
Formalization of Mathematics

Masahiko Sato

Graduate School of Informatics, Kyoto University

Workshop on Logic and Computation
Kanazawa, Japan
February 8, 2011



Contents

My view of mathematics

What is formalized mathematics?

Why formalize mathematics?

History of formalization

Mathematical Objects

Our approach



My view of mathematics

Mathematics is a human linguistic activity.

Mathematics has been and will be developed by humans.

Mathematics is communicated by language.

Mathematics always changes dynamically.

Mathematics is open ended.



What is formalized mathematics?

A formalized mathematics is written in a formal language.

Syntax of the language is formally given by, e.g., a
context-free grammar.

Mathematical objects are represented by linguistic entities
such as nouns.

Mathematical assersions (propositions) are represented by
formulas, which are also linguistic objects.

Proofs are also formally written in the formal language.

Given any formula and (formal) proof, it is primitive
recursively decidable if the proof proves the formula.

Note that there is no formal definition of formalized mathematics.
(Cf. Church’s Thesis.)



Why formalize mathematics?

Motivations coming from mathematics.

Motivations coming from computer science.



Why formalize mathematics? (cont.)

Motivations coming from mathematics

Proof of unprovability of a proposition.

Consistency proof.

Gödel’s incompleteness theorem.

Reverse mathematics.

Zermelo-Fraenkel set theory.

These motivations are mainly theoretical. Mathematicians usually
talk about formalized mathematics but not work in it.

Formalization of logic is important here.



Why formalize mathematics? (cont.)

Motivations coming from computer science

Verifcation of proofs.

Verifcation of programs.

Constructive programming.

Formalization of metamathematics.

These motivations are mainly practical. Some computer scientists
are interested in creating a computer environment for doing
mathematics in it.

Cf., Isabelle, Coq, Agda etc.

Formalization of computation is important here.



History of formalization

Frege (Begriffsschrift, 1879) Higher order logic, Natural
deduction

Russell (Principia Mathematica (with Whitehead), 1910) Type
theory

Brouwer (Intuitionism) → Heyting

Hilbert (Formalism) → Gödel, Gentzen

Zermelo-Fraenkel (Set theory)

Church (λ-calculus, Simple theory of types)

Turing (universal Turing machine, decision problem)

de Bruijn (Automath 1967 −)

Mizar (1973 −)

Coq

Isabelle

Agda



History of formalization (cont.)

Decimal notation for natural numbers (0, 1, . . .)

Use of symbols for functions on numbers (+,− etc.)

Use of equality sign (=) for the equality proposition.

Use of “f(x)” for function application.

Use of TEX, LATEX for writing mathematical papers.

Use of CAS (computer algebra system) by mathematicians.

Use of proof assistance system by mathematicians is not yet
realized.

We can observe that what mathematicians consider to be
mathematical objects have formal notations. In other word,
mathematicians today do not consider proofs and most of
propostions to be mathematical objects.

Mathematics is already partially formalized, and I call it
semi-formalization.



History of formalization (cont.)

Decimal notation for natural numbers (0, 1, . . .)

Use of symbols for functions on numbers (+,− etc.)

Use of equality sign (=) for the equality proposition.

Use of “f(x)” for function application.

Use of TEX, LATEX for writing mathematical papers.

Use of CAS (computer algebra system) by mathematicians.

Use of proof assistance system by mathematicians is not yet
realized.

We can observe that what mathematicians consider to be
mathematical objects have formal notations. In other word,
mathematicians today do not consider proofs and most of
propostions to be mathematical objects.

Mathematics is already partially formalized, and I call it
semi-formalization.



Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

...1 Mathematical objects of the first kind.

...2 Mathematical objects of the second kind.



Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism

Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

...1 Mathematical objects of the first kind.

...2 Mathematical objects of the second kind.



Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

...1 Mathematical objects of the first kind.

...2 Mathematical objects of the second kind.



Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

...1 Mathematical objects of the first kind.

...2 Mathematical objects of the second kind.



Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest

Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

...1 Mathematical objects of the first kind.

...2 Mathematical objects of the second kind.



Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

...1 Mathematical objects of the first kind.

...2 Mathematical objects of the second kind.



Mathematical Objects

In mathematics we talk about mathematical objects, but what are
mathematical objects and how they are constructed?

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Ontology concerns what and computation concerns how.

