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History

ñ Gödel (1933) – finitely valued logics

ñ Dummett (1959) – infinitely valued propositional Gödel
logics

ñ Horn (1969) – linearly ordered Heyting algebras

ñ Takeuti-Titani (1984) – intuitionistic fuzzy logic

ñ Avron (1991) – hypersequent calculus

ñ Hájek (1998) – t-norm based logics

ñ Viennese group (Baaz, Beckmann, Ciabattoni,
Fermüller, Goldstern, Veith, Zach, P.) (since 90ies) –
proof theory, counting, Kripke, quantified
propositional, (monadic) fragments, . . .



Syntax and Semantics

Usual first-order language, ¬A is defined as A→ ⊥.

Evaluations
Fix a truth value set {0,1} ⊆ V ⊆ [0,1]

I : Atom , V

maps atomic formulas to elements of V .



Syntax and Semantics cont.

Extension of I to all formulas:

I(A∧ B) =min{I(A), I(B)}

I(A∨ B) =max{I(A), I(B)}

I(A→ B) =


I(B) if I(A) > I(B)

1 if I(A) ≤ I(B)

I(∀xA(x)) = inf{I(A(u)) : u ∈ U}

I(∃xA(x)) = sup{I(A(u)) : u ∈ U}



Validity and Satisfiability

validity (logic) G(∆)V A : ∀I : I(A) = 1

p-satisfiability p-SAT-G(∆)V A : ∃I : I(A) ≥ p

1-satisfiability 1-SAT-G(∆)V A : ∃I : I(A) = 1

Remark
Different V might generate the same set of formulas.

Warning
Satisfiability and Validity are not dual in the many-valued
setting!
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Descriptive Set Theory

Cantor-Bendixon Derivatives and Ranks
Polish spaces, i.e. separable, completely metrizable
topological spaces. R is a Polish space.

X′ = {x ∈ X : x is limit point of X}

Theorem (Cantor-Bendixon)
Let X be a polish space. For some countable ordinal α0,
Xα = Xα0 for all α ≥ α0 (Xα0 is the perfect kernel).



CB Ranks for countable closed sets

ñ If X is countable, then X∞ = ∅.
(every perfect set has at least cardinality of the
continuum)

ñ rank of an element: |x|CB = sup{α : x ∈ Xα}
ñ rank of X: |X|CB = sup{|x|CB : x ∈ X}
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Some results for validity

(recursive) Axiomatizability of GV

ñ V uncountable, 0 ∈ V∞: yes

ñ V uncountable, |0|CB = 0: yes

ñ otherwise: not r.e.

Decidability of monadic fragment
all are undecidable but one open case:
V↑ = {1− 1/n} ∪ {1}



Results for sat

Monadic logics

ñ |0|CB = 0: decidable
(subclasses: finite, prenex, ∃-fragment, monadic
witnessed)

ñ |0|CB ≥ 1, 3 predicate symbols one of which is constant
interpreted strictly between 0 and 1: undecidable

ñ |0|CB ≥ 2, 3 predicate symbols: undecidable

ñ |0|CB = 1, no special predicate constant: open



Results for sat cont.

Monadic with ∆
finite V is decidable, otherwise undecidable

Subclass S1∆
Decidable, only two logics: |1|CB = 0 and |1|CB > 0

Subclass S1∆∼ (with involutive negation)
Same as without ∼



Monadic logics: |0|CB = 0

Theorem

SAT-GV = SAT-CL

Proof
If A ∈ SAT-CL, then it is also in SAT-GV since {0,1} ⊆ V .
If A ∈ SAT-GV , define ICE as follows:

ICE(A) =

1 IG(A) > 0

0 o.w.

Induction on formulas, critical case if ∀xA(x) with
IG(∀xA(x)) = 0, but since 0 is isolated, there is a witness
IG(A(u)) = 0.



Consequences for 0 isolated

The following fragments are decidable due to the
decidability of SAT-GV for 0 isolated in V :

ñ finitely valued logics

ñ prenex fragment

ñ ∃-fragment

ñ monadic witnessed

Remark
All these satisfiability logics coincide with SAT-CL (for the
resp. fragments)



Interlude: V infinite, G∆V

Evaluation of ∆

I(∆A) =

1 I(A) = 1

0 otherwise

The definition of ∆ parallels the (computed) evaluation of
¬A:

I(¬A) =

1 I(A) = 0

0 otherwise



Undecidability of SAT-G∆V

Logic CE
Classical theory CE of two equivalence relations.

A = Q∗
∨
j

∧
k
(xkj ≡i ykj )l

Fact
SAT-CE is not even recursively enumerable

Theorem
CE can be faithfully interpreted in monadic G∆V , and thus
monadic SAT-G∆V is undecidable.



Interpreting CE in G∆V

Proof

σ(x ≡i y) = ∆(Pix ↔ Piy)

λ injective {[u]i : u ∈ UCE, i = 1,2} → V \ {0,1}

IG(Piu) = λ([u]i)



|0|CB ≥ 1, three predicate symbols

Theorem
If |0|CB ≥ 1 in V , there are at least three predicate symbols,
one of which is constant strictly between 0 and 1, then
SAT-GV is undecidable.

