SATISFIABILITY IN MONADIC GÖDEL LOGICS

Norbert Preining
joint work with Matthias Baaz and Agata Ciabattoni

北陸先端科学技術大学院大学，JAIST

Workshop on Logic and Computation Kanazawa，Japan 8 Februar 2011

History

- Gödel (1933) - finitely valued logics
- Dummett (1959) - infinitely valued propositional Gödel logics
- Horn (1969) - linearly ordered Heyting algebras
- Takeuti-Titani (1984) - intuitionistic fuzzy logic
- Avron (1991) - hypersequent calculus
- Hájek (1998) - t-norm based logics
- Viennese group (Baaz, Beckmann, Ciabattoni, Fermüller, Goldstern, Veith, Zach, P.) (since 9oies) proof theory, counting, Kripke, quantified propositional, (monadic) fragments, ...

Syntax and Semantics

Usual first-order language, $\neg A$ is defined as $A \rightarrow \perp$. Evaluations
Fix a truth value set $\{0,1\} \subseteq V \subseteq[0,1]$

$$
\mathcal{I}: \text { Atom } \mapsto V
$$

maps atomic formulas to elements of V.

Syntax and Semantics cont.

Extension of \mathcal{I} to all formulas:

$$
\begin{aligned}
\mathcal{I}(A \wedge B) & =\min \{\mathcal{I}(A), \mathcal{I}(B)\} \\
\mathcal{L}(A \vee B) & =\max \{\mathcal{I}(A), \mathcal{I}(B)\} \\
\mathcal{I}(A \rightarrow B) & = \begin{cases}\mathcal{I}(B) & \text { if } \mathcal{I}(A)>\mathcal{I}(B) \\
1 & \text { if } \mathcal{I}(A) \leq \mathcal{I}(B)\end{cases} \\
\mathcal{I}(\forall x A(x)) & =\inf \{\mathcal{I}(A(u)): u \in U\} \\
\mathcal{I}(\exists x A(x)) & =\sup \{\mathcal{I}(A(u)): u \in U\}
\end{aligned}
$$

VALIDITY AND SATISFIABILITY

validity (logic) $\quad \mathrm{G}_{V}^{(\Delta)} \quad A: \forall \mathcal{I}: \mathcal{I}(A)=1$
p-satisfiability $\quad p$-SAT-G ${ }_{V}^{(\Delta)} \quad A: \exists \mathcal{I}: \mathcal{I}(A) \geq p$
1-satisfiability $\quad 1$-SAT-G ${ }_{V}^{(\Delta)} \quad A: \exists \mathcal{I}: \mathcal{I}(A)=1$

VALIDITY AND SATISFIABILITY

$$
\begin{array}{lll}
\text { validity (logic) } & \mathbf{G}_{V}^{(\Delta)} & A: \forall \mathcal{I}: \mathcal{I}(A)=1 \\
p \text {-satisfiability } & p-\text { SAT-G }_{V}^{(\Delta)} & A: \exists \mathcal{I}: \mathcal{I}(A) \geq p \\
1 \text {-satisfiability } & 1-\text { SAT-G } \mathbf{G}_{V}^{(\Delta)} & A: \exists \mathcal{I}: \mathcal{I}(A)=1
\end{array}
$$

Remark
Different V might generate the same set of formulas.

VALIDITY AND SATISFIABILITY

$$
\begin{array}{lll}
\text { validity (logic) } & \mathrm{G}_{V}^{(\Delta)} & A: \forall \mathcal{I}: \mathcal{I}(A)=1 \\
p \text {-satisfiability } & p-\text { SAT-G }_{V}^{(\Delta)} & A: \exists \mathcal{I}: \mathcal{I}(A) \geq p \\
\text { 1-satisfiability } & 1-\text { SAT-G } \mathrm{G}_{V}^{(\Delta)} & A: \exists \mathcal{I}: \mathcal{I}(A)=1
\end{array}
$$

Remark
Different V might generate the same set of formulas.

Warning

Satisfiability and Validity are not dual in the many-valued setting!

Descriptive Set Theory

Cantor-Bendixon Derivatives and Ranks

 Polish spaces, i.e. separable, completely metrizable topological spaces. \mathbb{R} is a Polish space.$$
X^{\prime}=\{x \in X: x \text { is limit point of } X\}
$$

Theorem (Cantor-Bendixon)
Let X be a polish space. For some countable ordinal α_{0}, $X^{\alpha}=X^{\alpha_{0}}$ for all $\alpha \geq \alpha_{0}$ ($X^{\alpha_{0}}$ is the perfect kernel).

