Rewriting Techniques in Complexity Analysis

on-going work

Nao Hirokawa (JAIST)

joint work with

Georg Moser (University of Innsbruck)

Reference

this talk is based on

Nao Hirokawa and Georg Moser Automated Complexity Analysis Based on the Dependency Pair Method Proceedings of 4th IJCAR, LNAI 5195, pp. 364-379, 2008

Term Rewriting

DEFINITION

- pair of terms $\ell \to r$ is rewrite rule if $\ell \notin \mathcal{V} \& \mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$
- term rewrite system (TRS) \mathcal{R} is set of rewrite rules
- rewrite relation $\to_{\mathcal{R}}$ (or simply \to)

$$\frac{\ell \to r \in \mathcal{R}}{\ell \sigma \to_{\mathcal{R}} r \sigma} \qquad \qquad \frac{s \to_{\mathcal{R}} t}{f(\dots, s, \dots) \to_{\mathcal{R}} f(\dots, t, \dots)}$$

Example

TRS
$$\mathcal{R}$$

$$x + 0 \rightarrow x$$
 $x + s(y) \rightarrow s(x + y)$
 $x \times 0 \rightarrow 0$ $x \times s(y) \rightarrow x \times y + x$

$$s(0) \times s(0) \rightarrow_{\mathcal{R}} s(0) \times 0 + s(0) \rightarrow_{\mathcal{R}} 0 + s(0)$$
$$\rightarrow_{\mathcal{R}} s(0+0) \rightarrow_{\mathcal{R}} s(0)$$

how many steps do we need to compute $s^m(0) + s^n(0)$ or $s^m(0) \times s^n(0)$?

Runtime Complexity

DEFINITION

for TRS $\mathcal R$ over signature $\mathcal F$

- $\mathcal{D} = \{ \operatorname{root}(\ell) \mid \ell \to r \in \mathcal{R} \}$
- \bullet $\mathcal{C} = \mathcal{F} \setminus \mathcal{D}$

defined symbols

constructor symbols

<u>DEFINITION</u> runtime complexity

 $\operatorname{rc}_{\mathcal{R}}(n) = \max\{\operatorname{dh}(t, \to_{\mathcal{R}}) \mid t \text{ is basic term of size } n\}$, where

- $dh(t, \rightarrow) = max\{k \mid t \rightarrow^{k} u \text{ for some } u\}$
- $f(t_1,\ldots,t_n)$ is basic term if t_1,\ldots,t_n are constructor terms

Example

s(s(0)) + s(x) is basic but $s(0 + s(0)) \times s(x)$ is not basic

Quiz

find smallest d with $rc_{\mathcal{R}}(n) \in O(n^d)$ for next TRSs \mathcal{R}

1.

$$x - 0 \to x$$
$$\mathsf{s}(x) - \mathsf{s}(y) \to x - y$$

$$rc_{\mathcal{R}}(n) \in O(n)$$

2

$$0 + y \to y$$
$$s(x) + y \to s(x+y)$$

$$\operatorname{rc}_{\mathcal{R}}(n) \in O(n)$$

3.

$$f(s(x), s(y)) \rightarrow f(s(x), y)$$

 $f(s(x), 0) \rightarrow f(x, x)$

$$rc_{\mathcal{R}}(n) \in O(n^2)$$

This Talk

AIM

develop techniques for estimating runtime complexity

OVERVIEW

- basic analysis
- usable replacement map (new)
- conclusion

Basic Analysis

Constructor-Restricted Polynomial Interpretations

Bonfante & Cichon & Marion & Touzet, JFP'01

<u>DEFINITION</u> constructor-restricted polynomial interpretation

CPI of degree $\frac{d}{d}$ ($\frac{d}{d}$ -CPI) is algebra A with

- carrier is N
- $f_{\mathcal{A}}(x_1,\ldots,x_n)$ is polynomial of at most degree d if $f\in\mathcal{D}$
- $f_A(x_1, \dots, x_n) = x_1 + \dots + x_n + c_f$ if constructor f

$$\textcolor{red}{\ell}>_{\mathcal{A}} r \text{ if } [\alpha]_{\mathcal{A}}(\ell)>[\alpha]_{\mathcal{A}}(r) \text{ for all } \alpha:\mathcal{V}\to\mathbb{N}$$

THEOREM

$$\mathcal{R} \subseteq >_{\mathcal{A}}$$
 for some monotone d -CPI $\mathcal{A} \implies \operatorname{rc}_{\mathcal{R}} \in O(n^d)$