Proof
As above, but we have to translate negation, too

σ(x ≡i y) = (Pix ↔ Piy)

σ(x �i y) = (Pix ↔ Piy)→ S

λ injective {[u]i : u ∈ UCE, i = 1,2} → V ∩ (0, IG(S))

IG(Piu) = λ([u]i)



|0|CB ≥ 2, three predicate symbols

Theorem
If |0|CB ≥ 2 in V and there are at least three predicate
symbols, then SAT-GV is undecidable.

Proof ideas

ñ forcing third predicate to decrease to 0:
¬∀xS(x)∧∀x¬¬S(x)

ñ confine interpretations to intervals below S(u)
ñ parallel execution of the above construction for each of

these intervals

ñ multiplication of the universe for each of these
intervals



The translation

σa,b(∀rB) = ∀r(P1r ≺ Pb ∨ Pa ≺ P1r ∨ P2r ≺ Pb ∨ Pa ≺ P2r ∨ σa,b(B))
σa,b(∃rB) = ∃r((Pb ≺ P1r ≺ Pa)∧ (Pb ≺ P2r ≺ Pa)∧ σa,b(B))
σa,b(

∨
j

∧
k
(rkj ≡i skj )l) =

∨
j

∧
k
σ((rkj ≡i skj )l)

σa,b(r ≡i s) = (Pir ↔ Pis)
σa,b(r 6≡i s) = ((Pir ↔ Pis)→ Pa))

τ(A) = ¬∀xPx ∧∀x¬¬Px∧
∀x(Px ∨ ∃y∃z[Pz ≺ Py ∧ Py ≺ Px ∧

∀u(Pu→ Pz ∨ Py → Pu)∧
∃w(Pz ≺ P1w ≺ Py ∧ Pz ≺ P2w ≺ Py)∧
σy,z(A)])



The open case

That leaves the case that |0|CB = 1 with no constant
predicate symbol open.

Lemma
If |0|CB = 1 in V , then SAT-GV = SAT-GV↓ where
V↓ = {1/n : n ∈ N} ∪ {0}

Remark
Remember that the only open case for validity is V↑.
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Summary for monadic logics

ñ |0|CB = 0: SAT-GV decidable
(subclasses: finite, prenex, ∃-fragment, monadic
witnessed)

ñ |0|CB ≥ 1, 3 predicate symbols one of which is constant
interpreted strictly between 0 and 1: SAT-GV
undecidable

ñ |0|CB ≥ 2, 3 predicate symbols: SAT-GV undecidable

ñ |0|CB = 1, no special predicate constant: SAT-GV open

ñ finite V : SAT-G∆V decidable

ñ infinite V : SAT-G∆V undecidable

Where to go from here?



The fragment S1∆

Definition
The fragment S1∆ consists of all formulas in the language
with ∆ of the form

n∨
i=1

(∃xAi1(x)∧ . . .∧∃xAini(x)∧∀xB
i
1(x)∧ . . .∧∀xBimi(x))

where Aik and Bik quantifier-free containing no constant
symbols.

Background
Medical database of the General Hospital in Vienna,
development of an expert system for medical decisions



Results for S1∆

ñ |1|CB = 0 in V , then SAT-S1∆ is decidable

ñ |1|CB > 0 in V , then SAT-S1∆ is decidable

ñ the above two cases are the only ones, and they are
different (the set of satisfiable formulas are different)

ñ adding the involutive negation ∼ does not change the
status



The case |1|CB > 0 (the bad one)

∆-chains
Let P ≺ Q stand for ¬∆(Q → P)
Let P ≥ Q stand for ∆(P → Q)∧∆(Q → P).
Let F be any formula in S1∆ and A1, . . . , An be the
predicates occurring in F . A ∆-chain over F is any formula
of the form

(⊥ö0 Aπ(1)(x))∧(Aπ(1)(x) ö1 Aπ(2)(x))∧(Aπ(n)(x) ön >)

where π is a permutation of {1, . . . , n}, öi is either ≺ or ≥,
and at least one of the öi’s stands for ≺.



Chains cont.

ñ every ∆-chain describes a possible ordering of the
values of predicates of F

ñ every ∆-chain Ci induces equivalence classes over the
predicates of F

ñ if CF is the set of all chains, then
∨
C∈CF C is a

tautology in G∆V .

