SATISFIABILITY IN MONADIC GÖDEL LOGICS

Norbert Preining

joint work with Matthias Baaz and Agata Ciabattoni

北陸先端科学技術大学院大学, JAIST

Workshop on Logic and Computation Kanazawa, Japan 8 Februar 2011

HISTORY

- Gödel (1933) finitely valued logics
- Dummett (1959) infinitely valued propositional Gödel logics
- Horn (1969) linearly ordered Heyting algebras
- Takeuti-Titani (1984) intuitionistic fuzzy logic
- Avron (1991) hypersequent calculus
- Hájek (1998) t-norm based logics
- Viennese group (Baaz, Beckmann, Ciabattoni, Fermüller, Goldstern, Veith, Zach, P.) (since goies) – proof theory, counting, Kripke, quantified propositional, (monadic) fragments, ...

SYNTAX AND SEMANTICS

```
Usual first-order language, \neg A is defined as A \rightarrow \bot.

Evaluations

Fix a truth value set \{0, 1\} \subseteq V \subseteq [0, 1]

\mathcal{I}: \text{Atom} \mapsto V
```

maps atomic formulas to elements of V.

SYNTAX AND SEMANTICS CONT.

Extension of \mathcal{I} to all formulas:

 $\mathcal{I}(A \land B) = \min\{\mathcal{I}(A), \mathcal{I}(B)\}$ $\mathcal{I}(A \lor B) = \max\{\mathcal{I}(A), \mathcal{I}(B)\}$ $\mathcal{I}(A \to B) = \begin{cases} \mathcal{I}(B) & \text{if } \mathcal{I}(A) > \mathcal{I}(B) \\ 1 & \text{if } \mathcal{I}(A) \le \mathcal{I}(B) \end{cases}$ $\mathcal{I}(\forall x A(x)) = \inf\{\mathcal{I}(A(u)) : u \in U\}$ $\mathcal{I}(\exists x A(x)) = \sup\{\mathcal{I}(A(u)) : u \in U\}$

VALIDITY AND SATISFIABILITY

validity (logic) $\mathbf{G}_{V}^{(\Delta)}$ $A: \forall \mathcal{I}: \mathcal{I}(A) = 1$ *p*-satisfiability *p*-SAT- $\mathbf{G}_{V}^{(\Delta)}$ $A: \exists \mathcal{I}: \mathcal{I}(A) \ge p$ 1-satisfiability 1-SAT- $\mathbf{G}_{V}^{(\Delta)}$ $A: \exists \mathcal{I}: \mathcal{I}(A) = 1$

VALIDITY AND SATISFIABILITY

validity (logic) $\mathbf{G}_{V}^{(\Delta)}$ $A: \forall \mathcal{I}: \mathcal{I}(A) = 1$ *p*-satisfiability *p*-SAT- $\mathbf{G}_{V}^{(\Delta)}$ $A: \exists \mathcal{I}: \mathcal{I}(A) \ge p$ 1-satisfiability 1-SAT- $\mathbf{G}_{V}^{(\Delta)}$ $A: \exists \mathcal{I}: \mathcal{I}(A) = 1$

Remark Different *V* might generate the same set of formulas.

VALIDITY AND SATISFIABILITY

validity (logic) $\mathbf{G}_{V}^{(\Delta)}$ $A: \forall \mathcal{I}: \mathcal{I}(A) = 1$ *p*-satisfiability *p*-SAT- $\mathbf{G}_{V}^{(\Delta)}$ $A: \exists \mathcal{I}: \mathcal{I}(A) \ge p$ 1-satisfiability 1-SAT- $\mathbf{G}_{V}^{(\Delta)}$ $A: \exists \mathcal{I}: \mathcal{I}(A) = 1$

Remark Different *V* might generate the same set of formulas.

Warning

Satisfiability and Validity are *not* dual in the many-valued setting!

DESCRIPTIVE SET THEORY

Cantor-Bendixon Derivatives and Ranks Polish spaces, i.e. separable, completely metrizable topological spaces. \mathbb{R} is a Polish space.

 $X' = \{x \in X : x \text{ is limit point of } X\}$

Theorem (Cantor-Bendixon)

Let *X* be a polish space. For some countable ordinal α_0 , $X^{\alpha} = X^{\alpha_0}$ for all $\alpha \ge \alpha_0$ (X^{α_0} is the perfect kernel).