Proof

let $\alpha(x) = 0$ for all variables x

- \bullet $[\alpha_0]_{\mathcal{A}}(s) \in O(|s|^d)$ for all basic term s

Monotonicity is Essential

TRS R

$$f(s(x)) \rightarrow c(f(x), f(x))$$

let $\mathbf{n} = \mathsf{s}^n(0)$. $\mathsf{rc}_{\mathcal{R}}(n)$ is exponential due to $\mathsf{f}(\mathbf{n})$; e.g.

$$\begin{split} f(\mathbf{2}) &\rightarrow c(f(\mathbf{1}), f(\mathbf{1})) \\ &\rightarrow c(c(\mathbf{0}, \mathbf{0}), f(\mathbf{1})) \\ &\rightarrow c(c(\mathbf{0}, \mathbf{0}), c(\mathbf{0}, \mathbf{0})) \end{split}$$

- there is no suitable monotone d-CPI, but
- there is, if one ignores monotonicity:

$$f_{\mathcal{A}}(x,y) = 1$$
 $c_{\mathcal{A}}(x,y) = 0$

Example for Basic Analysis

TRS R

$$x + 0 \rightarrow x$$
 $x + s(y) \rightarrow s(x + y)$
 $x \times 0 \rightarrow 0$ $x \times s(y) \rightarrow x \times y + x$

monotone 2-CPI \mathcal{A}

$$\begin{aligned} \mathbf{0}_{\mathcal{A}} &= 1 & \times_{\mathcal{A}}(X,Y) = 2XY + Y + 1 \\ \mathbf{s}_{\mathcal{A}}(X) &= X + 1 & +_{\mathcal{A}}(X,Y) = X + 2Y \end{aligned}$$

is compatible with \mathcal{R} because

$$\wedge \left\{ \begin{array}{ll} [\alpha]_{\mathbb{N}}(x+0) &= X+2 &> X &= [\alpha]_{\mathbb{N}}(x) \\ [\alpha]_{\mathbb{N}}(x+\mathsf{s}(y)) &= X+2Y+2 > X+2Y+1 = [\alpha]_{\mathbb{N}}(\mathsf{s}(x+y)) \\ [\alpha]_{\mathbb{N}}(x\times 0) &= 2X+2 &> 1 &= [\alpha]_{\mathbb{N}}(0) \\ [\alpha]_{\mathbb{N}}(x\times \mathsf{s}(y)) &= \cdots &> \cdots &= [\alpha]_{\mathbb{N}}(x\times y+x) \end{array} \right\}$$

where
$$X = \alpha(x)$$
 and $Y = \alpha(y)$. hence $rc_{\mathcal{R}}(n) \in O(n^2)$

Automation

TRS R

Contejean, Marché, Monate, and Urbain, JAR 2004

$$x + 0 \rightarrow x$$
 $x + s(y) \rightarrow s(x + y)$
 $x \times 0 \rightarrow 0$ $x \times s(y) \rightarrow x \times y + x$

2-CPI A with unknown coefficients

$$\begin{aligned} \mathbf{0}_{\mathcal{A}} &= \mathbf{a} \\ \mathbf{s}_{\mathcal{A}}(X) &= \mathbf{b}X + \mathbf{c} \end{aligned} &+_{\mathcal{A}}(X,Y) &= \mathbf{d}XY + \mathbf{e}X + \mathbf{f}Y + \mathbf{g} \\ \times_{\mathcal{A}}(X,Y) &= \mathbf{i}XY + \mathbf{j}X + \mathbf{k}Y + \mathbf{l} \end{aligned}$$

monotonicity and $\mathcal{R}\subseteq >_{\mathcal{A}}$ follow from

$$\exists a, \dots, l \in \mathbb{N}. \ \forall X, Y \in \mathbb{N}. \ b, e, f, j, k > 0 \ \land \ a, c, g, h, l \geqslant 0 \land$$

$$\land \left\{ \begin{array}{c} (bd + e)X + af + g > X \\ bXY + eX + bfY + cf + g > bdX + beX + bfY + bg + c \\ & \dots \end{array} \right\}$$

shifting method approximates to QF-NIA

use SMT solver

History: Interpretation Orders

ullet CPI of degree d Bonfante & Cichon & Marion & Touzet, JFP'01

• TMI: $d \times d$ triangular matrix interpretation on $\mathbb N$ Moser & Schnabl & Waldmann, FSTTCS'08

$$f_{\mathcal{A}}(\vec{x},\vec{y}) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{y} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• matrix interpretations on \mathbb{N} / $\mathbb{Q}_{\geqslant 0}$ / $\mathbb{R}_{\geqslant 0}$ using spectral radius Neurauter & Zankl & Middeldorp, IJCAR'10

