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Scaling of QMC

Usual statements about QMC:

QMC scales with system size as N3

QMC scales with atomic number as Z4.5

QMC is perfectly parallel

How do these come about?
How do they hold up in practice?
How can one improve them?
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Scaling of time per QMC step
Scaling of required number of QMC steps

Time per QMC step (N single-electron moves)

Typical plane-wave calculation:

Compute N times N orbitals: O(N3)

Compute N determinant ratios: O(N2)

Compute N Jastrow factors: O(N2)

Update inverse of cofactor matrix N times: εO(N3)

Compute local energy: O(N2)

For N� 1000, leading contribution to cost per step is O(N3)
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Time per QMC step (N single-electron moves)

In a typical blip/Gaussian calculation:

Compute N times N orbitals: O(N2)

Compute N determinant ratios: O(N2)

Compute N Jastrow factors: O(N2)

Update inverse of cofactor matrix N times: εO(N3)

Compute local energy: O(N2)

For N� 1000, leading contribution to cost per step is O(N2)
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Localized, sparse basis (α orbitals 6= 0 per electron):

Compute N times N orbitals: O(αN)

Compute N determinant ratios: O(αN)

Compute N Jastrow factors: O(N2)

Update inverse of cofactor matrix N times: εO(αN2)

Compute local energy: O(N2)

For N� 1000, leading contribution to cost per step is O(N2)
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Run length requirements

How does the number of steps M scale with N?

For fixed error in total energy: M ∝ N

For fixed error in energy per atom / electron: M ∝ 1/N

Leading order in overall cost can vary from O(N) to O(N3)
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Scaling with atomic number Z

Why Z4.5 and not Z3?
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Increasing Z of all-electron atom reduces length scale of wave function
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Scaling with atomic number Z

Why Z4.5 and not Z3?

Small length scale require sampling with small timesteps

Small timesteps imply increased serial correlation

Theoretical estimates hint at Z5.5−6.5, but tests scale as Z4.5

Still, heavy atoms are intractable as all-electron

Must use pseudopotentials for heavy atoms
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Memory used by blips

Memory required by blips can become very large (several GiB)

Current computer architectures have c CPU cores per
computer node, and these cores share a single pool of RAM

By default we run c independent processes per computer node
→ we store the blip coefficients c times in a node
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Memory used by blips

In case of memory issues with blips we have three options:

Share blip storage within a node:
Compile casino with shm feature enabled
Run with runqmc --shm

You should do this in general for large blip calculations

Can also use openMP (multithreading) to reduce number of
processes per node (this leaves some cores partially idle):

Compile casino with openmp feature enabled
Run with runqmc --tpp=threads-per-process

In general, don’t use this

Can also simply use fewer cores per node (this leaves some
cores completely idle):

Run with runqmc --ppn=processes-per-node

Do this if shared memory does not work for technical reasons
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Parallel scaling of VMC

In an M-step VMC run on C processes we run C independent
random walks of length M/C
→ total cost ∝ C×M/C = M
→ total cost independent of C

M forced to be multiple of C, prevents C > M

Me-step equilibration must be run in full on each process
→ cost of equilibration ∝ MeC
→ problematic for very large C (C & 10,000)
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Parallel scaling of optimization

In an M-configuration optimization on C processes we
independently process M/C configurations on each process
→ total cost ∝ C×M/C = M
→ total cost independent of C

M forced to be multiple of C, prevents C > M
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Parallel scaling of DMC

In an M-step DMC run with a target population of P on C
processes we evolve pi(t) configurations on the i-th process,
where ∑i pi(t) = P(t)≈ P

pi(t + T) 6= pi(t) and pi(t + T) 6= pj(t + T) in general → need
load-balancing (send configurations between processes)

Many processes can be used by increasing P ∝ C and reducing
M ∝ 1/C, giving same uncertainty and total cost, but:

Frequent checkpointing becomes problematic: set
checkpoint: 0

When P∼ C load balancing issues reduce the parallel
efficiency: could consider using weighted DMC with
lwdmc fixpop: T (but avoid this)
Me-step equilibration cannot be shortened as C increases
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Summary

Recommendations:

Use an efficient basis set (blips instead of plane waves)

Whenever possible use localized basis sets

Use pseudopotentials for heavy-atom (or many-atom)
calculations

Limit parallelization to tens of thousands of processes at
most
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