CB RANKS FOR COUNTABLE CLOSED SETS

▶ If X is countable, then X[∞] = Ø.
 (every perfect set has at least cardinality of the continuum)

CB RANKS FOR COUNTABLE CLOSED SETS

- ► If X is countable, then X[∞] = Ø.
 (every perfect set has at least cardinality of the continuum)
- ► rank of an element: $|x|_{CB} = \sup\{\alpha : x \in X^{\alpha}\}$
- ▶ rank of *X*: $|X|_{CB} = \sup\{|x|_{CB} : x \in X\}$

Some results for validity

(recursive) Axiomatizability of G_V

- *V* uncountable, $0 \in V^{\infty}$: yes
- *V* uncountable, $|0|_{CB} = 0$: yes
- otherwise: not r.e.

Decidability of monadic fragment all are undecidable but one open case: $V_{\uparrow} = \{1 - 1/n\} \cup \{1\}$

RESULTS FOR SAT

Monadic logics

- |0|_{CB} = 0: decidable (subclasses: finite, prenex, ∃-fragment, monadic witnessed)
- ► $|0|_{CB} \ge 1$, 3 predicate symbols one of which is constant interpreted strictly between 0 and 1: undecidable
- ► $|0|_{CB} \ge 2$, 3 predicate symbols: undecidable
- $|0|_{CB} = 1$, no special predicate constant: open

RESULTS FOR SAT CONT.

Monadic with Δ finite *V* is decidable, otherwise undecidable

Subclass S1 Δ Decidable, only two logics: $|1|_{CB} = 0$ and $|1|_{CB} > 0$

Subclass S1 Δ ~ (with involutive negation) Same as without ~

MONADIC LOGICS: $|0|_{CB} = 0$

Theorem

$SAT-G_V = SAT-CL$

Proof If $A \in$ **SAT-CL**, then it is also in **SAT-G**_V since $\{0, 1\} \subseteq V$. If $A \in$ **SAT-G**_V, define \mathcal{I}_{CE} as follows:

$$\mathcal{I}_{\mathsf{CE}}(A) = \begin{cases} 1 & \mathcal{I}_{\mathsf{G}}(A) > 0\\ 0 & \text{o.w.} \end{cases}$$

Induction on formulas, critical case if $\forall x A(x)$ with $\mathcal{I}_{G}(\forall x A(x)) = 0$, but since 0 is isolated, there is a witness $\mathcal{I}_{G}(A(u)) = 0$.

Consequences for 0 isolated

The following fragments are decidable due to the decidability of **SAT-G**_V for 0 isolated in V:

- finitely valued logics
- prenex fragment
- ► ∃-fragment
- monadic witnessed

Remark

All these satisfiability logics coincide with **SAT-CL** (for the resp. fragments)

INTERLUDE: V INFINITE, \mathbf{G}_V^{Δ}

Evaluation of Δ

$$\mathcal{I}(\Delta A) = \begin{cases} 1 & \mathcal{I}(A) = 1 \\ 0 & \text{otherwise} \end{cases}$$

The definition of Δ parallels the (computed) evaluation of $\neg A$:

$$\mathcal{I}(\neg A) = \begin{cases} 1 & \mathcal{I}(A) = 0\\ 0 & \text{otherwise} \end{cases}$$

UNDECIDABILITY OF SAT- \mathbf{G}_V^{Δ}

Logic CE Classical theory CE of two equivalence relations.

$$A = \mathcal{Q}^* \bigvee_j \bigwedge_k (x_j^k \equiv_i \mathcal{Y}_j^k)^l$$

Fact SAT-CE is not even recursively enumerable

Theorem

CE can be faithfully interpreted in monadic \mathbf{G}_V^{Δ} , and thus monadic **SAT-G**_V^{Δ} is undecidable.

INTERPRETING CE IN \mathbf{G}_V^Δ

Proof

$$\sigma(x \equiv_i y) = \Delta(P_i x \leftrightarrow P_i y)$$

$$\lambda \text{ injective } \{[u]_i : u \in \mathcal{U}_{CE}, i = 1, 2\} \rightarrow V \setminus \{0, 1\}$$

$$\mathcal{I}_G(P_i u) = \lambda([u]_i)$$

$|0|_{CB} \ge 1$, three predicate symbols

Theorem

If $|0|_{CB} \ge 1$ in *V*, there are at least three predicate symbols, one of which is constant strictly between 0 and 1, then **SAT-G**_V is undecidable.