New: Usable Replacement Maps

Quiz (Difficult)

find smallest d with $rc_{\mathcal{R}}(n) \in O(n^d)$ for next TRS \mathcal{R}

$$\begin{array}{ccc} x - \mathbf{0} \to x & \mathbf{0} \div \mathbf{s}(y) \to \mathbf{0} \\ \mathbf{s}(x) - \mathbf{s}(y) \to x - y & \mathbf{s}(x) \div \mathbf{s}(y) \to \mathbf{s}((x - y) \div \mathbf{s}(y)) \end{array}$$

PROBLEM

- no compatible monotone CPI
- all existing methods fail

Context-Sensitive Rewriting

<u>Definition</u> context-sensitive rewriting

suppose
$$\mu(f)\subseteq\mathbb{N}$$
 for all $f\in\mathcal{F}$

replacement map

• μ -step

$$\frac{\ell \to r \in \mathcal{R}, \mu}{\ell \sigma \to_{\mathcal{R}, \mu} r \sigma} \qquad \frac{s \to_{\mathcal{R}} t}{f(\dots, \underbrace{s}_{i}, \dots) \to_{\mathcal{R}, \mu} f(\dots, \underbrace{t}_{i}, \dots)} \ i \in \mu(f)$$

• μ -replacing positions

$$\mathcal{P}\mathsf{os}_{\mu}(t) = \begin{cases} \{\epsilon\} & \text{if } t \text{ is variable} \\ \{\epsilon\} \cup \{ip \mid i \in \mu(f) \text{ and } p \in \mathcal{P}\mathsf{os}_{\mu}(t_i) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

THEOREM

$$\operatorname{rc}_{\mathcal{R},\mu}(n) \in O(n^d)$$
 if $\mathcal{R} \subseteq >_{\mathcal{A}}$ for some μ -monotone CPI

Replacing Position

suppose $\mathbf{n} = s^n(0)$

$$\begin{split} \underline{\mathbf{4} \div \mathbf{2}} &\to \mathsf{s}(\underline{(\mathbf{3} - \mathbf{1})} \div \mathbf{2}) &\to \mathsf{s}((\underline{\mathbf{2} - \mathbf{0}}) \div \mathbf{2}) \\ &\to \mathsf{s}(\underline{\mathbf{2} \div \mathbf{2}}) &\to \mathsf{s}(\mathsf{s}(\underline{(\mathbf{1} - \mathbf{1})} \div \mathbf{2})) \\ &\to \mathsf{s}(\mathsf{s}(\underline{(\mathbf{0} - \mathbf{0})} \div \mathbf{2})) \to \mathsf{s}(\mathsf{s}(\underline{\mathbf{0} \div \mathbf{2}})) \\ &\to \mathsf{s}(\mathsf{s}(\mathbf{0})) \end{split}$$

replacement map for runtime complexity:

$$\mu(\mathsf{s}) = \{1\} \qquad \qquad \mu(-) = \varnothing \qquad \qquad \mu(\div) = \{1\}$$

there are efficient and good approximations

- for innermost termination analysis
- for runtime complexity analysis

Fernández, IPL'05

next slide

Usable Replacement Maps

DEFINITION usable replacement map

 μ_f is mapping induced from least fixed point of Υ :

$$\Upsilon(\mu) = \{(f,i) \mid \exists \text{ rule } \ell \to C[f(r_1,\ldots,r_n)] \text{ and } \mathsf{CAP}^\ell_\mu(r_i) \neq r_i\}$$

where

$$\begin{aligned} \mathsf{CAP}^s_{\mu}(t) = \begin{cases} t & \text{if } \exists p \in \mathcal{P} \mathsf{os}(s) \setminus \mathcal{P} \mathsf{os}_{\mu}(s) : t = s|_p \\ u & \text{if } t = f(t_1, \dots, t_n), \ u \text{ and } \ell \text{ do not unify any rules } \ell \to r \\ y & \text{otherwise} \end{cases}$$

and $u = f(\mathsf{CAP}^s_\mu(t_1), \dots, \mathsf{CAP}^s_\mu(t_n))$ and y is fresh variable

THEOREM

Hirokawa and Moser

$$s \to_{\mathcal{R}}^n t \iff s \to_{\mathcal{R}, \mu_{\mathbf{f}}}^n t \text{ for all basic terms } s$$