CB RANKS FOR COUNTABLE CLOSED SETS

- If X is countable, then $X^{\infty}=\varnothing$. (every perfect set has at least cardinality of the continuum)

CB RANKS FOR COUNTABLE CLOSED SETS

- If X is countable, then $X^{\infty}=\varnothing$. (every perfect set has at least cardinality of the continuum)
- rank of an element: $|x|_{\mathrm{CB}}=\sup \left\{\alpha: x \in X^{\alpha}\right\}$
- rank of $X:|X|_{\text {CB }}=\sup \left\{|x|_{\text {CB }}: x \in X\right\}$

Some results for validity

(recursive) Axiomatizability of G_{V}

- V uncountable, $0 \in V^{\infty}$: yes
- V uncountable, $|0|_{\text {CB }}=0$: yes
- otherwise: not r.e.

Decidability of monadic fragment all are undecidable but one open case:
$V_{\uparrow}=\{1-1 / n\} \cup\{1\}$

ReSUlts for sat

Monadic logics

- $|0|_{\text {Св }}=0$: decidable (subclasses: finite, prenex, \exists-fragment, monadic witnessed)
- $|0|_{C B} \geq 1,3$ predicate symbols one of which is constant interpreted strictly between 0 and 1 : undecidable
- $|0|_{C B} \geq 2$, 3 predicate symbols: undecidable
- $|0|_{\mathrm{CB}}=1$, no special predicate constant: open

RESULTS FOR SAT CONT.

Monadic with Δ
finite V is decidable, otherwise undecidable

Subclass S1 Δ
Decidable, only two logics: $|1|_{C B}=0$ and $|1|_{C B}>0$

Subclass S1 $\Delta \sim$ (with involutive negation)
Same as without \sim

MONADIC LOGICS: $|0|_{\mathrm{CB}}=0$

Theorem

$$
\mathbf{S A T}^{\mathbf{S A}} \mathbf{G}_{V}=\mathbf{S A T}-\mathbf{C L}
$$

Proof

If $A \in$ SAT-CL, then it is also in SAT-G ${ }_{V}$ since $\{0,1\} \subseteq V$.
If $A \in$ SAT-G ${ }_{V}$, define $\mathcal{I}_{\mathrm{CE}}$ as follows:

$$
\mathcal{I}_{\mathrm{CE}}(A)= \begin{cases}1 & \mathcal{I}_{\mathrm{G}}(A)>0 \\ 0 & \text { o.W. }\end{cases}
$$

Induction on formulas, critical case if $\forall x A(x)$ with $\mathcal{I}_{\mathrm{G}}(\forall x A(x))=0$, but since 0 is isolated, there is a witness $\mathcal{I}_{\mathrm{G}}(A(u))=0$.

CONSEQUENCES FOR 0 ISOLATED

The following fragments are decidable due to the decidability of SAT-G ${ }_{V}$ for 0 isolated in V :

- finitely valued logics
- prenex fragment
- \exists-fragment
- monadic witnessed

Remark

All these satisfiability logics coincide with SAT-CL (for the resp. fragments)

INTERLUDE: V INFINITE, G_{V}^{Δ}

Evaluation of Δ

$$
\mathcal{I}(\Delta A)= \begin{cases}1 & \mathcal{L}(A)=1 \\ 0 & \text { otherwise }\end{cases}
$$

The definition of Δ parallels the (computed) evaluation of $\neg A$:

$$
\mathcal{I}(\neg A)= \begin{cases}1 & \mathcal{I}(A)=0 \\ 0 & \text { otherwise }\end{cases}
$$

Undecidability of SAT-G ${ }_{V}^{\Delta}$

Logic CE

Classical theory CE of two equivalence relations.

$$
A=\mathcal{Q}^{*} \bigvee_{j} \bigwedge_{k}\left(x_{j}^{k} \equiv_{i} y_{j}^{k}\right)^{l}
$$

Fact
SAT-CE is not even recursively enumerable
Theorem
CE can be faithfully interpreted in monadic \mathbf{G}_{V}^{Δ}, and thus monadic SAT-G ${ }_{V}^{\Delta}$ is undecidable.

