
Comparing implicit characterizations by program
transformations

Guillaume Bonfante

Université de Nancy

Workshop on Logic and Computations
8-9th February 2011, Kanazawa



Programs, rules

A program is a set of (confluent) rules:

not(tt) → ff or(tt, y) → tt 0 = 0 → tt
not(ff) → tt or(x , tt) → tt 0 = s(y) → ff

or(ff,ff) → ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x ,nil) → ff

in(x , cons(a, l)) → or(x = a, in(x , l))



Semantics

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = t iff f (t1, . . . , tn)
!→t



The complexity of programs

Use:

I program interpretations,

I syntactic properties,

I termination proofs (Product Path Ordering)



Programs, rules

A program is a set of (confluent) rules:

not(tt) → ff or(tt, y) → tt 0 = 0 → tt
not(ff) → tt or(x , tt) → tt 0 = s(y) → ff

or(ff,ff) → ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x ,nil) → ff

in(x , cons(a, l)) → or(x = a, in(x , l))



Interpretations of programs

Ltt M = Lff M = 1 Ltt M = Lff M = 1
L0 M = Lnil M = 1 L0 M = Lnil M = 1

Ls M(x) = x + 1 Ls M(x) = x + 1
Lcons M(x , y) = x + y + 3 Lcons M(x , y) = x + y + 1

Lnot M(x) = x + 1 Lnot M(x) = x
Lor M(x , y) = x + y + 1 Lor M(x , y) = max(x , y)
L= M(x , y) = x + y + 1 L = M(x , y) = max(x , y)
Lin M(x , y) = (x + 1)(y + 1) Lin M(x , y) = max(x , y)



Programs, rules

A program is a set of (confluent) rules:

not(tt) → ff or(tt, y) → tt 0 = 0 → tt
not(ff) → tt or(x , tt) → tt 0 = s(y) → ff

or(ff,ff) → ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x ,nil) → ff

in(x , cons(a, l)) → or(x = a, in(x , l))



Programs, rules

A program is a set of (confluent) rules:

2 > 1 y + 2 > 1 3 > 1
2 > 1 x + 2 > 1 y + 3 > 1

3 > 1 x + 3 > 1
x + y + 3 > x + y + 1

x + 2 > 1

(x + 1)(a + l + 2) > x + a + 2 + (x + 1)(l + 1)



Programs, rules

A program is a set of (confluent) rules:

1≥1 max(1, y)≥1 1 ≥1
1≥1 max(x , 1)≥1 max(1, y + 1) ≥1

1≥1 max(x + 1, 1) ≥1
max(x + 1, y + 1) ≥max(x , y)

max(x , 1) ≥ 1

max(x , a + ` + 1) ≥ max(x , a, `)



Interpretation

Definition
A (C ∪ F)-algebra L− M on N is said to be an additive strict
interpretation if:

1. for all constructors c, c(x1, . . . , xn) = cc +
∑n

i=1 xi with c > 0,

2. for all f , Lf M is a strictly monotonic function, that is if
xi > x ′

i , then Lf M(x1, . . . , xn) > Lf M(x1, . . . , x ′
i , . . . , xn),

3. for all f , Lf M(x1, . . . , xn) ≥ max(x1, . . . , xn),

4. for all rules `→ r , L` M > Lr M.



Interpretation

Definition
A (C ∪ F)-algebra L− M on N is said to be an additive quasi-
interpretation if:

1. for all constructors c, c(x1, . . . , xn) = cc +
∑n

i=1 xi with c > 0,

2. for all f , Lf M is a weakly monotonic function, that is if
xi ≥ x ′

i , then Lf M(x1, . . . , xn) ≥ Lf M(x1, . . . , x ′
i , . . . , xn),

3. for all f , Lf M(x1, . . . , xn) ≥ max(x1, . . . , xn),

4. for all rules `→ r , L` M ≥ Lr M.



Strict interpretations vs quasi-interrpretations

max(n, 0)→ n

max(0,m)→ m

max(s(n), s(m))→ s(max(n,m))

lcs(ε, y)→ 0

lcs(x , ε)→ 0

lcs(i(x), i(y))→ s(lcs(x , y)) i ∈ {a,b}
lcs(i(x), j(y))→ max(lcs(x , j(y)), lcs(i(x), y)) i 6= j

lcs(ababa,baaba) evaluates to s4(0). The length of the longuest
common subsequence is 4 (take baba).



