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SYNTAX AND SEMANTICS

Usual first-order language, —A is defined as A — 1.

Evaluations
Fix a truth value set {0,1} =V < [0, 1]

7:Atom~V

maps atomic formulas to elements of V.



SYNTAX AND SEMANTICS CONT.

Extension of 7 to all formulas:
TJ(A A B) =min{7(A),7(B)}
7J(A Vv B) =max{7(A),7(B)}
7(B) if7(A) > 1(B)
7J(A - B) = {
1 if 7(A) < 1(B)
I(VxA(x)) =inf{I(A(u)) :u € U}
7(dxA(x)) =sup{Z(A(u)) :u € U}



VALIDITY AND SATISFIABILITY

validity (logic) G\»” A:VT:1(A) =1
p-satisfiability p-SAT-GéA) A:37:7(A) =p
1-satisfiability 1-SAT-G{ A:37:7(A) =1



VALIDITY AND SATISFIABILITY

validity (logic) G\»” A:VT:1(A) =1
&) A:37:7(4) >p

p-satisfiability p-SAT-Gy,
1-satisfiability 1-SAT-G{ A:37:7(A) =1

Remark
Different V might generate the same set of formulas.



VALIDITY AND SATISFIABILITY

validity (logic) G\»” A:VT:1(A) =1
p-satisfiability p-SAT-GéA) A:37:7(A) =p
1-satisfiability 1-SAT-G{ A:37:7(A) =1

Remark
Different V might generate the same set of formulas.

Warning
Satisfiability and Validity are not dual in the many-valued
setting!



DESCRIPTIVE SET THEORY

Cantor-Bendixon Derivatives and Ranks
Polish spaces, i.e. separable, completely metrizable
topological spaces. R is a Polish space.

X' = {x € X : x is limit point of X}

Theorem (Cantor-Bendixon)
Let X be a polish space. For some countable ordinal «y,
X% = X% for all @ = xg (X0 is the perfect kernel).



CB RANKS FOR COUNTABLE CLOSED SETS

» If X is countable, then X* = &.
(every perfect set has at least cardinality of the
continuum)



CB RANKS FOR COUNTABLE CLOSED SETS

» If X is countable, then X* = &.
(every perfect set has at least cardinality of the
continuum)

» rank of an element: |x|cg = sup{x: x € X%}
» rank of X: | X|cg = sup{|x|cp:x € X}



SOME RESULTS FOR VALIDITY

(recursive) Axiomatizability of Gy

» V uncountable, 0 € V*: yes
» V uncountable, |0|cg = O: yes
» otherwise: not r.e.

Decidability of monadic fragment

all are undecidable but one open case:
Vi={1-1/n}u{l}



RESULTS FOR SAT

Monadic logics

» |0|cg = O: decidable
(subclasses: finite, prenex, 3-fragment, monadic
witnessed)

» |0|cg = 1, 3 predicate symbols one of which is constant
interpreted strictly between 0 and 1: undecidable

» |0|cg = 2, 3 predicate symbols: undecidable
» |0|cg = 1, no special predicate constant: open



RESULTS FOR SAT CONT.

Monadic with A
finite V is decidable, otherwise undecidable

Subclass STA
Decidable, only two logics: |1|cg = 0 and |1|cg > 0

Subclass S1A~ (with involutive negation)
Same as without ~



MONADIC LOGICS: |O|cg =0

Theorem

SAT-Gy = SAT-CL

Proof
If A € SAT-CL, then it is also in SAT-Gy since {0,1} = V.
If A € SAT-Gy, define 7cg as follows:

1 76(A) >0

Ice(A) =
ce(A) {0 O.W.

Induction on formulas, critical case if VxA(x) with
1(VxA(x)) = 0, but since 0 is isolated, there is a witness
Ig(A(u)) = 0.



CONSEQUENCES FOR 0 ISOLATED

The following fragments are decidable due to the
decidability of SAT-Gy for O isolated in V:

» finitely valued logics
» prenex fragment

» J-fragment

» monadic witnessed

Remark
All these satisfiability logics coincide with SAT-CL (for the
resp. fragments)



INTERLUDE: V INFINITE, G‘A/

Evaluation of A

1 7A) =1
0 otherwise

1(AA) ={

The definition of A parallels the (computed) evaluation of

—A:
1 7(A) =0
1(—A) = (A) .
0 otherwise



UNDECIDABILITY OF SAT-G

Logic CE
Classical theory CE of two equivalence relations.

A= Q*\//\(x —lyJ

Fact
SAT-CE is not even recursively enumerable

Theorem
CE can be faithfully interpreted in monadic G¢, and thus
monadic SAT-G% is undecidable.



INTERPRETING CE IN G$

Proof
o(x =;y) =APix ~ Piy)
A injective {[u];:u € Ucg,i =1,2} - V \ {0,1}
I (Piu) = A([ul;)



|O|cp = 1, THREE PREDICATE SYMBOLS

Theorem

If |0|cg = 1in V, there are at least three predicate symbols,
one of which is constant strictly between 0 and 1, then
SAT-Gy is undecidable.