Interpreting CE IN G_{V}^{Δ}

Proof

$$
\sigma\left(x \equiv_{i} y\right)=\Delta\left(P_{i} x \leftrightarrow P_{i} y\right)
$$

λ injective $\left\{[u]_{i}: u \in \mathcal{U}_{\text {CE }}, i=1,2\right\} \rightarrow V \backslash\{0,1\}$

$$
\mathcal{I}_{\mathrm{G}}\left(P_{i} u\right)=\lambda\left([u]_{i}\right)
$$

$|0|_{\mathrm{CB}} \geq 1$, THREE PREDICATE SYMBOLS

Theorem

If $|0|_{\text {cв }} \geq 1$ in V, there are at least three predicate symbols, one of which is constant strictly between 0 and 1 , then SAT-G G_{V} is undecidable.

Proof

As above, but we have to translate negation, too

$$
\begin{aligned}
& \sigma\left(x \equiv_{i} y\right)=\left(P_{i} x \leftrightarrow P_{i} y\right) \\
& \sigma\left(x \not \equiv_{i} y\right)=\left(P_{i} x \leftrightarrow P_{i} y\right) \rightarrow S \\
& \lambda \text { injective }\left\{[u]_{i}: u \in U_{\mathrm{CE}}, i=1,2\right\} \rightarrow V \cap\left(0, \mathcal{I}_{\mathrm{G}}(S)\right)
\end{aligned}
$$

$$
\mathcal{I}_{\mathrm{G}}\left(P_{i} u\right)=\lambda\left([u]_{i}\right)
$$

$|0|_{\mathrm{CB}} \geq 2$, THREE PREDICATE SYMBOLS

Theorem
If $|0|_{\mathrm{Cb}} \geq 2$ in V and there are at least three predicate symbols, then SAT-G \mathbf{G}_{V} is undecidable.

Proof ideas

- forcing third predicate to decrease to 0 : $\neg \forall x S(x) \wedge \forall x \neg \neg S(x)$
- confine interpretations to intervals below $S(u)$
- parallel execution of the above construction for each of these intervals
- multiplication of the universe for each of these intervals

THE TRANSLATION

$$
\begin{aligned}
& \sigma_{a, b}(\forall r B)=\forall r\left(P_{1} r \prec P b \vee P a \prec P_{1} r \vee P_{2} r \prec P b \vee P a \prec P_{2} r \vee \sigma_{a, b}(B)\right. \\
& \sigma_{a, b}(\exists r B)=\exists r\left(\left(P b \prec P_{1} r \prec P a\right) \wedge\left(P b \prec P_{2} r \prec P a\right) \wedge \sigma_{a, b}(B)\right) \\
& \sigma_{a, b}\left(\bigvee_{j} \bigwedge_{k}\left(r_{j}^{k} \equiv_{i} s_{j}^{k}\right)^{l}\right)=\bigvee_{j} \bigwedge_{k} \sigma\left(\left(r_{j}^{k} \equiv_{i} s_{j}^{k}\right)^{l}\right) \\
& \sigma_{a, b}\left(r \equiv_{i} s\right)=\left(P_{i} r \leftrightarrow P_{i} s\right) \\
& \left.\sigma_{a, b}\left(r \not \equiv_{i} s\right)=\left(\left(P_{i} r \leftrightarrow P_{i} s\right) \rightarrow P a\right)\right) \\
& \begin{array}{c}
\tau(A)=\neg \forall x P x \wedge \forall x \neg \neg P x \wedge \\
\forall x(P x \vee \exists y \exists z[P z \prec P y \wedge P y \prec P x \wedge \\
\forall u(P u \rightarrow P z \vee P y \rightarrow P u) \wedge \\
\exists w\left(P z \prec P_{1} w \prec P y \wedge P z \prec P_{2} w \prec P y\right) \wedge \\
\left.\left.\sigma_{y, z}(A)\right]\right)
\end{array}
\end{aligned}
$$

THE OPEN CASE

That leaves the case that $|0|_{C B}=1$ with no constant predicate symbol open.

Lemma
If $|0|_{\mathrm{CB}}=1$ in V, then SAT-G ${ }_{V}=$ SAT-G $\mathbf{G}_{V_{\downarrow}}$ where
$V_{\downarrow}=\{1 / n: n \in \mathbb{N}\} \cup\{0\}$

THE OPEN CASE

That leaves the case that $|0|_{\mathrm{CB}}=1$ with no constant predicate symbol open.

