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Programs, rules

A program is a set of (confluent) rules:

not(tt) → ff or(tt, y) → tt 0 = 0 → tt
not(ff) → tt or(x , tt) → tt 0 = s(y) → ff

or(ff,ff) → ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x ,nil) → ff

in(x , cons(a, l)) → or(x = a, in(x , l))



Semantics

I JfK : T (C)n → T (C)

I JfK(t1, . . . , tn) = t iff f (t1, . . . , tn)
!→t



The complexity of programs

Use:

I program interpretations,

I syntactic properties,

I termination proofs (Product Path Ordering)
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Interpretations of programs

Ltt M = Lff M = 1 Ltt M = Lff M = 1
L0 M = Lnil M = 1 L0 M = Lnil M = 1

Ls M(x) = x + 1 Ls M(x) = x + 1
Lcons M(x , y) = x + y + 3 Lcons M(x , y) = x + y + 1

Lnot M(x) = x + 1 Lnot M(x) = x
Lor M(x , y) = x + y + 1 Lor M(x , y) = max(x , y)
L= M(x , y) = x + y + 1 L = M(x , y) = max(x , y)
Lin M(x , y) = (x + 1)(y + 1) Lin M(x , y) = max(x , y)
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Programs, rules

A program is a set of (confluent) rules:

2 > 1 y + 2 > 1 3 > 1
2 > 1 x + 2 > 1 y + 3 > 1

3 > 1 x + 3 > 1
x + y + 3 > x + y + 1

x + 2 > 1

(x + 1)(a + l + 2) > x + a + 2 + (x + 1)(l + 1)



Programs, rules

A program is a set of (confluent) rules:

1≥1 max(1, y)≥1 1 ≥1
1≥1 max(x , 1)≥1 max(1, y + 1) ≥1

1≥1 max(x + 1, 1) ≥1
max(x + 1, y + 1) ≥max(x , y)

max(x , 1) ≥ 1

max(x , a + ` + 1) ≥ max(x , a, `)



Interpretation

Definition
A (C ∪ F)-algebra L− M on N is said to be an additive strict
interpretation if:

1. for all constructors c, c(x1, . . . , xn) = cc +
∑n

i=1 xi with c > 0,

2. for all f , Lf M is a strictly monotonic function, that is if
xi > x ′

i , then Lf M(x1, . . . , xn) > Lf M(x1, . . . , x ′
i , . . . , xn),

3. for all f , Lf M(x1, . . . , xn) ≥ max(x1, . . . , xn),

4. for all rules `→ r , L` M > Lr M.



Interpretation

Definition
A (C ∪ F)-algebra L− M on N is said to be an additive quasi-
interpretation if:

1. for all constructors c, c(x1, . . . , xn) = cc +
∑n

i=1 xi with c > 0,

2. for all f , Lf M is a weakly monotonic function, that is if
xi ≥ x ′

i , then Lf M(x1, . . . , xn) ≥ Lf M(x1, . . . , x ′
i , . . . , xn),

3. for all f , Lf M(x1, . . . , xn) ≥ max(x1, . . . , xn),

4. for all rules `→ r , L` M ≥ Lr M.



Strict interpretations vs quasi-interrpretations

max(n, 0)→ n

max(0,m)→ m

max(s(n), s(m))→ s(max(n,m))

lcs(ε, y)→ 0

lcs(x , ε)→ 0

lcs(i(x), i(y))→ s(lcs(x , y)) i ∈ {a,b}
lcs(i(x), j(y))→ max(lcs(x , j(y)), lcs(i(x), y)) i 6= j

lcs(ababa,baaba) evaluates to s4(0). The length of the longuest
common subsequence is 4 (take baba).



Strict interpretations vs quasi-interrpretations

It admits the following quasi-interpretation:

I Lε M = L0 M = 0

I La M(X ) = Lb M(X ) = Ls M(X ) = X + 1

I Llcs M(X ,Y ) = Lmax M(X ,Y ) = max(X ,Y )

but try to find a polynomial satisfying:

lcs(x + 1, y + 1) > lcs(x + 1, y) + lcs(x , y + 1)



Product Path Ordering with sub-term

Definition
Given a partial order �F on function symbol, the E-Product Path
Ordering ≺ppo is defined by the rules:

t C t ′

t ≺ppo t ′
s ≺ppo f(t)

c(s) ≺ppo f(t)
f ∈ F , c ∈ C

s ≺ppo f(t) g ≺F f

g(s) ≺ppo f(t)
f, g ∈ F

s ≺ppo (t)

f(s) ≺ppo f(t)



Product Path Ordering with embedding

Definition
Given a partial order �F on function symbol, the J-Product Path
Ordering ≺ppo is defined by the rules:

t J t ′

t ≺ppo t ′
s ≺ppo f(t)

c(s) ≺ppo f(t)
f ∈ F , c ∈ C

s ≺ppo f(t) g ≺F f

g(s) ≺ppo f(t)
f, g ∈ F

s ≺ppo (t)

f(s) ≺ppo f(t)