Proof
As above, but we have to translate negation, too

o(x =;y) = (Pix = Piy)
o(x # y)=(Pix - Piy)—S§
A injective {[u]; :u € Ucg,i=1,2} —= V. n (0,7(S))

Ic(Piu) = A([uli)



|0|cp = 2, THREE PREDICATE SYMBOLS

Theorem
If |0|cg = 2 in V and there are at least three predicate
symbols, then SAT-Gy is undecidable.

Proof ideas
» forcing third predicate to decrease to O:
—VXxS(x) A Vx——S(x)
» confine interpretations to intervals below S (1)

» parallel execution of the above construction for each of
these intervals

» multiplication of the universe for each of these
intervals



THE TRANSLATION

Oap(V¥B) = V¥ (P1v < Pbv Pa < Piv VP¥ <PbVvPa<PxrVo,p(B
Oap(3rB) = ¥ ((Pb < P1v < Pa) A (Pb < Pov < Pa) A 04(B))

gap(V N =i 89D =\ N o (k= 55D
j k J k

Oap(r =i 5) = (Pir < P;s)
Oap(r #i 5) = ((Piv = P;is) — Pa))

T(A) = "VXxPx A VX PxA
Vx(Px v 3y3z[Pz <Py APy <Px A
VYu(Pu - Pzv Py — Pu) A
Jw(Pz < Pyw < Py APz <Pow <Py) A
0y,2(A)])



THE OPEN CASE

That leaves the case that |0|cg = 1 with no constant
predicate symbol open.

Lemma
If |0|cg = 1in V, then SAT-Gy = SAT-GVl where
Vi={1l/n:n e N}u{0}



THE OPEN CASE

That leaves the case that |0|cg = 1 with no constant
predicate symbol open.

Lemma
If |0|cg = 1in V, then SAT-Gy = SAT-GVl where
Vi={1l/n:n e N}u{0}

Remark
Remember that the only open case for validity is V;.



SUMMARY FOR MONADIC LOGICS

v

|0|cg = 0: SAT-Gy decidable
(subclasses: finite, prenex, 3-fragment, monadic
witnessed)

» |0|cg = 1, 3 predicate symbols one of which is constant
interpreted strictly between 0 and 1: SAT-Gy
undecidable

» |0|cg = 2, 3 predicate symbols: SAT-Gy undecidable

» |0|cg = 1, no special predicate constant: SAT-Gy open
> finite V: SAT-G$ decidable

> infinite V: SAT-G$ undecidable

Where to go from here?



THE FRAGMENT ST1A

Definition
The fragment S1A consists of all formulas in the language
with A of the form

n
V @xAL(x) AL A TxAL(X) AVXBL(X) A... A VXB, (X))
i=1

where Af< and B,ic quantifier-free containing no constant
symbols.

Background

Medical database of the General Hospital in Vienna,
development of an expert system for medical decisions



v

v

v

v

RESULTS FOR STA

|1|cg = 0 in V, then SAT-S1A is decidable
|[1|cg > 0 in V, then SAT-S1A is decidable

the above two cases are the only ones, and they are
different (the set of satisfiable formulas are different)

adding the involutive negation ~ does not change the
status



THE CASE |1|cg > O (THE BAD ONE)

A-chains

Let P < Q stand for -~A(Q — P)

Let P > Q stand for A(P — Q) A A(Q — P).

Let F be any formula in STA and A4,..., A, be the
predicates occurring in F. A A-chain over F is any formula
of the form

(L <o A1)y (X)) A (A1) (x) X1 Ar2) (X)) A (A (X) Xy T)

where 77 is a permutation of {1,...,n}, x; is either < or >,
and at least one of the <;’s stands for <.



CHAINS CONT.

» every A-chain describes a possible ordering of the
values of predicates of F

» every A-chain C; induces equivalence classes over the
predicates of F

» if Cr is the set of all chains, then \/cce, Cis a
tautology in G{.



CHAINS CONT.

» every A-chain describes a possible ordering of the
values of predicates of F

» every A-chain C; induces equivalence classes over the
predicates of F

» if Cr is the set of all chains, then \/cce, Cis a
tautology in G{.

