantum Monte Carlo

Hartree-Fock (HF)

- Use $\Psi = \det(\phi_i(\mathbf{r}_j))$
- Solve for $\{\phi_i\}$ that minimize $E_{HF} = \langle \Psi | \hat{H} | \Psi \rangle / \langle \Psi | \Psi \rangle$
- *E_{HF}* is upper bound to ground-state energy
- Describes electronic exchange, but no electronic correlations

(ロ) (同) (E) (E) (E)

Ab initio electronic structure methods Quantum Monte Carlo

Density Functional Theory (DFT)

- Ground-state energy obtained by minimizing energy with respect to electronic density $n(\mathbf{r})$
- $E[n] = T[n] + V_H[n] + V_{ext}[n] + E_{xc}[n]$
- $E_{xc}[n]$ is unknown, must make (uncontrolled) approximation
- Very successful, scales as N^3

(ロ) (同) (E) (E) (E)

Ab initio electronic structure methods Quantum Monte Carlo

Post Hartree-Fock methods

• For example configuration interaction (CI), coupled cluster (CC)

• Expand
$$\Psi = \sum_{k}^{N_{det}} c_k \det \left(\phi_i^{(k)}(\mathbf{r}_j) \right)$$

- Minimize E as function of $\{c_k\}$
- Converges to ground state since Slater determinants are basis for antisymmetric functions in \mathscr{R}^{3N}
- Standard in Quantum Chemistry, scales as N^7

・ロン ・回 と ・ 回 と ・ 回 と

Ab initio electronic structure methods Quantum Monte Carlo

Quantum Monte Carlo

- Wave-function based family of methods
- Solves Schrödinger equation by Monte Carlo integration
- Allows use of arbitrarily complex wave functions
- Intrinsically parallelizable at the random walker level
- No uncontrolled approximations
- Energy is variational
- Scales as N³

(ロ) (同) (E) (E) (E)

Monte Carlo integration vs grid method

• Grid method:

- $\int_a^b f(x) dx \approx \frac{b-a}{M} \sum_{i=1}^M f(a + \frac{2i-1}{2} \frac{b-a}{M})$
- Error proportional to $M^{-2/d}$
- Monte Carlo method:
 - $\int_a^b f(x) dx \approx \frac{1}{M} \sum_{i=1}^M f(x_i)$
 - x_i are random numbers uniformly distributed in [a,b]
 - Error proportional to $M^{-1/2}$
- Monte Carlo integration scales better for d > 4

Variational Monte Carlo basics Diffusion Monte Carlo basics

Monte Carlo integration

• In general:

Monte Carlo integral with importance sampling

$$\langle f(\mathbf{x})
angle_{p(\mathbf{x})} = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} pprox rac{1}{M} \sum_{i}^{M} f(\mathbf{x}_{i})$$

where:

- $p(\mathbf{x})$ is a probability distribution:
 - $p(\mathbf{x}) \geq 0$
 - $\int p(\mathbf{x}) d\mathbf{x} = 1$
- \mathbf{x}_i are vectors of random numbers distributed according to $p(\mathbf{x})$

・ロン ・回 と ・ 回 と ・ 回 と

3

Variational Monte Carlo basics Diffusion Monte Carlo basics

Variational Monte Carlo

• Given a *trial* wave function Ψ ,

Variational principle $E[\Psi] = \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int \Psi(\mathbf{R}) \hat{H} \Psi(\mathbf{R}) d\mathbf{R}}{\int |\Psi(\mathbf{R})|^2 d\mathbf{R}} \ge E_0$

•
$$E[\Psi] = E_0 \iff \Psi = \Phi_0$$

• Combined with Monte Carlo integration:

$$E_{VMC} = \frac{1}{M} \sum_{i}^{M} \frac{\hat{H}(\mathbf{R}) \Psi(\mathbf{R})}{\Psi(\mathbf{R})}$$