Solution to Quiz

TRS \mathcal{R}

$$\begin{array}{ccc} x - \mathbf{0} \to x & & \mathbf{0} \div \mathbf{s}(y) \to \mathbf{0} \\ \mathbf{s}(x) - \mathbf{s}(y) \to x - y & & \mathbf{s}(x) \div \mathbf{s}(y) \to \mathbf{s}((x - y) \div \mathbf{s}(y)) \end{array}$$

usable replacement map

$$\mu_{\mathsf{f}}(\mathsf{s}) = \{1\} \qquad \qquad \mu_{\mathsf{f}}(-) = \{1\} \qquad \qquad \mu_{\mathsf{f}}(\div) = \{1\}$$

 $\mu_{\rm f}$ -monotone 1-CPI ${\cal A}$

$$\begin{aligned} \mathbf{0}_{\mathcal{A}} &= 0 \quad \mathsf{s}_{\mathcal{A}}(X) = X + 2 \quad -_{\mathcal{A}}(X,Y) = X + 1 \quad \div_{\mathcal{A}}(X,Y) = 3X \\ \mathcal{R} &\subseteq >_{\mathcal{A}}. \text{ hence } \mathsf{rc}_{\mathcal{R}}(n) \in O(n) \end{aligned}$$

To Conclude...

History: Implicit Computational Complexity

<u>THEOREM</u> safe algebra is variant of prim. rec. functions in safe algebra are P-computable

Bellantoni and Cook, CC 1992 (by Turing machine)

THEOREM LMPO is variant of RPO

Marion, 1997, 2003

 $\mathcal{R}\subseteq >_{\mathsf{LMPO}} \implies \text{ functions in } \mathcal{R} \text{ are } \mathbf{P}\text{-computable}$ for confluent constructor TRS \mathcal{R} over simple constructor signature

THEOREM POP* is variant of RPO

Avanzini & Moser, RTA 2009

 $\mathcal{R}\subseteq >_{\mathsf{POP}^*} \implies \mathsf{irc}_{\mathcal{R}}(n)\in \mathbf{P}$

for constructor TRS \mathcal{R}

THEOREM adequacy theorem

Avanzini & Moser, RTA 2010

 $\operatorname{rc}_{\mathcal{R}}(n) \in \mathbf{P}$ or $\operatorname{irc}_{\mathcal{R}}(n) \in \mathbf{P} \implies$ functions in \mathcal{R} are \mathbf{P} -computable

Why Runtime Complexity?

- polynomial runtime complexity induces polynomial computability
- ullet e.g. "quick-sort is $O(n^2)$ " is about runtime complexity but not computability

Example: GCD

TRS

$$\begin{split} &0\leqslant y\to \mathsf{true} & \mathsf{gcd}(\mathsf{0},y)\to y \\ &\mathsf{s}(x)\leqslant \mathsf{0}\to \mathsf{false} & \mathsf{gcd}(\mathsf{s}(x),\mathsf{0})\to \mathsf{s}(x) \\ &\mathsf{s}(x)\leqslant \mathsf{s}(y)\to x\leqslant y & \mathsf{gcd}(\mathsf{s}(x),\mathsf{s}(y))\to \mathsf{if}_{\mathsf{gcd}}(y\leqslant x,\mathsf{s}(x),\mathsf{s}(y)) \\ & x-\mathsf{0}\to x & \mathsf{if}_{\mathsf{gcd}}(\mathsf{true},\mathsf{s}(x),\mathsf{s}(y))\to \mathsf{gcd}(x-y,\mathsf{s}(y)) \\ &\mathsf{s}(x)-\mathsf{s}(y)\to x-y\,\mathsf{if}_{\mathsf{gcd}}(\mathsf{false},\mathsf{s}(x),\mathsf{s}(y))\to \mathsf{gcd}(y-x,\mathsf{s}(x)) \end{split}$$

there is $\mu_{\rm f}$ -monotone constructor-restricted 2×2 TMI, hence ${\rm rc}_{\mathcal{R}}(n) \in O(n^2)$ optimal?

Example: List Reversing

TRS \mathcal{R}

we cannot conclude anything...

further investigation is necessary

Experiments

- 2134 TRSs from termination problem Database (TPDB)
- constructor-restricted triangular matrix interpretations (TMI)
- 60 seconds timeout

μ_{f} -monotone TMI	monotone TMI	$rc_{\mathcal{R}}(n)$
22	19	O(1)
129	122	O(n)
176	122	$O(n^2)$

Conclusion

- constructor-restricted polynomial interpretations
- new: usable replacement map

CURRENT STATUS

not yet powerful enough

• international competition 2008-

in TERMCOMP

AProVE, CaT, Matchbox, Oops, TCT

new participants & tools are welcome!

Thank You For Your Attention!