Lemma
If $|0|_{\mathrm{CB}}=1$ in V, then SAT-G ${ }_{V}=$ SAT-G $\mathbf{G}_{V_{\downarrow}}$ where
$V_{\downarrow}=\{1 / n: n \in \mathbb{N}\} \cup\{0\}$
Remark
Remember that the only open case for validity is V_{\uparrow}.

SUMMARY FOR MONADIC LOGICS

- $|0|_{\text {Cb }}=0:$ SAT-G G_{V} decidable (subclasses: finite, prenex, \exists-fragment, monadic witnessed)
- $|0|_{C B} \geq 1,3$ predicate symbols one of which is constant interpreted strictly between 0 and 1: SAT-G ${ }_{V}$ undecidable
- $|0|_{\text {Св }} \geq 2$, 3 predicate symbols: SAT-G ${ }_{V}$ undecidable
- $|0|_{\text {Cb }}=1$, no special predicate constant: SAT-G ${ }_{V}$ open
- finite V : SAT-G $_{V}^{\Delta}$ decidable
- infinite V : SAT-G ${ }_{V}^{\Delta}$ undecidable

Where to go from here?

The FRAGMENT S1 Δ

Definition

The fragment $\mathrm{S} 1 \Delta$ consists of all formulas in the language with Δ of the form

$$
\bigvee_{i=1}^{n}\left(\exists x A_{1}^{i}(x) \wedge \ldots \wedge \exists x A_{n_{i}}^{i}(x) \wedge \forall x B_{1}^{i}(x) \wedge \ldots \wedge \forall x B_{m_{i}}^{i}(x)\right)
$$

where A_{k}^{i} and B_{k}^{i} quantifier-free containing no constant symbols.

Background
Medical database of the General Hospital in Vienna, development of an expert system for medical decisions

RESULTS FOR S1 Δ

- $|1|_{\text {Cb }}=0$ in V, then SAT-S 1Δ is decidable
- $|1|_{\mathrm{CB}}>0$ in V, then SAT-S 1Δ is decidable
- the above two cases are the only ones, and they are different (the set of satisfiable formulas are different)
- adding the involutive negation \sim does not change the status

THE CASE $|1|_{\text {Cb }}>0$ (THE BAD ONE)

Δ-chains
Let $P \prec Q$ stand for $\neg \Delta(Q \rightarrow P)$
Let $P \geq Q$ stand for $\Delta(P \rightarrow Q) \wedge \Delta(Q \rightarrow P)$.
Let F be any formula in $\mathrm{S} 1 \Delta$ and A_{1}, \ldots, A_{n} be the predicates occurring in F. A Δ-chain over F is any formula of the form
$\left(\perp \bowtie_{0} A_{\pi(1)}(x)\right) \wedge\left(A_{\pi(1)}(x) \bowtie_{1} A_{\pi(2)}(x)\right) \wedge\left(A_{\pi(n)}(x) \bowtie_{n} \top\right)$
where π is a permutation of $\{1, \ldots, n\}, \bowtie_{i}$ is either \prec or \geq, and at least one of the \bowtie_{i} 's stands for \prec.

CHAINS CONT.

- every Δ-chain describes a possible ordering of the values of predicates of F
- every Δ-chain C_{i} induces equivalence classes over the predicates of F
- if C_{F} is the set of all chains, then $\bigvee_{C \in C_{F}} C$ is a tautology in \mathbf{G}_{V}^{Δ}.

CHAINS CONT.

- every Δ-chain describes a possible ordering of the values of predicates of F
- every Δ-chain C_{i} induces equivalence classes over the predicates of F
- if C_{F} is the set of all chains, then $\bigvee_{C \in C_{F}} C$ is a tautology in G_{V}^{Δ}.