- **R** distributed according to $|\Psi(\mathbf{R})|^2 / \int |\Psi(\mathbf{R})|^2 d\mathbf{R}$ (Metropolis)
- Local energy: $E_L(\mathbf{R}) = \frac{\hat{H}(\mathbf{R})\Psi(\mathbf{R})}{\Psi(\mathbf{R})}$

ヘロン 人間 とくほど くほとう

Variational Monte Carlo basics Diffusion Monte Carlo basics

Wave function optimization

- VMC provides framework for wave function optimization:
 - Can minimize $E[\Psi(\pmb{\alpha}; \mathbf{R})]$ with respect to parameters $\pmb{\alpha}$
 - Can minimize variance of $E_L(\mathbf{R})$
- Typical wave function forms:

Slater-Jastrow

 $\Psi(\mathbf{R}) = \exp[J(\mathbf{R})] \det[\phi_i(\mathbf{r}_j)]$

Slater-Jastrow-backflow

$$\Psi(\mathbf{R}) = \exp[J(\mathbf{R})] \det \left[\phi_i\left(\mathbf{r}_j + \boldsymbol{\xi}_j(\mathbf{R})\right)\right]$$

Basic concepts in quantum Monte Carlo Other topics

Variational Monte Carlo basics Diffusion Monte Carlo basics

Wave function optimization

 Both mean energy and variance of local energies are good target functions to minimize

Variational Monte Carlo basics Diffusion Monte Carlo basics

VMC in practice

 The quality of VMC results depend on the quality of the trial wave function

• VMC typically recovers 80–95% of the correlation energy

• VMC is usually used as a starting point for DMC

・ロン ・回と ・ヨン・

Variational Monte Carlo basics Diffusion Monte Carlo basics

Diffusion Monte Carlo

Time-dependent Schrödinger equation

$$\hat{H}(\mathbf{R})\Phi(\mathbf{R},x) = i\frac{\partial\Phi(\mathbf{R},x)}{\partial x}$$

Imaginary time (ix = t) and energy shift

$$(\hat{H}(\mathbf{R}) - E_T) \Phi(\mathbf{R}, t) = -\frac{\partial \Phi(\mathbf{R}, t)}{\partial t}$$

Eigenstate expansion

$$\Phi(\mathbf{R},t) = \sum_{n=0}^{\infty} c_n \Phi_n(\mathbf{R}) e^{-(E_n - E_T)t}$$

If we adjust $E_T \sim E_0$, excited eigenstates decay exponentially as $t \rightarrow \infty$ and only ground state remains Basic concepts in quantum Monte Carlo Other topics

Variational Monte Carlo basics Diffusion Monte Carlo basics

Projection using discrete walkers

Let us consider the following generic equation

$$\hat{A}(\mathbf{R})f(\mathbf{R},t) = -\frac{\partial f(\mathbf{R},t)}{\partial t}$$

which we want to solve to obtain the evolution of f with t.

Given $f(\mathbf{R},t)$ at time t and Green's function for operator \hat{A} at timestep T, $G(\mathbf{R},T)$, we can compute f at time t+T as

$$f(\mathbf{R},t+T) = \int G(\mathbf{R}'\leftarrow\mathbf{R},T)f(\mathbf{R},t)d\mathbf{R}$$

Projection using discrete walkers

If $f(\mathbf{R},t)$ is a probability distribution we can represent it discretely by a sufficiently large number of configurations P

$$f(\mathbf{R},t) \approx \sum_{p=1}^{P} w_p(t) \delta[\mathbf{R} - \mathbf{R}_p(t)]$$

where $w_p(t)$ is the weight of configuration p at time t. Therefore

$$f(\mathbf{R},t+T) \approx \sum_{p=1}^{P} w_p(t) G[\mathbf{R}' \leftarrow \mathbf{R}_p(t),T]$$

which we can re-represent as P' configurations

$$f(\mathbf{R},t+T) \approx \sum_{p=1}^{P'} w_p(t+T) \delta[\mathbf{R} - \mathbf{R}_p(t+T)]$$

