
Program extraction from proofs: induction and coinduction

Ulrich Berger - Swansea

Kanazawa, 8 February 2011

1 / 25

Overview

I Mathematical and formal framework

I Natural and real numbers

I Uniformly continuous functions

I Monadic parsing

I Related work

I Conclusion

2 / 25

Classical mathematics with constructive topping

Axioms:

Any suitable axiom system of classical mathematics (for example
ZFC) in a negative formulation, i.e expressing A ∨ B as
¬(¬A ∧ ¬B).

Constructive topping:

Inductive and coinductive definitions as least and greatest fixed
points of strictly positive predicate operators (possibly using
disjunction).

Intuitionistic first-order logic.

3 / 25

Program extraction
Realisability with uniform interpretation of quantifiers and
predicates.

Realizers are elements of a PCA and are denoted by expressions of
a lazy functional programming language.

a r P(~x) ≡ a = Nil ∧ P(~x) P primitive

a r ∀x A(x) ≡ ∀x a r A(x)

a r ∃x A(x) ≡ ∃x a r A(x)

f r (A→ B) ≡ ∀a (a r A→ fa r B)

. . .

A suitable formalisation yields Haskell-like extracted programs.

Correctness and typability of extracted programs is proven in a
joint paper with M. Seisenberger (to appear).

4 / 25

Unary natural numbers

R = the real numbers regarded as a primitive predicate with
operations and axioms of a real closed field.

N = the natural numbers as an inductively defined subset of R, i.e.
the least subset of R such that

N = {0} ∪ {x + 1 | x ∈ N}

Formally, N := µX .{x ∈ R | x = 0 ∨ ∃y (y ∈ N ∧ x = y + 1)}.

A first lemma with interesting extracted program:

Lemma 1
∀x , y (x ∈ N ∧ y ∈ N→ x + y ∈ N).

5 / 25

Binary natural numbers

Binary digits:

D := {0, 1} = {x ∈ R | x = 0 ∨ x = 1}

Binary natural numbers:

B := µX .{x ∈ R | x ∈ D ∨ ∃y ∈ X ∃d ∈ D (y > 0 ∧ x = 2y + d)}

Lemma 2

∀x , y (x ∈ B ∧ y ∈ B→ x + y ∈ B).

Lemma 3

B = N (i.e. B ⊆ N and N ⊆ B).

6 / 25

Approaching real numbers coinductively

SD := {0, 1,−1}

I := [−1, 1] = {x ∈ R | 0 ≤ x ≤ 1}

Id := [d−1
2 , d+1

2]

We define C0 ⊆ R coinductively by

C0 := νX .{x ∈ R | ∃d ∈ SD (x ∈ Id ∧ ∃y ∈ X x =
y + d

2
)}

Idea: locate x in a subinterval Id (and output d), zoom in, repeat.

A realiser of x ∈ C0 is an infinite stream of signed digits
a = a0 : a1 : . . . representing x , i.e. x =

∑
i ai2

−(i+1).

7 / 25

C0 vs. Cauchy sequences

Lemma 4

x ∈ C0 iff ∀n ∈ N ∃q ∈ Q ∩ I |x − q| ≤ 2−n.

From a proof of Lemma 4 one extracts programs translating
between the signed-digit- and the Cauchy-representation.

8 / 25

Extracting exact real arithmetic

Theorem 2 If x , y ∈ C0 then x+y
2 ∈ C0.

Theorem 3 If x , y ∈ C0 then xy ∈ C0.

From these theorems one extracts implementations of addition and
multiplication w.r.t. the signed digit representation.

Similar implementations were studied by Edalat, Potts, Heckmann,
Escardo, Ciaffaglione, Gianantonio, e.t.c.

The difference is that we extract the programs
– together with their correctness proofs.

9 / 25

Approaching real functions coinductively

Let f , g , h range over functions from I to I and F ,G over sets of
such functions.

Set avd(x) := d+x
2 .

We define C1 ⊆ II by a nested inductive/coinductive definition:

C1 = νF .µG .{h | ∃e ∈ SD∃f ∈ F (h = ave ◦ f) ∨
∀d ∈ SD h ◦ avd ∈ G}

Idea:

I If possible, locate h[I] in a subinterval Ie (and output e),
zoom in, repeat.

I Otherwise, try all possible input digits d and ’restrict’ h to Id ,
repeat until eventually the first case applies.

10 / 25

Memo tries for continuous functions

Theorem 4 h is uniformly continuous iff h ∈ C1.

From the proof of this theorem one extracts programs translating
between realisers of “f is continuous” (where continuity has to be
defined in a constructively meaningful way) and realisers of
“f ∈ C1”.

What is a realiser of “f ∈ C1”?

It is a finitely branching non-wellfounded tree describing when f
emits and absorbs digits. I.p. it is a data structure, not a function.

Similar trees have been studied by P. Hancock, D. Pattinson, N.
Ghani.

11 / 25

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 5 The average function lies in C2.

Theorem 6 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

12 / 25

Integration

Let
∫

f denote the definite integral
∫ 1
−1 f (x)dx .

We assume the following “axioms” about
∫

f :

(a)
∫

f = 1
2

∫
(vad ◦ f) + d where vad(x) := 2x − d .

(b)
∫

f = 1
2(

∫
(f ◦ av−1) +

∫
(f ◦ av1)).

Theorem 7 If f ∈ C1, then ∀n ∈ N ∃q ∈ Q |
∫

f − q| ≤ 2−n.

The extracted program has some similarity with A. Simpson’s, but
is more efficient because the functions to be integrated are
represented differently.