Syntactic evaluation

For every quantifier-free subformula $A(x)$ of F and every Δ-chain C there is a predicate symbol (or \top or \perp) $P_{A(x)}^{C}$ such that

$$
\mathcal{I}(C \wedge A(x))=\mathcal{I}\left(C \wedge P_{A(x)}^{C}\right)
$$

REDUCTION OF THE EXISTENTIAL QUANTIFIER

$$
\begin{aligned}
\exists x A(x) & \stackrel{\text { SAT }}{=} \exists x\left(\left(\bigvee_{C \in C_{F}} C\right) \wedge A(x)\right) \\
& \stackrel{\text { SAT }}{\equiv} \bigvee_{C \in C_{F}} \exists x(C \wedge A(x)) \\
& \stackrel{\text { SAT }}{=} \bigvee_{C \in C_{F}} \exists x\left(C \wedge P_{A(x)}^{C}\right)
\end{aligned}
$$

- delete disjuncts with $P_{A(x)}^{C}$ being \perp
- if in a disjunct $P_{A(x)}^{C}$ is equal to T then the formula is already satisfiable
- collect the remaining chains in Γ

REDUCTION OF THE UNIVERSAL QUANTIFIER

$$
\begin{aligned}
\forall x B(x) & \stackrel{\text { SAT }}{\equiv} \Delta \forall x B(x) \stackrel{\text { SAT }}{\equiv} \forall x \Delta B(x) \\
& \stackrel{\text { SAT }}{\equiv} \forall x\left(\left(\bigvee_{C \in C_{F}} C\right) \wedge \Delta B(x)\right) \stackrel{\text { SAT }}{\equiv} \forall x\left(\bigvee_{C \in C_{F}}(C \wedge \Delta B(x))\right) \\
& \stackrel{\text { SAT }}{\equiv} \forall x\left(\bigvee_{C \in C_{F}}\left(C \wedge P_{\Delta B(x)}^{C}\right)\right) \\
& \stackrel{\text { SAT }}{\equiv} \forall x\left(\bigvee_{C \in C^{\prime} \subseteq C_{F}} C\right) \\
& \stackrel{\text { SAT }}{\equiv} \forall x \bigwedge_{j} \bigvee_{k} \mathcal{O}_{j, k} \stackrel{\text { SAT }}{\equiv} \bigwedge_{j} \forall x \bigvee_{k} \mathcal{O}_{j, k} \\
& \stackrel{\text { SAT }}{\equiv} \bigwedge_{j} \forall x \Pi_{j}
\end{aligned}
$$

SATISFIABILITY CONDITION

$$
F \stackrel{\text { SAT }}{\equiv} \bigvee_{C \in \Gamma} \exists x\left(C \wedge P_{A(x)}^{C}\right) \wedge \bigwedge_{j} \forall x \Pi_{j}
$$

The formula F is satisfiable iff there is a Δ-chain C in Γ such that C is compatible with each Π_{i}.
Note
Both Γ and Π_{i} are finite sets, so this is a finite check

CONSTRUCTION OF THE MODEL (CRUCIAL PART)

$$
F \stackrel{\text { SAT }}{\equiv} \bigvee_{C \in \Gamma} \exists x\left(C \wedge P_{A(x)}^{C}\right) \wedge \bigwedge_{j} \forall x \Pi_{j}
$$

Construction

- we have to ensure that the evaluation of the existential quantifier above actually takes the value 1
- take as universe of objects the natural numbers
- evaluations of atomic formulas (but those from the equivalence class of \perp have 1 as limit (not isolated) with respect to the objects
- since 1 is not isolated the chain of equivalence classes can be 'compressed' to 1

CONSTRUCTION OF THE MODEL (CRUCIAL PART)

$$
F \stackrel{\text { SAT }}{\equiv} \bigvee_{C \in \Gamma} \exists x\left(C \wedge P_{A(x)}^{C}\right) \wedge \bigwedge_{j} \forall x \Pi_{j}
$$

CONSTRUCTION OF THE MODEL (CRUCIAL PART)

$$
F \stackrel{\text { SAT }}{\equiv} \bigvee_{C \in \Gamma} \exists x\left(C \wedge P_{A(x)}^{C}\right) \wedge \bigwedge_{j} \forall x \Pi_{j}
$$

CONSTRUCTION OF THE MODEL (CRUCIAL PART)

$$
F \stackrel{\text { SAT }}{\equiv} \bigvee_{C \in \Gamma} \exists x\left(C \wedge P_{A(x)}^{C}\right) \wedge \bigwedge_{j} \forall x \Pi_{j}
$$

