$\begin{array}{c} Church \Rightarrow Scott = Ptime: \\ an application of resource-sensitive \\ realizability \\ \end{array}$

Kazushige Terui

RIMS, Kyoto University

email: terui@kurims.kyoto-u.ac.jp

Aloïs Brunel

ENS Paris

Realizability:

- A way to extract useful information from proofs.
- **●** Define a binary predicate $t \Vdash A$ by induction on formulas:

$$t \Vdash A \Rightarrow B \quad \text{iff} \quad \forall u. \quad u \Vdash A \Longrightarrow tu \Vdash B$$

Prove adequacy by induction on proofs:

$$\vdots \pi \qquad \Longrightarrow \qquad \pi^* \Vdash A \\ \vdash A$$

Related methods: logical relations, Tait-Girard reducibility argument,

Linear implication $L \multimap A$ vs Intuitionistic implication $A \Rightarrow B$. In the Curry-Howard setting,

 $\lambda x.t: L_1 \multimap L_2$ roughly when x occurs at most once in t.

Notice: In this talk, 'linear" actually means "affine."

Linear implication $L \multimap A$ vs Intuitionistic implication $A \Rightarrow B$. In the Curry-Howard setting,

 $\lambda x.t: L_1 \multimap L_2$ roughly when x occurs at most once in t.

Notice: In this talk, 'linear" actually means "affine."

Fundamental question: How do you distinguish \multimap from \Rightarrow in realizability semantics?

Linear implication $L \multimap A$ vs Intuitionistic implication $A \Rightarrow B$. In the Curry-Howard setting,

 $\lambda x.t: L_1 \multimap L_2$ roughly when x occurs at most once in t.

Notice: In this talk, 'linear" actually means "affine."

Fundamental question: How do you distinguish \multimap from \Rightarrow in realizability semantics?

Key: When x is linear in t,

$$\mathbf{Cost}((\lambda x.t)u) \leq \mathbf{Cost}(\lambda x.t) + \mathbf{Cost}(u) + c.$$

Resource-sensitive realizability (Hofmann-Dal Lago):

Define a ternary relation

$$t, p \Vdash A$$

- \bullet t: realizer = program.
- p: majorizer bounding the cost of t.

The adequacy theorem (or the "basic lemma") states:

$$\vdash t : A \implies t, p \Vdash A \text{ for some } p.$$

Based on this, HD prove Ptime soundness for LAL, LFPL, SAL, BLL.

Lambda-calculus characterization of Ptime (Leivant-Marion 93): Consider $\lambda_{\to,\times}$ with constants:

$$\epsilon: o, \quad s_0, s_1, p: o \to o, \quad dscr: o \to o^3 \to o$$

We have two representations of binary word 010:

First order
$$s_0(s_1(s_0(\epsilon)))$$
 : o

Church
$$\lambda f_0 f_1 x. f_0(f_1(f_0 x)) : W^{\bullet}(\alpha),$$

where
$$W^{\bullet}(\alpha) := (\alpha \to \alpha)^2 \to (\alpha \to \alpha)$$
.

Theorem: $f: \{0,1\}^* \longrightarrow \{0,1\}^*$ is Ptime if and only if it is represented by a term of type $W^{\bullet}(o^m) \to o$ for some m.

Church numerals:

$$\mathbf{n}^{\bullet} \equiv \lambda f x. \underbrace{f(...f}_{n \ times}(x)...)$$
 have type $\mathbf{N}^{\bullet} \equiv \forall \alpha (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha).$

Church numerals:

$$\mathbf{n}^{\bullet} \equiv \lambda f x. \underbrace{f(...f}_{n \ times}(x)...)$$
 have type $\mathbf{N}^{\bullet} \equiv \forall \alpha (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha).$

Where do they come from?

$$N = \bigcap \{\alpha : 0 \in \alpha, \ \forall x. (x \in \alpha \Rightarrow x + 1 \in \alpha)\}$$
$$n \in N \equiv \forall \alpha. \forall x. (x \in \alpha \Rightarrow x + 1 \in \alpha) \Rightarrow 0 \in \alpha \Rightarrow n \in \alpha$$

Church numerals:

$$\mathbf{n}^{\bullet} \equiv \lambda f x. \underbrace{f(...f}_{n \ times}(x)...)$$
 have type $\mathbf{N}^{\bullet} \equiv \forall \alpha (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha).$

Where do they come from?

$$N = \bigcap \{\alpha : 0 \in \alpha, \ \forall x. (x \in \alpha \Rightarrow x + 1 \in \alpha)\}$$
$$n \in N \equiv \forall \alpha. \forall x. (x \in \alpha \Rightarrow x + 1 \in \alpha) \Rightarrow 0 \in \alpha \Rightarrow n \in \alpha$$

9 By extracting a λ -term from the proof of $n \in N$, we obtain n^{\bullet} .

Church numerals:

$$n^{\bullet} \equiv \lambda f x. \underbrace{f(...f}_{n \ times}(x)...)$$
 have type $N^{\bullet} \equiv \forall \alpha (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha).$

Where do they come from?

$$N = \bigcap \{\alpha : 0 \in \alpha, \ \forall x. (x \in \alpha \Rightarrow x + 1 \in \alpha)\}$$
$$n \in N \equiv \forall \alpha. \forall x. (x \in \alpha \Rightarrow x + 1 \in \alpha) \Rightarrow 0 \in \alpha \Rightarrow n \in \alpha$$

- **9** By extracting a λ -term from the proof of $n \in N$, we obtain n^{\bullet} .
- $n \in N$ can be simplified to N•:

$$n \in N \equiv \forall \alpha. \forall x. (x \in \alpha \Rightarrow x + 1 \in \alpha) \Rightarrow 0 \in \alpha \Rightarrow n \in \alpha$$

$$N^{\bullet} \equiv \forall \alpha (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha).$$

Scott numerals:

Scott numerals:

Where do they come from?

$$n \in N' \equiv n = 0 \lor \exists x \in N'. n = x + 1$$

Scott numerals:

Where do they come from?

$$n \in N' \equiv n = 0 \lor \exists x \in N'. n = x + 1$$

Two solutions:

$$N' = \mathbb{N}$$
 or $N' = \mathbb{N} \cup \{\omega\}$

We do not specify which N' is. Still $n \in N'$ is provable.