Proof

As above, but we have to translate negation, too

$$\sigma(x \equiv_i y) = (P_i x \leftrightarrow P_i y)$$

$$\sigma(x \neq_i y) = (P_i x \leftrightarrow P_i y) \rightarrow S$$

 λ injective {[u]_{*i*} : $u \in U_{CE}$, i = 1, 2} $\rightarrow V \cap (0, \mathcal{I}_G(S))$

 $\mathcal{I}_{\mathrm{G}}(P_{i}u) = \lambda([u]_{i})$

$|0|_{CB} \ge 2$, three predicate symbols

Theorem

If $|0|_{CB} \ge 2$ in *V* and there are at least three predicate symbols, then **SAT-G**_V is undecidable.

Proof ideas

- ► forcing third predicate to decrease to 0: $\neg \forall x S(x) \land \forall x \neg \neg S(x)$
- confine interpretations to intervals below S(u)
- parallel execution of the above construction for each of these intervals
- multiplication of the universe for each of these intervals

THE TRANSLATION

$$\begin{split} \sigma_{a,b}(\forall rB) &= \forall r(P_1r \prec Pb \lor Pa \prec P_1r \lor P_2r \prec Pb \lor Pa \prec P_2r \lor \sigma_{a,b}(B) \\ \sigma_{a,b}(\exists rB) &= \exists r((Pb \prec P_1r \prec Pa) \land (Pb \prec P_2r \prec Pa) \land \sigma_{a,b}(B)) \\ \sigma_{a,b}(\bigvee_j \bigwedge_k (r_j^k \equiv_i s_j^k)^l) &= \bigvee_j \bigwedge_k \sigma((r_j^k \equiv_i s_j^k)^l) \\ \sigma_{a,b}(r \equiv_i s) &= (P_ir \leftrightarrow P_is) \\ \sigma_{a,b}(r \not\equiv_i s) &= ((P_ir \leftrightarrow P_is) \rightarrow Pa)) \end{split}$$

$$\tau(A) = \neg \forall x P x \land \forall x \neg \neg P x \land$$

$$\forall x (Px \lor \exists y \exists z [Pz \prec Py \land Py \prec Px \land$$

$$\forall u (Pu \rightarrow Pz \lor Py \rightarrow Pu) \land$$

$$\exists w (Pz \prec P_1 w \prec Py \land Pz \prec P_2 w \prec Py) \land$$

$$\sigma_{y,z}(A)])$$

THE OPEN CASE

That leaves the case that $|0|_{CB} = 1$ with no constant predicate symbol open.

Lemma If $|0|_{CB} = 1$ in *V*, then SAT-G_V = SAT-G_{V1} where $V_{\downarrow} = \{1/n : n \in \mathbb{N}\} \cup \{0\}$

THE OPEN CASE

That leaves the case that $|0|_{CB} = 1$ with no constant predicate symbol open.

Lemma If $|0|_{CB} = 1$ in *V*, then SAT-G_V = SAT-G_{V1} where $V_1 = \{1/n : n \in \mathbb{N}\} \cup \{0\}$

Remark

Remember that the only open case for validity is V_{\uparrow} .

SUMMARY FOR MONADIC LOGICS

- I0|_{CB} = 0: SAT-G_V decidable (subclasses: finite, prenex, ∃-fragment, monadic witnessed)
- ▶ $|0|_{CB} \ge 1$, 3 predicate symbols one of which is constant interpreted strictly between 0 and 1: **SAT-G**_V undecidable
- ► $|0|_{CB} \ge 2$, 3 predicate symbols: **SAT-G**_V undecidable
- ▶ $|0|_{CB} = 1$, no special predicate constant: **SAT-G**_V open
- finite V: **SAT-G**^{Δ} decidable
- infinite *V*: **SAT-G**^{Δ} undecidable

Where to go from here?

The fragment $S1\Delta$

Definition

The fragment S1 Δ consists of all formulas in the language with Δ of the form

$$\bigvee_{i=1}^{n} (\exists x A_1^i(x) \land \ldots \land \exists x A_{n_i}^i(x) \land \forall x B_1^i(x) \land \ldots \land \forall x B_{m_i}^i(x))$$

where A_k^i and B_k^i quantifier-free containing no constant symbols.