E-PPO vs J-PPO

1(1(1(•))) ≺J
ppo 0(1(0(1(0(1(•))))))

1(1(1(•))) 6≺E
ppo 0(1(0(1(0(1(•))))))

4(5(6(•))) ≺E
ppo 1(2(3(4(5(6(•))))))

4(5(6(•))) ≺J
ppo 1(2(3(4(5(6(•))))))

f (0(x)) → f (x)

f (1(0(x)) → f (1(x))

f (1(1(x)) → tt

f (•) → ff

f (1(•)) → ff
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Cons-free programs

Definition
For all rule f (p1, · · · , pn)→ r , for all sub-term t E r ,

I either t is a constructor term and
I either t E f (p1, · · · , pn),
I or t is a ground term (without variable).

I or the root of t is not a constructor symbol.



Programs, rules

A program is a set of (confluent) rules:

not(tt) → ff or(tt, y) → tt 0 = 0 → tt
not(ff) → tt or(x , tt) → tt 0 = s(y) → ff

or(ff,ff) → ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x ,nil) → ff

in(x , cons(a, l)) → or(x = a, in(x , l))



Four programming languages

I CF-programs are constructor-free programs;

I SI-programs are programs which admit a strict additive
interpretation;

I E-MI-programs are programs which admit a
quasi-interpretation and a proof of termination by E-PPO.

I J-MI-programs are programs which admit a
quasi-interpretation and a proof of termination by J-PPO.



Complexity characterizations

Theorem (following N. Jones)

Predicates computed by CF-programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI-programs are exactly Ptime predicates.

Theorem (B., Marion, Moyen)

Predicates computed by E-MI-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI-programs are exactly Ptime
predicates.

In other words, CF ' SI ' MIE ' MIJ.
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Transformations of programming languages

Apply:

I Non-confluence

I Course of value

to the four programming languages CF, SI, MIE, MIJ.



Non confluence

Definition
Let L be a set of TRS, L.N is the set of TRS (R1 ∪ R2) such that
R1 ∈ L and R2 ∈ L.

Definition
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!→t
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Complexity characterizations

Theorem
Predicates computed by CF.N programs are exactly Ptime
predicates.

Theorem (B., Cichon, Marion, Touzet)

Predicates computed by SI.N-programs are exactly NPtime
predicates.

Theorem
Predicates computed by E-MI.N-programs are exactly Pspace
predicates.

Theorem
Predicates computed by J-MI.N-programs are exactly Pspace
predicates.

In other words, Cons-free 6' SI 6' MIE ' MIJ.



Summary

PSPACENPTIMEPTIME

CF

SI

/-MI
J-MI

CF.NSI.N

/-MI.N

J-MI.N



Course-of-value : Peter, Rose

f (0, x) = g(x)

f (n + 1, x) = h(n, x , f (j(n), x)) avec j(n) ≤ n

Theorem (Peter)

If g , h et j are primitive recursive, so is f .

However, the proof involves the encoding of sequences, thus, we
are ”above” exponential time.



Cov-extension of programs

One suppose that there is an extraterritorial relation R defining
L = {p | f (u1, · · · , un)→ s ⇒ (f (u1, · · · , un), s) ∈ R}.

Definition
L.cov is the set of programs such that:
f (u1, · · · , un)→ C [f1(u1

1 , . . . , u1
m), . . . , fk(uk

1 , . . . , uk
mk

)]

I fi ' f ,

I C does not contain symbols equivalent to f ,

I the uj
i s do not contain symbols equivalent to f ,

(f (u1, · · · , un), fi (Ju1
i K, . . . , Jui

mK)) ∈ R.
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Our notion covers recurrence with parameter substitution

f (0, x) = g(x)

f (n + 1, x) = h(n, x , f (n, j1(x)), f (n, j2(x))

Theorem (Peter)

If g , h, j1 and j2 are primitive recursive, so is f .

Theorem (Leivant/Bellantoni and Cook)

Ramified programs characterize Ptime.

Theorem (Leivant and Marion)

Ramified programs with parameter substitution characterize
Pspace.
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Complexity characterization

Theorem
Predicates computed by CF.cov programs are exactly Ptime
predicates.

Theorem
Predicates computed by SI.cov-programs are exactly Ptime
predicates.

Theorem
Predicates computed by E-MI.N-programs are exactly Ptime
predicates.

Theorem
Predicates computed by J-MI.N-programs are exactly Pspace
predicates.

In other words, Cons-free ' SI ' MIE 6' MIJ.
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To go on

I Example on the logical side

I POP and WIDG (Moser and Hirokawa) compute Ptime, but
which Ptime?
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