We classify mathematical objects into the following two kinds.

...1 Mathematical objects of the first kind.

...2 Mathematical objects of the second kind.



Mathematical Objects (cont.)

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential

Math Objects Set Type Class



Mathematical Objects (cont.)

Platonism Constructivism Formalism

Philosophy Realism Conceptualism Nominalism
Mathematics Logicism Intuitionism Formalism

Comp. Sci. Denotational
semantics

Operational
semantics

Axiomatic
semantics

Ontology Strong Weak Weakest
Computation Neglected Essential Essential
Math Objects Set Type Class



Objects of the first kind

Objects of the first kind are created by the fundamental principle
of object creation:

Every object a is created from already created n objects
a1, . . . , an (n ≥ 0) by applying a creation method M .

We can visualize this act of creation by the following figure:

a1 · · · an
a M

or, by the equation:

a = M (a1, . . . , an)



Objects of the first kind (cont.)

Equality and inequality relation on objects are defined
simultaneously with the creation of objects.

Two objects:

M (a1, . . . , am) and N (b1, . . . , bn)

are equal (=) if and only if M and N are the same method,
m = n and ai = bi (1 ≤ i ≤ m).

In other words, two objects are equal if they are created in exactly
the same way, and the equality relation is decidable.

Moreover, given a creation method M and a sequence of (already
created) objects, it is decidable whether M may be applied to
these objects to create a new object. (Decidability of side
condition.)



Objects of the first kind (cont.)

Equality and inequality relation on objects are defined
simultaneously with the creation of objects.

Two objects:

M (a1, . . . , am) and N (b1, . . . , bn)

are equal (=) if and only if M and N are the same method,
m = n and ai = bi (1 ≤ i ≤ m).

In other words, two objects are equal if they are created in exactly
the same way, and the equality relation is decidable.

Moreover, given a creation method M and a sequence of (already
created) objects, it is decidable whether M may be applied to
these objects to create a new object. (Decidability of side
condition.)



Objects of the first kind (cont.)

Equality and inequality relation on objects are defined
simultaneously with the creation of objects.

Two objects:

M (a1, . . . , am) and N (b1, . . . , bn)

are equal (=) if and only if M and N are the same method,
m = n and ai = bi (1 ≤ i ≤ m).

In other words, two objects are equal if they are created in exactly
the same way, and the equality relation is decidable.

Moreover, given a creation method M and a sequence of (already
created) objects, it is decidable whether M may be applied to
these objects to create a new object. (Decidability of side
condition.)



Objects of the first kind (cont.)

Mathematical objects of the first kind are constructed by the
fundamental priciple of object creation:

An object of the first kind is created from finitely many
already created objects of the first kind.

The creation is done by applying a creation method to
existing objects.

Both the creation method and the created object belongs to a
specific class.

The class is called the mother class of the created object.

Thus, any object is created as an instance of its mother class.

The equality relation (=) on objects of the first kind is called
the equality of the first kind.



Objects of the second kind

Let C be a class whose members are objects of the first kind, and
let =2 be a (partial) equivalence relation on C.

We can obtain objects of the second kind by identifying a and b in
C if a =2 b. When =2 is a partial equivalence relation, an object
a of the first kind in C is considered to be an object of the second
kind if a =2 a holds.

In this setting, functions and relations on these objects must be
defined so that the equality =2 becomes congruence relation with
respect to these functions and relations.

Well-definedness of these functions and relations are sometimes
nontrivial.

Also, inductive arguments are not as smooth as for objects of the
first kind, or even impossible.



Objects of the second kind (cont.)

Example: Rational numbers.
Let Z be the class of integers, and let Z × Z be the class whose
members are a/b where a, b ∈ Z. Define =2 on Z × Z by:

a/b =2 c/d ⇐⇒ ad = bc and b 6= 0 and d 6= 0

We can define addition (+) on rational numbers by putting:

a/b + c/d := (ad + bc)/bd.

This is a well-defined operation, since we have
a/b + c/d =2 a′/b′ + c′/d′ if a/b =2 a′/b′ and
c/d =2 c′/d′.
However, taking the denominator of a rational number is not a
well-defined function on rational numbers. That is, from
1/2 =2 2/4, it does not follow that 2 = 4.



Our way of formalization

Define formal language as a subset of natural language (such
as English).