Syntactic evaluation
For every quantifier-free subformula A(x) of F and every
∆-chain C there is a predicate symbol (or > or ⊥) PCA(x) such
that

I(C ∧A(x)) = I(C ∧ PCA(x))
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Reduction of the existential quantifier

∃xA(x) SAT≡ ∃x((
∨
C∈CF

C)∧A(x))

SAT≡
∨
C∈CF

∃x(C ∧A(x))

SAT≡
∨
C∈CF

∃x(C ∧ PCA(x))

ñ delete disjuncts with PCA(x) being ⊥
ñ if in a disjunct PCA(x) is equal to > then the formula is

already satisfiable

ñ collect the remaining chains in Γ



Reduction of the universal quantifier

∀xB(x) SAT≡ ∆∀xB(x) SAT≡ ∀x∆B(x)
SAT≡ ∀x((

∨
C∈CF

C)∧∆B(x)) SAT≡ ∀x(
∨
C∈CF

(C ∧∆B(x)))

SAT≡ ∀x(
∨
C∈CF

(C ∧ PC∆B(x)))

SAT≡ ∀x(
∨

C∈C′⊆CF
C)

SAT≡ ∀x
∧
j

∨
k
Oj,k

SAT≡
∧
j
∀x

∨
k
Oj,k

SAT≡
∧
j
∀xΠj



Satisfiability condition

F
SAT≡

∨
C∈Γ
∃x(C ∧ PCA(x))∧

∧
j
∀xΠj

The formula F is satisfiable iff there is a ∆-chain C in Γ
such that C is compatible with each Πi.

Note
Both Γ and Πi are finite sets, so this is a finite check



Construction of the model (crucial part)

F
SAT≡

∨
C∈Γ
∃x(C ∧ PCA(x))∧

∧
j
∀xΠj

Construction

ñ we have to ensure that the evaluation of the existential
quantifier above actually takes the value 1

ñ take as universe of objects the natural numbers

ñ evaluations of atomic formulas (but those from the
equivalence class of ⊥ have 1 as limit (not isolated)
with respect to the objects

ñ since 1 is not isolated the chain of equivalence classes
can be ‘compressed’ to 1



Construction of the model (crucial part)

F
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∧
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0 1
[⊥] ≺ [Pi1]≺[PCA(x)]≺[Pi3]≺ [Pi4]≺ . . . ≺ [>]

n = 0

n = 1

n = 2

...

∞
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c = 0

0 = r0
0 < r

1
0 < . . . < r

k−1
0 < rk0 < . . . < rn−1

0 < < rn0 = 1

c = 1

0 = r0
1 < r

1
1 < . . . < r

k−1
1 < < rk1 < . . . < r

n−1
1 < < rn1 = 1

c = 2

0 = r0
2 < r

1
2 < . . . < r

k−1
2 < < rk2 <. . .<r

n−1
2 << rn2 = 1

c →∞

Figure: Model construction, rkc =ϕ(Pk(c)) for Pk ∈ αk



The case |1|CB = 0

Lemma
A formula A of S1∆ is in SAT-G∆V if it is in SAT-G∆n for n ≥
the number of predicates appearing in A plus 2.

Theorem
If |1|CB = 0 in V , then SAT-G∆V is decidable for S1∆.



The involutive negation ∼

ñ restriction on symmetric truth value sets

ñ extension to specific chains which are symmetric

ñ satisfiability condition extended by a clause that the
syntactic evaluation is in an equivalence class above
1/2



Reduction to propositional
satisfiability

The propositional reduct Ap of A is defined as follows:

(∀xA)p = Ap (∃xA)p = Ap

(A∗ B)p = Ap ∗ Bp for ∗ ∈ {∧,∨,→}
(∆A)p = ∆Ap Pi(t̄)p = Pi

0p = 0 1p = 1



Reduction cont.

Let

F =∀xA1(x)∧ . . .∧∀xAm(x)∧
∃xB1(x)∧ . . .∧ ∃xBn(x)

and A = ∀x∆(A1(x)∧ . . .∧An(x)).

Then we have
(i) if V is infinite and 1 isolated,

F ∈ SAT-G∆V ↔ Ap ∧ (∃xB1(x))p ∈ SAT-G∆∞ AND . . . AND

Ap ∧ (∃xBn(x))p ∈ SAT-G∆∞



Reducion cont.

(ii) if V is infinite, but 1 not isolated, we have

F ∈ SAT-G∆V ↔ Ap ∧¬¬(∃xB1(x))p ∈ SAT-G∆∞ AND . . . AND

Ap ∧¬¬(∃xBn(x))p ∈ SAT-G∆∞

(iii) Moreover, in case 2. we have: if

Ap ∧ (∃xBi(x))p 6∈ SAT-G∆∞ for some i = 1, . . . , n.

then F does not satisfy the final model property.



Remarks, Conclusions, Questions

ñ although the satisfiability condition is a finite check,
the actual model constructed will not be finite, which
in fact is impossible, consider e.g.
F = ∀x∆¬A(x)∧ ∃xA(x)

ñ 1-satisfiability of S1∆ formulas with ∆ (same with ∼) is
NP-complete

ñ in S1∆ there are only two different logics,
distinguished by the property that 1 is isolated or not

ñ as soon as we consider the 1-variable class with ∆
there are countably many different satisfiability logics

ñ in the absence of ∆ not much is known, as many cases
will collapse (e.g. SAT-GV for V = {0,1}, V = V↑,
V = [0,1]).



Time for dinner
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