13 / 25

What have we achieved?

I Programs with correctness proofs extracted (some new, some
more efficient).

I Simple formalisation: Abstract classical reals, no streams, no
trees,

I Simple proofs, e.g. in Coq.

I In some cases first hacking the program and then verifying it
would have been much harder than the extraction of the
program from a proof (for example, the proof that digit spaces
have finite products).

14 / 25

Finite sets

Let P(X) be the classical powerset of X .

Define P<ω(X) ⊆ P(X) by a constructive inductive definition:

(i) ∅ ∈ P<ω(X)

(ii) If E ∈ P<ω(X) and x ∈ X , then {x} ∪̃E ∈ P<ω(X)

where A ∪̃B := {x | x ∈ A ∨̃ x ∈ B} and ∨̃ is classical disjunction
(we assume comprehension for classical properties, hence A ∪̃B
exists).

15 / 25

Finite sets: formal definition

Let X range over subsets of P(X).

P<ω(X) = µX .{F ∈ P(X) | F = ∅∨∃x ∈ X ∃E ∈ X F = {x} ∪̃E}

A realiser of “E ∈ P<ω(X)” is a finite list [a1, . . . , an] such that ai

realises “xi ∈ X” and E = {x1, . . . , xn}.

In particular, if X is a “concrete” set, that is, its elements realise
themselves, then a realiser of “E ∈ P<ω(X)” is simply a listing of
the elements of E .

16 / 25

Labelled transition systems

Let S ,A be sets (states and labels). For simplicity let’s assume
both are concrete.

LTSS ,A := P(S × A× S).

Finitely branching LTS Let P ∈ LTSS ,A.

FBS,A(P) :≡ ∀s ∈ S P(s) ∈ P<ω(A× S)

where P(s) := {(a, t) | (s, a, t) ∈ P}.

A realiser of “FBS ,A(P)” is a function p : S → [A× S] such that
p(s) is a listing of all (a, t) with P(s, a, t).

17 / 25

Constructing finitely branching LTS

return(a) := {(s, a, s) | s ∈ S} (for a ∈ A).
fail := ∅

Lemma

(a) FBS ,A(return(a))

(b) FBS ,A(fail)
(c) If FBS ,A(P) and FBS,A(Q), then FBS,A(A ∪̃B)

18 / 25

Sequencing finitely branching LTS

If P ∈ LTSS,A and Qa ∈ LTSS ,B for a ∈ A, then we define

P >>= Q := {(s, b, t) | ∃a, r (P(s, a, r) ∧ Qa(r , b, t))}

Lemma If FBS,A(P) and FBS,B(Qa) for all a ∈ A, then
FBS ,B(P >>= Q).

From these lemmas the corresponding monadic parsers and parser
combinators can be extracted.

For more parser combinators the set S must be instantiated by the
set of strings.

19 / 25

What have we achieved?

I The well-known parser combinators by Hutton/Meijer have
been extracted – with correctness and in particular
termination proofs!

I In the (source) proofs no lists or higher-order functions occur.

20 / 25

Related work on realisability for (co)induction

M. Tatsuta, Realizability of Monotone Coinductive Definitions and
Its Application to Program Synthesis. Proc. MPC, LNCS 1422,
338–364, 1998

F. Miranda-Perea, Realizability for Monotone Clausular
(Co)Inductive Definitions, ENTCS 123, 179–193, 2005

H. Schwichtenberg, Minlog system,
http://www.mathematik.uni-muenchen.de/∼minlog/minlog/

B., Realisability for induction and coinduction, Proceedings of
Computability and Complexity in Analysis (CCA), 2009

21 / 25

Case studies in program extraction

I NbE extracted from Tait’s SN proof for the simply typed
λ-calculus.
Berghofer (Isabelle), Letouzey (Coq), Schwichtenberg, B.
(Minlog).

I Program extracted from Nash-Williams classical proof of
Dickson’s Lemma and Higman’s Lemma
Seisenberger, B. (Minlog).

I Programs extracted from Intermediate Value Theorem and
Inverse Function Theorem for continuous real functions.
Schwichtenberg (Minlog).

22 / 25

Proof-theoretic strength

I Without classical axioms our formal system is an intuitionistic
first-order version of the µ-calculus (or fixed point logic).

I With classical logic the system has the proof-theoretic
strength of Π1

2-comprehension (Möllerfeld 2007).

I The intuitionistic version, however with non-strictly positive
inductive definitions, has the same strength.

[S. Tupailo, On the intuitionistic strength of monotone inductive

definitions,JSL 69(3), 790–798, 2004]

23 / 25

Conclusion

I Program extraction turned out to be very helpful (not a
burden) in the example areas covered.

I Can we apply it to areas that are of less mathematical nature?
(parsing is a start)

I Can we address resource issues?

I Coq and Minlog work well, generally, but there are problems
with nested inductive coinductive definitions.

24 / 25

What I’m currently working on
Consider pure data types, A, B, i.e. types built from 1, +, ×, µ, ν.

I Transform the function type

A→ B

into a pure data type.

This problem was solved by Hinze, Altenkirch (and possibly others)
for the case that A is inductive, i.e. contains no ν.

A partial solution for the general case was given by Ghani,
Hancock and Pattinson.

The problem is relevant for modelling efficiently continuous real
functions of several variables and possibly higher type functionals
over the reals (e.g. integration).

25 / 25

	Mathematical and formal framework
	Natural and real numbers
	Uniformly continuous functions
	From induction to monadic parsers
	Related work
	Conclusion