CONSTRUCTION OF THE MODEL (CRUCIAL PART)

$$
F \stackrel{\text { SAT }}{\equiv} \bigvee_{C \in \Gamma} \exists x\left(C \wedge P_{A(x)}^{C}\right) \wedge \bigwedge_{j} \forall x \Pi_{j}
$$

$$
c \rightarrow \infty
$$

$$
c=2
$$

$$
0=r_{2}^{0}<r_{2}^{1}<\ldots<r_{2}^{k-1}<
$$

$$
<r_{2}^{k}<\ldots<r_{2}^{n-1}<\psi_{2}^{n}=1
$$

$$
c=1
$$

$$
0=r_{0}^{0}<r_{0}^{1}<\ldots<r_{0}^{k-1}<r_{0}^{k}<\ldots<r_{0}^{n-1}<
$$

$$
<r_{0}^{n}=1
$$

THE CASE $|1|_{\text {CB }}=0$

Lemma
A formula A of SI Δ is in SAT-G G_{V}^{Δ} if it is in SAT-G G_{n}^{Δ} for $n \geq$ the number of predicates appearing in A plus 2 .

Theorem
If $|1|_{\mathrm{CB}}=0$ in V, then SAT-G G_{V}^{Δ} is decidable for $\mathrm{S} 1 \Delta$.

THE INVOLUTIVE NEGATION ~

- restriction on symmetric truth value sets
- extension to specific chains which are symmetric
- satisfiability condition extended by a clause that the syntactic evaluation is in an equivalence class above $1 / 2$

REDUCTION TO PROPOSITIONAL SATISFIABILITY

The propositional reduct A^{p} of A is defined as follows:

$$
\begin{aligned}
(\forall x A)^{p} & =A^{p} \quad(\exists x A)^{p}=A^{p} \\
(A * B)^{p} & =A^{p} * B^{p} \text { for } * \in\{\wedge, \vee, \rightarrow\} \\
(\Delta A)^{p} & =\Delta A^{p} \quad P_{i}(\bar{t})^{p}=P_{i} \\
0^{p} & =0 \quad 1^{p}=1
\end{aligned}
$$

REDUCTION CONT.

Let

$$
\begin{aligned}
F= & \forall x A_{1}(x) \wedge \ldots \wedge \forall x A_{m}(x) \wedge \\
& \exists x B_{1}(x) \wedge \ldots \wedge \exists x B_{n}(x) \\
\text { and } A= & \forall x \Delta\left(A_{1}(x) \wedge \ldots \wedge A_{n}(x)\right) .
\end{aligned}
$$

Then we have
(i) if V is infinite and 1 isolated,
$F \in \mathbf{S A T}-G_{V}^{\Delta} \quad \leftrightarrow A^{p} \wedge\left(\exists x B_{1}(x)\right)^{p} \in \mathbf{S A T}^{\Delta} \mathrm{G}_{\infty}^{\Delta}$ AND \ldots AND $A^{p} \wedge\left(\exists x B_{n}(x)\right)^{p} \in \mathbf{S A T}-\mathbf{G}_{\infty}^{\Delta}$

REDUCION CONT.

(ii) if V is infinite, but 1 not isolated, we have

$$
\begin{aligned}
F \in \mathbf{S A T}-\mathrm{G}_{V}^{\Delta} \leftrightarrow & A^{p} \wedge \neg \neg\left(\exists x B_{1}(x)\right)^{p} \in \mathbf{S A T}-\mathbf{G}_{\infty}^{\Delta} \text { AND } \ldots \text { AND } \\
& A^{p} \wedge \neg \neg\left(\exists x B_{n}(x)\right)^{p} \in \mathbf{S A T}-\mathbf{G}_{\infty}^{\Delta}
\end{aligned}
$$

(iii) Moreover, in case 2. we have: if

$$
A^{p} \wedge\left(\exists x B_{i}(x)\right)^{p} \notin \text { SAT- } \mathbf{G}_{\infty}^{\Delta} \text { for some } i=1, \ldots, n
$$

then F does not satisfy the final model property.

Remarks, Conclusions, Questions

- although the satisfiability condition is a finite check, the actual model constructed will not be finite, which in fact is impossible, consider e.g. $F=\forall x \Delta \neg A(x) \wedge \exists x A(x)$
- 1-satisfiability of S1 Δ formulas with Δ (same with \sim) is NP-complete
- in S1 Δ there are only two different logics, distinguished by the property that 1 is isolated or not
- as soon as we consider the 1 -variable class with Δ there are countably many different satisfiability logics
- in the absence of Δ not much is known, as many cases will collapse (e.g. SAT-G ${ }_{V}$ for $V=\{0,1\}, V=V_{\uparrow}$, $V=[0,1])$.

TIME FOR DINNER