Strict interpretations vs quasi-interrpretations

It admits the following quasi-interpretation:

I Lε M = L0 M = 0

I La M(X ) = Lb M(X ) = Ls M(X ) = X + 1

I Llcs M(X ,Y ) = Lmax M(X ,Y ) = max(X ,Y )

but try to find a polynomial satisfying:

lcs(x + 1, y + 1) > lcs(x + 1, y) + lcs(x , y + 1)



Product Path Ordering with sub-term

Definition
Given a partial order �F on function symbol, the E-Product Path
Ordering ≺ppo is defined by the rules:

t C t ′

t ≺ppo t ′
s ≺ppo f(t)

c(s) ≺ppo f(t)
f ∈ F , c ∈ C

s ≺ppo f(t) g ≺F f

g(s) ≺ppo f(t)
f, g ∈ F

s ≺ppo (t)

f(s) ≺ppo f(t)



Product Path Ordering with embedding

Definition
Given a partial order �F on function symbol, the J-Product Path
Ordering ≺ppo is defined by the rules:

t J t ′

t ≺ppo t ′
s ≺ppo f(t)

c(s) ≺ppo f(t)
f ∈ F , c ∈ C

s ≺ppo f(t) g ≺F f

g(s) ≺ppo f(t)
f, g ∈ F

s ≺ppo (t)

f(s) ≺ppo f(t)



E-PPO vs J-PPO

1(1(1(•))) ≺J
ppo 0(1(0(1(0(1(•))))))

1(1(1(•))) 6≺E
ppo 0(1(0(1(0(1(•))))))

4(5(6(•))) ≺E
ppo 1(2(3(4(5(6(•))))))

4(5(6(•))) ≺J
ppo 1(2(3(4(5(6(•))))))

f (0(x)) → f (x)

f (1(0(x)) → f (1(x))

f (1(1(x)) → tt

f (•) → ff

f (1(•)) → ff



E-PPO vs J-PPO

1(1(1(•))) ≺J
ppo 0(1(0(1(0(1(•))))))

1(1(1(•))) 6≺E
ppo 0(1(0(1(0(1(•))))))

4(5(6(•))) ≺E
ppo 1(2(3(4(5(6(•))))))

4(5(6(•))) ≺J
ppo 1(2(3(4(5(6(•))))))

f (0(x)) → f (x)

f (1(0(x)) → f (1(x))

f (1(1(x)) → tt

f (•) → ff

f (1(•)) → ff



Cons-free programs

Definition
For all rule f (p1, · · · , pn)→ r , for all sub-term t E r ,

I either t is a constructor term and
I either t E f (p1, · · · , pn),
I or t is a ground term (without variable).

I or the root of t is not a constructor symbol.



Programs, rules

A program is a set of (confluent) rules:

not(tt) → ff or(tt, y) → tt 0 = 0 → tt
not(ff) → tt or(x , tt) → tt 0 = s(y) → ff

or(ff,ff) → ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x ,nil) → ff

in(x , cons(a, l)) → or(x = a, in(x , l))



Four programming languages

I CF-programs are constructor-free programs;

I SI-programs are programs which admit a strict additive
interpretation;

I E-MI-programs are programs which admit a
quasi-interpretation and a proof of termination by E-PPO.

I J-MI-programs are programs which admit a
quasi-interpretation and a proof of termination by J-PPO.



Complexity characterizations

Theorem (following N. Jones)

Predicates computed by CF-programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI-programs are exactly Ptime predicates.

Theorem (B., Marion, Moyen)

Predicates computed by E-MI-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI-programs are exactly Ptime
predicates.

In other words, CF ' SI ' MIE ' MIJ.



Complexity characterizations

Theorem (following N. Jones)

Predicates computed by CF-programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI-programs are exactly Ptime predicates.

Theorem (B., Marion, Moyen)

Predicates computed by E-MI-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI-programs are exactly Ptime
predicates.

In other words, CF ' SI ' MIE ' MIJ.



Complexity characterizations

Theorem (following N. Jones)

Predicates computed by CF-programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI-programs are exactly Ptime predicates.

Theorem (B., Marion, Moyen)

Predicates computed by E-MI-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI-programs are exactly Ptime
predicates.

In other words, CF ' SI ' MIE ' MIJ.



Complexity characterizations

Theorem (following N. Jones)

Predicates computed by CF-programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI-programs are exactly Ptime predicates.

Theorem (B., Marion, Moyen)

Predicates computed by E-MI-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI-programs are exactly Ptime
predicates.

In other words, CF ' SI ' MIE ' MIJ.



Complexity characterizations

Theorem (following N. Jones)

Predicates computed by CF-programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI-programs are exactly Ptime predicates.

Theorem (B., Marion, Moyen)

Predicates computed by E-MI-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI-programs are exactly Ptime
predicates.

In other words, CF ' SI ' MIE ' MIJ.



Summary

PTIME

CF

SI

/-MI
J-MI



Transformations of programming languages

Apply:

I Non-confluence

I Course of value

to the four programming languages CF, SI, MIE, MIJ.



Non confluence

Definition
Let L be a set of TRS, L.N is the set of TRS (R1 ∪ R2) such that
R1 ∈ L and R2 ∈ L.