イロン 不同と 不同と 不同と

Variational Monte Carlo basics Diffusion Monte Carlo basics

Diffusion Monte Carlo

- The DMC algorithm is derived by choosing $f(\mathbf{R},t) = \Phi(\mathbf{R},t)\Psi(\mathbf{R})$, where Ψ is the trial wave function and Φ is the *DMC wave function*
- Φ is forced to have the same sign as Ψ everywhere in configuration space so that f(**R**,t) is a probability distribution
- This is the fixed-node approximation
- Substituting $\Phi = f/\Psi$ into the imaginary time Schrödinger equation introduced earlier gives

Importance-sampled imaginary time Schrödinger equation

$$\sum_{i=1}^{N} \frac{1}{2} \left[-\nabla_i^2 f + 2\nabla_i \cdot \left(\frac{\nabla_i \Psi}{\Psi} f \right) \right] + (E_L - E_T) f = -\frac{\partial f}{\partial t}$$

イロト イポト イヨト イヨト

Basic concepts in quantum Monte Carlo Other topics

Variational Monte Carlo basics Diffusion Monte Carlo basics

Diffusion Monte Carlo

• Green's function for this equation at small T can be written as $G = G_D G_B$, where

Drift-diffusion Green's function

$$G_{\rm D}(\mathbf{R} \leftarrow \mathbf{R}', T) = \frac{1}{(2\pi T)^{3N/2}} \exp\left[-\frac{1}{2T} \left(\mathbf{R} - \mathbf{R}' - T \frac{\nabla_{\mathbf{R}'} \Psi(\mathbf{R}')}{\Psi(\mathbf{R}')}\right)^2\right]$$

Branching Green's function

$$G_{\rm B}(\mathbf{R} \leftarrow \mathbf{R}', T) = \exp\left(-\frac{T}{2}[E_L(\mathbf{R}) + E_L(\mathbf{R}') - 2E_T]\right)$$

- The drift-diffusion term proposes configuration moves
- The branching factor causes configurations to be killed or multiplied; *E_T* is manipulated to control population

Variational Monte Carlo basics Diffusion Monte Carlo basics

Diffusion Monte Carlo

• Schematic diagram of the DMC algorithm for a 1D harmonic oscillator starting from uniform distribution of walkers

・ロン ・回 と ・ ヨ と ・ ヨ と

Diffusion Monte Carlo

- Finite T approximation \rightarrow need to **extrapolate** to $T \rightarrow 0$
- Finite population of walkers \rightarrow usually no need to extrapolate, just use several hundred configurations
- The resulting Φ is the lowest energy wave function among those with the same nodal structure as Ψ
- Equivalently, the DMC wave function can be thought of as the VMC wave function with a perfect Jastrow factor
- Therefore DMC always gives a better answer than VMC
- The quality of DMC depends only on the **nodes** of the trial wave function

・ロン ・回 と ・ ヨ と ・ ヨ と

Orbital and basis sets Excited states More

Where do we get orbitals from?

- We need one-particle orbitals to populate our Slater determinants
- Where do we obtain them from?
 - HF a natural choice
 - DFT some correlation effects in the orbitals (which may be a good thing or a bad thing!)
- How do we represent the orbitals?
 - Plane waves natural choice for periodic systems
 - Blips much better performance than plane waves, localizable
 - Gaussians as used by quantum chemists for molecules
 - Numerical orbitals feasible for small systems

・ロン ・回 と ・ ヨ と ・ ヨ と

Basic concepts in quantum Monte Carlo Other topics Orbital and basis sets Excited states More

Can excited states be handled by QMC?

• DMC converges to lowest-energy state of same symmetry as the wave function

• Can study excited states by using a wave function of the correct symmetry

• Excited state calculations are somewhat harder than ground state calculations, usually incur greater errors

・ロン ・回と ・ヨン・

Orbital and basis sets Excited states More

Things we will cover during this week

- Sampling, Metropolis algorithm and statistics
- Periodic calculations, k-point sampling
- Expectation values other than the energy
- Pseudopotentials

・ロト ・回ト ・ヨト ・ヨト