Background

Medical database of the General Hospital in Vienna, development of an expert system for medical decisions

Results for $S1\Delta$

- ► $|1|_{CB} = 0$ in *V*, then **SAT-S**1 Δ is decidable
- ► $|1|_{CB} > 0$ in *V*, then **SAT-S**1 Δ is decidable
- the above two cases are the only ones, and they are different (the set of satisfiable formulas are different)
- adding the involutive negation ~ does not change the status

The case $|1|_{CB} > 0$ (the bad one)

Δ -chains

Let $P \prec Q$ stand for $\neg \Delta(Q \rightarrow P)$ Let $P \ge Q$ stand for $\Delta(P \rightarrow Q) \land \Delta(Q \rightarrow P)$. Let F be any formula in S1 Δ and A_1, \ldots, A_n be the predicates occurring in F. A Δ -*chain* over F is any formula of the form

 $(\perp \bowtie_0 A_{\pi(1)}(x)) \land (A_{\pi(1)}(x) \bowtie_1 A_{\pi(2)}(x)) \land (A_{\pi(n)}(x) \bowtie_n \top)$

where π is a permutation of $\{1, ..., n\}$, \bowtie_i is either \prec or \ge , and at least one of the \bowtie_i 's stands for \prec .

CHAINS CONT.

- ► every Δ-chain describes a possible ordering of the values of predicates of *F*
- every Δ -chain C_i induces equivalence classes over the predicates of F
- if C_F is the set of all chains, then $\bigvee_{C \in C_F} C$ is a tautology in \mathbf{G}_V^{Δ} .

CHAINS CONT.

- ► every Δ-chain describes a possible ordering of the values of predicates of *F*
- every Δ -chain C_i induces equivalence classes over the predicates of F
- if C_F is the set of all chains, then $\bigvee_{C \in C_F} C$ is a tautology in \mathbf{G}_V^{Δ} .

Syntactic evaluation

For every quantifier-free subformula A(x) of F and every Δ -chain C there is a predicate symbol (or \top or \bot) $P_{A(x)}^{C}$ such that

$$\mathcal{I}(C \wedge A(x)) = \mathcal{I}(C \wedge P_{A(x)}^{C})$$

REDUCTION OF THE EXISTENTIAL QUANTIFIER

$$\exists x A(x) \stackrel{\text{SAT}}{\equiv} \exists x ((\bigvee_{C \in C_F} C) \land A(x))$$
$$\stackrel{\text{SAT}}{\equiv} \bigvee_{C \in C_F} \exists x (C \land A(x))$$
$$\stackrel{\text{SAT}}{\equiv} \bigvee_{C \in C_F} \exists x (C \land P_{A(x)}^C)$$

- delete disjuncts with $P_{A(x)}^C$ being \perp
- ► if in a disjunct $P_{A(x)}^C$ is equal to \top then the formula is already satisfiable
- collect the remaining chains in Γ

REDUCTION OF THE UNIVERSAL QUANTIFIER

$$\forall x B(x) \stackrel{\text{SAT}}{\equiv} \Delta \forall x B(x) \stackrel{\text{SAT}}{\equiv} \forall x \Delta B(x)$$

$$\stackrel{\text{SAT}}{\equiv} \forall x ((\bigvee_{C \in C_F} C) \land \Delta B(x)) \stackrel{\text{SAT}}{\equiv} \forall x (\bigvee_{C \in C_F} (C \land \Delta B(x)))$$

$$\stackrel{\text{SAT}}{\equiv} \forall x ((\bigvee_{C \in C_F} (C \land P^C_{\Delta B(x)})))$$

$$\stackrel{\text{SAT}}{\equiv} \forall x ((\bigvee_{C \in C' \subseteq C_F} C))$$

$$\stackrel{\text{SAT}}{\equiv} \forall x \bigwedge_{j} \bigvee_{k} \mathcal{O}_{j,k} \stackrel{\text{SAT}}{\equiv} \bigwedge_{j} \forall x \bigvee_{k} \mathcal{O}_{j,k}$$

$$\stackrel{\text{SAT}}{\equiv} \bigwedge_{j} \forall x \Pi_{j}$$

SATISFIABILITY CONDITION

$$F \stackrel{\text{SAT}}{=} \bigvee_{C \in \Gamma} \exists x (C \land P^C_{A(x)}) \land \bigwedge_j \forall x \Pi_j$$

The formula *F* is satisfiable iff there is a Δ -chain *C* in Γ such that *C* is compatible with each Π_i .