Syntactic evaluation
For every quantifier-free subformula A(x) of F and every
A-chain C there is a predicate symbol (or T or 1) Pg(x) such
that

1(C A A(x)) = 1(C A P§ )



REDUCTION OF THE EXISTENTIAL QUANTIFIER

SAT

IxA(x) = Ix((\/ C) AAx))
CeCr

\/ 3Ix(CAAx))
CeCr

\/ 3x(C AP,
CeCr

SAT

SAT

> delete disjuncts with P§ ., being L

» if in a disjunct Pg(x) is equal to T then the formula is
already satisfiable

» collect the remaining chains in I’



REDUCTION OF THE UNIVERSAL QUANTIFIER

SAT

VxB(x) A VxB(x)

SATV (( \/ C) AAB(x)) 2 Vx( \/ (C AAB(x)))
CeCr CeCr

2 vx(\ (CAPSpu))

CeCr

Zvx( \/ 0O

CeC’'cCr

T ux AV o AvxV o
ik Jj k

Vx AB(x)



SATISFIABILITY CONDITION

SAT

=V Ix(CAP§,) A /\ VxIT;
cer Jj

The formula F is satisfiable iff there is a A-chain Cin T
such that C is compatible with each IT;.

Note
Both I" and II; are finite sets, so this is a finite check



CONSTRUCTION OF THE MODEL (CRUCIAL PART)

F2 \/ 3x(C A P§) A N\ VL
cer j

Construction
» we have to ensure that the evaluation of the existential
quantifier above actually takes the value 1
» take as universe of objects the natural numbers

» evaluations of atomic formulas (but those from the
equivalence class of 1 have 1 as limit (not isolated)
with respect to the objects

» since 1 is not isolated the chain of equivalence classes
can be ‘compressed’ to 1



CONSTRUCTION OF THE MODEL (CRUCIAL PART)

SAT

= \/ Ix(CAP§,) A /\ VxXIT;
Cer j

_ | | | |
n=0 1 w w w

[1] < [P ]<[P§ ) <[P ] < [Piy] < - < [T]



CONSTRUCTION OF THE MODEL (CRUCIAL PART)

SAT

= \/ Ix(CAP§,) A /\ VxXIT;
Cer j

N

[1] < [P ]<[P§ ) <[P ] < [Piy] < - < [T]




CONSTRUCTION OF THE MODEL (CRUCIAL PART)

SAT

= \/ Ix(CAP§,) A /\ VxXIT;

Cerl j
n=2
n=1 ///
n=0 w f f
0 1

[1] < [P ]<[P§ ) <[P ] < [Piy] < - < [T]



CONSTRUCTION OF THE MODEL (CRUCIAL PART)

SAT

= \/ Ix(CAP§,) A /\ VxXIT;
Cer j

. LS

0 1
[1] < [P ]<[P§ ) <[P ] < [Piy] < - < [T]



c—o0 —| | |

c=2 |—1 | P —— |

— i T—P !
0=1r)<ri<...<rklc< <rk<. <] kel =1
— \ | | P S |
c=1 x S \
0=1r)<rf <...<rklc <rk<..<rlc< <=1
_0 | 1 1 |
c=0 — 1 1 1 !
0=rd<rd<...<rfl<rk < <rl< <rit=1



THE CASE |1|cg =0

Lemma
A formula A of S1A is in SAT-G{ if it is in SAT-G4, for n >
the number of predicates appearing in A plus 2.

Theorem
If [1|cg = 0 in V, then SAT-G{ is decidable for STA.



THE INVOLUTIVE NEGATION ~

restriction on symmetric truth value sets
extension to specific chains which are symmetric

satisfiability condition extended by a clause that the

syntactic evaluation is in an equivalence class above
1/2



REDUCTION TO PROPOSITIONAL
SATISFIABILITY

The propositional reduct AP of A is defined as follows:

(VxA)P = AP (AxA)P = AP
(A% B)? = AP x B? for * € {A,V,—}
(AAP = AAP Pi(t_)pZPi
=0 17=1



REDUCTION CONT.

Let

F=VxA1(xX)A...ANVXAn(xX)A
AxB1(x) A ... A AxBy(x)

and A = VX AA1(xX) A ... AAR(X)).

Then we have
(i) if V is infinite and 1 isolated,

F € SAT-G)} ~ AP A (IxB1(x))? € SAT-G AND ...

AP A (3xBn(x))?P € SAT-GS

AND



REDUCION CONT.

(ii) if V is infinite, but 1 not isolated, we have

F € SAT-G) ~ AP A =—=(3xB;(x))? € SAT-G5 AND ...

AP A == (AxBn(x))? € SAT-G2
(iii) Moreover, in case 2. we have: if
AP A (3xB;(x))? ¢ SAT-G2 for somei=1,...,n.

then F does not satisfy the final model property.

AND



REMARKS, CONCLUSIONS, QUESTIONS

although the satisfiability condition is a finite check,
the actual model constructed will not be finite, which
in fact is impossible, consider e.g.

F=VxA-A(x) A dxA(x)

1-satisfiability of STA formulas with A (same with ~) is
NP-complete

in STA there are only two different logics,
distinguished by the property that 1 is isolated or not

as soon as we consider the 1-variable class with A
there are countably many different satisfiability logics

in the absence of A not much is known, as many cases
will collapse (e.g. SAT-Gy for V = {0,1}, V = Vi,
vV =10,1)).



TIME FOR DINNER
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