The formalized language is reflective, and can talk about itself
easily and naturally.

Formalize minimal mathematics which can talk about and
compute any formal system.

We do not formalize full mathematics directly but do this
indirectly by formalizing finite and symbolic mathematics
which naturally includes metamathematics.

We can then develop any mathematics within this framework.



Basic concepts

Even if we try to boot strap mathematics from scratch, we must
start from somewhere, where we have some intuitive understanding
of basic concepts which are, perhaps, absolutely necessary to
construct mathematics from them.
Here, we propose the following four basic concepts:

Tuple, Symbol, Function and Class.



Tuple

Given any finite sequence of objects a1, . . . , an, we we can form a
tuple

(a1 . . . an)

of these objects.

Tuples are created by the following two methods.

(Tuple/nil) : 〈Nat〉 Tuple/nil

a : 〈object〉 b : 〈Tuple〉
(Tuple/cons a b) : 〈Nat〉 Tuple/cons



Symbol

A symbol is used as a name of some objects.
For example, we can use the symbol one as a name of the natural
number 1.
We assume that for any objects, there is a uniquely determined
symbol.

a : 〈object〉
(Symbol/symbol a) : 〈Symbol〉 Symbol/symbol



Function

A function is either a primitive function or a defined funtion.
Functions are identified by its name, which is a symbol.
A function is called a method, if it can be used to create new
objects from existing objects.



Class

A class is either a mother class the bottom class or the top class.
Each class is identified by its name, which is symbol whose first
and last character is an angular bracket.
For example, we will write 〈object〉 and 〈〉 for the top and the
bottom class, respectively.
The initial four mother classes are: 〈Tuple〉, 〈Symbol〉,
〈Function〉 and 〈Class〉.



Primitive Methods

Tuple/nil : → <Tuple>

Tuple/cons : <object> <Tuple> → <Tuple>

Symbol/symbol : <object> → <Symbol>

Function/prim : <Symbol> -→ <Function>

Function/defun : <Symbol> <Tuple> <Tuple> -→ <Function>

Class/top : → <Class>

Class/class : <Symbol> -→ <Class>

Class/subclass : <Symbol> <Tuple> <Class> -→ <Class>



Analysis of objects

Any object can be completely analyzed by the following primitive
functions.

mother-name : 〈object〉 → 〈Symbol〉
method-name : 〈object〉 → 〈Symbol〉

body : 〈object〉 → 〈Tuple〉

The case function is implemented by these methods.
We can prove properties of objects by induction on the creation of
objects.



Natural Number

The class 〈Nat〉 of natural numbers has two methods.

(Nat/zero) : 〈Nat〉 Nat/zero

n : 〈Nat〉
(Nat/succ n) : 〈Nat〉 Nat/succ



Error

The class 〈Error〉 is defined by the following methods.

(Error/diverge a) : 〈Error〉 Error/diverge

a : 〈object〉
(Error/error a) : 〈Error〉 Error/error



Environment

An environmet (Γ,∆, . . .) a meta object keeping the assignment
of objects to a finite number of symbols.
If Γ assigns an object v to a symbol x, we will write Γ(x) for v.

An environment also has the collection of objects created so far.

An environment changes by the cycle of evaluation described in the
next slide.



Evaluation

An evaluation is a cycle of the followng steps. Before starting a
cycle, the system is charcterized by its current environment Γ.

Read in an expression, and convert it into an object a.

The object a is evaluated, and if the evaluation succeeds, a
value v and a new environment ∆ is obtained.

The value is printed as an expression.

We write this cycle as follows.

Γ ` a ⇓ v a ∆

Objects are created during the process of evaluation.
After the evaluation, all the assignments in Γ is kept in ∆, and
may contain new assignments.



Evaluation (cont.)

There are two cases where the evaluation of an object fails.

The evaluation continues forever.

Reference to a symbol unbound in the current enviroment.

In these cases, the failed object a is said to be meaningless. After
the failed evaluation of a meaningless object, the environment Γ in
which a is evaluated is restored.

The evaluation relation has the following properties.

If Γ ` a ⇓ v a ∆, then Γ ⊆ ∆.

If Γ ` a ⇓ v a∆ and Γ⊆ Γ′, then Γ′ ` a ⇓ v a∆′ for some
∆ ⊆ ∆′.



Evaluation (cont.)