Note

Both Γ and Π_i are finite sets, so this is a finite check

$$F \stackrel{\text{SAT}}{=} \bigvee_{C \in \Gamma} \exists x (C \land P^C_{A(x)}) \land \bigwedge_j \forall x \Pi_j$$

Construction

- we have to ensure that the evaluation of the existential quantifier above actually takes the value 1
- take as universe of objects the natural numbers
- ► evaluations of atomic formulas (but those from the equivalence class of ⊥ have 1 as limit (not isolated) with respect to the objects
- since 1 is not isolated the chain of equivalence classes can be 'compressed' to 1

The case $|1|_{CB} = 0$

Lemma

A formula *A* of S1 Δ is in SAT-G^{Δ}_{*V*} if it is in SAT-G^{Δ}_{*n*} for $n \ge$ the number of predicates appearing in *A* plus 2.

Theorem

If $|1|_{CB} = 0$ in *V*, then **SAT-G**^{Δ} is decidable for S1 Δ .

The involutive negation \sim

- restriction on symmetric truth value sets
- extension to specific chains which are symmetric
- satisfiability condition extended by a clause that the syntactic evaluation is in an equivalence class above 1/2

REDUCTION TO PROPOSITIONAL SATISFIABILITY

The *propositional reduct* A^p of A is defined as follows:

$$(\forall xA)^{p} = A^{p} \quad (\exists xA)^{p} = A^{p}$$
$$(A * B)^{p} = A^{p} * B^{p} \text{ for } * \in \{\land, \lor, \rightarrow\}$$
$$(\Delta A)^{p} = \Delta A^{p} \quad P_{i}(\bar{t})^{p} = P_{i}$$
$$0^{p} = 0 \quad 1^{p} = 1$$

REDUCTION CONT.

Let

$$F = \forall x A_1(x) \land \dots \land \forall x A_m(x) \land$$
$$\exists x B_1(x) \land \dots \land \exists x B_n(x)$$

and
$$A = \forall x \Delta(A_1(x) \land \ldots \land A_n(x)).$$

Then we have (i) if *V* is infinite and 1 isolated,

 $F \in \mathbf{SAT-G}_V^{\Delta} \quad \leftrightarrow \quad A^p \wedge (\exists x B_1(x))^p \in \mathbf{SAT-G}_{\infty}^{\Delta} \text{ AND } \dots \text{ AND}$ $A^p \wedge (\exists x B_n(x))^p \in \mathbf{SAT-G}_{\infty}^{\Delta}$

REDUCION CONT.

(ii) if *V* is infinite, but 1 not isolated, we have $F \in \mathbf{SAT} \cdot \mathbf{G}_V^{\Delta} \iff A^p \land \neg \neg (\exists x B_1(x))^p \in \mathbf{SAT} \cdot \mathbf{G}_{\infty}^{\Delta} \text{ AND } \dots \text{ AND}$ $A^p \land \neg \neg (\exists x B_n(x))^p \in \mathbf{SAT} \cdot \mathbf{G}_{\infty}^{\Delta}$

(iii) Moreover, in case 2. we have: if

 $A^p \wedge (\exists x B_i(x))^p \notin \text{SAT-G}_{\infty}^{\Delta}$ for some i = 1, ..., n. then *F* does not satisfy the final model property.

REMARKS, CONCLUSIONS, QUESTIONS

- ► although the satisfiability condition is a finite check, the actual model constructed will not be finite, which in fact is impossible, consider e.g. $F = \forall x \Delta \neg A(x) \land \exists x A(x)$
- ► 1-satisfiability of S1∆ formulas with ∆ (same with ~) is NP-complete
- ► in S1∆ there are only two different logics, distinguished by the property that 1 is isolated or not
- ► as soon as we consider the 1-variable class with ∆ there are countably many different satisfiability logics
- in the absence of ∆ not much is known, as many cases will collapse (e.g. SAT-G_V for V = {0, 1}, V = V_↑, V = [0, 1]).

TIME FOR DINNER