Definition

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = t iff f (t1, . . . , tn)
!→t

Definition

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = max{t ∈ T (C) | f (t1, . . . , tn)
!→t}



Non confluence

Definition
Let L be a set of TRS, L.N is the set of TRS (R1 ∪ R2) such that
R1 ∈ L and R2 ∈ L.

Definition

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = t iff f (t1, . . . , tn)
!→t

Definition

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = max{t ∈ T (C) | f (t1, . . . , tn)
!→t}



Non confluence

Definition
Let L be a set of TRS, L.N is the set of TRS (R1 ∪ R2) such that
R1 ∈ L and R2 ∈ L.

Definition

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = t iff f (t1, . . . , tn)
!→t

Definition

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = max{t ∈ T (C) | f (t1, . . . , tn)
!→t}



Complexity characterizations

Theorem
Predicates computed by CF.N programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI.N-programs are exactly NPtime
predicates.

Theorem
Predicates computed by E-MI.N-programs are exactly Pspace
predicates.

Theorem
Predicates computed by J-MI.N-programs are exactly Pspace
predicates.

In other words, Cons-free 6' SI 6' MIE ' MIJ.



Summary

PSPACENPTIMEPTIME

CF

SI

/-MI
J-MI

CF.NSI.N

/-MI.N

J-MI.N



Course-of-value : Peter, Rose

f (0, x) = g(x)

f (n + 1, x) = h(n, x , f (j(n), x)) avec j(n) ≤ n

Theorem (Peter)

If g , h et j are primitive recursive, so is f .

However, the proof involves the encoding of sequences, thus, we
are ”above” exponential time.



Cov-extension of programs

One suppose that there is an extraterritorial relation R defining
L = {p | f (u1, · · · , un)→ s ⇒ (f (u1, · · · , un), s) ∈ R}.

Definition
L.cov is the set of programs such that:
f (u1, · · · , un)→ C [f1(u1

1 , . . . , u1
m), . . . , fk(uk

1 , . . . , uk
mk

)]

I fi ' f ,

I C does not contain symbols equivalent to f ,

I the uj
i s do not contain symbols equivalent to f ,

(f (u1, · · · , un), fi (Ju1
i K, . . . , Jui

mK)) ∈ R.



Cov-extension of programs

One suppose that there is an extraterritorial relation R defining
L = {p | f (u1, · · · , un)→ s ⇒ (f (u1, · · · , un), s) ∈ R}.

Definition
L.cov is the set of programs such that:
f (u1, · · · , un)→ C [f1(u1

1 , . . . , u1
m), . . . , fk(uk

1 , . . . , uk
mk

)]

I fi ' f ,

I C does not contain symbols equivalent to f ,

I the uj
i s do not contain symbols equivalent to f ,

(f (u1, · · · , un), fi (Ju1
i K, . . . , Jui

mK)) ∈ R.



Our notion covers recurrence with parameter substitution

f (0, x) = g(x)

f (n + 1, x) = h(n, x , f (n, j1(x)), f (n, j2(x))

Theorem (Peter)

If g , h, j1 and j2 are primitive recursive, so is f .

Theorem (Leivant/Bellantoni and Cook)

Ramified programs characterize Ptime.

Theorem (Leivant and Marion)

Ramified programs with parameter substitution characterize
Pspace.



Our notion covers recurrence with parameter substitution

f (0, x) = g(x)

f (n + 1, x) = h(n, x , f (n, j1(x)), f (n, j2(x))

Theorem (Peter)

If g , h, j1 and j2 are primitive recursive, so is f .

Theorem (Leivant/Bellantoni and Cook)

Ramified programs characterize Ptime.

Theorem (Leivant and Marion)

Ramified programs with parameter substitution characterize
Pspace.



Our notion covers recurrence with parameter substitution

f (0, x) = g(x)

f (n + 1, x) = h(n, x , f (n, j1(x)), f (n, j2(x))

Theorem (Peter)

If g , h, j1 and j2 are primitive recursive, so is f .

Theorem (Leivant/Bellantoni and Cook)

Ramified programs characterize Ptime.

Theorem (Leivant and Marion)

Ramified programs with parameter substitution characterize
Pspace.



Complexity characterization

Theorem
Predicates computed by CF.cov programs are exactly Ptime
predicates.

Theorem
Predicates computed by SI.cov-programs are exactly Ptime
predicates.

Theorem
Predicates computed by E-MI.N-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI.N-programs are exactly Pspace
predicates.

In other words, Cons-free ' SI ' MIE 6' MIJ.



Summary

PSPACENPTIMEPTIME

CF

SI

/-MI

J-MI

CF.N

SI.N

/-MI.NJ-MI.N



To go on

I Example on the logical side

I POP and WIDG (Moser and Hirokawa) compute Ptime, but
which Ptime?



Thanks to

the JAIST, Nao Hirokawa,

Laurent Bringel and the Lycée Henri Poincaré



Thanks to

the JAIST, Nao Hirokawa,

Laurent Bringel and the Lycée Henri Poincaré