When Γ ` a ⇓ v a ∆ holds, the relation

Γ →a ∆

also holds. We read the relation: Evaluation of a in Γ creates ∆.
We write Γ1 →a1,...,an Γn for the obvious compositions of this
relation.
This relation has the following confluence property (after some
renaming of symbols not in Γ).

If
Γ →a1,...,am Π and Γ →b1,...,bn Σ,

then
Π →b1,...,bn ∆ and Σ →a1,...,am ∆

for some ∆.



Abstract

We have a class 〈logicvar〉 of logic variables which is a subclass
of 〈Symbol〉.
The class 〈Abs〉 of abstracts is defined by the following method.

x : 〈logicvar〉 a : 〈object〉
(Abs/abs x a) : 〈Abs〉 Abs/abs

The application of the method succeeds only when the height of x
in a is x.



Proposition

We have only one atomic proposition of equalily from which all the
propositions are constructed.

a : 〈object〉 b : 〈object〉
(Prop/= a b) : 〈Prop〉 Prop/=

It is decidable whether a given object a is a proposition.

Each proposition will be either meaningless or has the truth value
true or false.

The equality proposition above is meaningful iff both a and b are
meaningful. It is then true of the values of a and b are eaual.



Conjunction

A : 〈Prop〉 B : 〈Prop〉
(Prop/∧ A B) : 〈Prop〉 Prop/∧

A ∧ B is meaningful if both A and B are meningful.
A meaningful conjuction is true iff both A and B are true.



Disjunction

A : 〈Prop〉 B : 〈Prop〉
(Prop/∨ A B) : 〈Prop〉 Prop/∨

A ∨ B is meaningful if both A and B are meningful.
A meaningful disjunction is true iff either A or B is true.



Implication

A : 〈Prop〉 B : 〈Prop〉
(Prop/⊃ A B) : 〈Prop〉 Prop/⊃

A ⊃ B is meaningful if both A and B are meningful.
A meaningful implicaiton is true iff B is true whenever A is true.



Universal quantification

A : 〈Abs〉
(Prop/∀ A) : 〈Prop〉 Prop/∀

The application of this method succeeds only when A is an
abstract of the form (Abs/abs x B) where B is a proposition.

We write ∀x. B[x] for the above proposition.

This propostion is meaningful in Γ if B[a] is meaningful in any
extension ∆ of Γ and for any object a in ∆.

If ∀x. B[x] is meaningful, then it is true iff if B[a] is true in any
extension ∆ of Γ and for any object a in ∆.



Existential quantification

A : 〈Abs〉
(Prop/∃ A) : 〈Prop〉 Prop/∃

The application of this method succeeds only when A is an
abstract of the form (Abs/abs x B) where B is a proposition.

We write ∃x. B[x] for the above proposition.

This propostion is meaningful in Γ if B[a] is meaningful in any
extension ∆ of Γ and for any object a in ∆.

If ∀x. B[x] is meaningful, then it is true iff B[a] is true in some
extension ∆ of Γ and for some object a in ∆.



Proof

The class 〈Proof〉 has the following method for making an
assumption.

x : 〈logicvar〉 A : 〈Prop〉
(Proof/var x A) : 〈Proof〉 Proof/var

For each proof a, we define the list (hyp a) of assumptions on
which the proof depends, and also the conclusion (ccl a) of
assumptions on which of the proof.

In case of the above method, they are [A] and A.
For example, the



Proof (cont.)

The following method discharges an assumption from a proof.

A : 〈Pfop〉 B : 〈Abs〉
(Prop/ ⊃ I A B) : 〈Prop〉 Prop/ ⊃ I

The application of this method succeeds only when B is an
abstract of the form (Abs/abs x b) where b is a proof and the
height of x in b is x and moreover each occurrence of x in b is
used as a proof variable for A.



Basic judgements

e ↓ a (e evaluates to a.)

a : c. (a is an instance of c.)



Summary

Initially, there is no formal object.

The universe of formal objects is extended by the act of
applying a creation method to existing objects.

Thus, the universe is extended by the above unit action which
adds one new object to the universe.

Hence, the universe has only finite number of objects at any
moment.

The future of the universe is open ended and it is extended in
a non-deterministic way.

In other word, we can imagine the tree of possible
mathematics, and we mathematicians are walking on the tree
by choosing a branch in each step.