By noting $A \vee B \equiv \forall \alpha. (A \Rightarrow \alpha) \Rightarrow (B \Rightarrow \alpha) \Rightarrow \alpha$,

$$n \in N' \equiv \forall \alpha. (\exists x \in N'. n = x + 1 \Rightarrow \alpha) \Rightarrow (x = 0 \Rightarrow \alpha) \Rightarrow \alpha$$

and one extracts Scott numeral n° from the proof of $n \in N'$. $n \in N'$ simplifies to N° :

$$n \in N' \equiv \forall \alpha. (\exists x \in N'. n = x + 1 \Rightarrow \alpha) \Rightarrow (x = 0 \Rightarrow \alpha) \Rightarrow \alpha$$

$$N'' \equiv \forall \alpha. (N'' \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha)$$

$$N^{\circ} \equiv \forall \alpha. (N^{\circ} \multimap \alpha) \multimap (\alpha \multimap \alpha).$$

By noting $A \vee B \equiv \forall \alpha. (A \Rightarrow \alpha) \Rightarrow (B \Rightarrow \alpha) \Rightarrow \alpha$,

$$n \in N' \equiv \forall \alpha. (\exists x \in N'. n = x + 1 \Rightarrow \alpha) \Rightarrow (x = 0 \Rightarrow \alpha) \Rightarrow \alpha$$

and one extracts Scott numeral n° from the proof of $n \in N'$. $n \in N'$ simplifies to N° :

$$n \in N' \equiv \forall \alpha. (\exists x \in N'. n = x + 1 \Rightarrow \alpha) \Rightarrow (x = 0 \Rightarrow \alpha) \Rightarrow \alpha$$

$$N'' \equiv \forall \alpha. (N'' \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha)$$

$$N^{\circ} \equiv \forall \alpha. (N^{\circ} \multimap \alpha) \multimap (\alpha \multimap \alpha).$$

By noting $A \vee B \equiv \forall \alpha. (A \Rightarrow \alpha) \Rightarrow (B \Rightarrow \alpha) \Rightarrow \alpha$,

$$n \in N' \equiv \forall \alpha. (\exists x \in N'. n = x + 1 \Rightarrow \alpha) \Rightarrow (x = 0 \Rightarrow \alpha) \Rightarrow \alpha$$

and one extracts Scott numeral n° from the proof of $n \in N'$. $n \in N'$ simplifies to N° :

$$n \in N' \equiv \forall \alpha. (\exists x \in N'. n = x + 1 \Rightarrow \alpha) \Rightarrow (x = 0 \Rightarrow \alpha) \Rightarrow \alpha$$

$$N'' \equiv \forall \alpha. (N'' \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha)$$

$$N^{\circ} \equiv \forall \alpha. (N^{\circ} \multimap \alpha) \multimap (\alpha \multimap \alpha).$$

- n° is a linear λ -term.
- Does not support recursion by itself, but admits a natural definition of predecessor and discriminator.

We replace the first order words of Leivant-Marion by Scott words.

- We replace the first order words of Leivant-Marion by Scott words.
- For this, we introduce a variant of linear logic (\Rightarrow, \neg) with second order quantifier \forall and type fixpoint operator μ , both restricted to linear formulas.

- We replace the first order words of Leivant-Marion by Scott words.
- For this, we introduce a variant of linear logic (\Rightarrow, \neg) with second order quantifier \forall and type fixpoint operator μ , both restricted to linear formulas.
- We prove: a function $f: \{0,1\}^* \longrightarrow \{0,1\}^*$ is Ptime if and only if it is represented by a term of type $Church \Rightarrow Scott$.

- We replace the first order words of Leivant-Marion by Scott words.
- **●** For this, we introduce a variant of linear logic (\Rightarrow , \multimap) with second order quantifier \forall and type fixpoint operator μ , both restricted to linear formulas.
- **●** We prove: a function $f: \{0,1\}^* \longrightarrow \{0,1\}^*$ is Ptime if and only if it is represented by a term of type $Church \Rightarrow Scott$.
- To prove Ptime soundness we employ resource sensitive realizability (after Hofmann-Dal Lago).

$t, p \Vdash A$

- t: Realizer
- p: Majorizer
- A: Formula
- ▶: Realizability relation

Consider the untyped CBV lambda calculus:

$$(\lambda x.t)v \to t[v/x]$$

where v is a value, i.e. an abstraction.

Consider the untyped CBV lambda calculus:

$$(\lambda x.t)v \to t[v/x]$$

where v is a value, i.e. an abstraction.

Difficulty: Cost of one-step is not constant.

Consider the untyped CBV lambda calculus:

$$(\lambda x.t)v \to t[v/x]$$

where v is a value, i.e. an abstraction.

Difficulty: Cost of one-step is not constant.

Hence we explicitly mention the cost of reduction (Dal-Lago, Martini 2008):

$$t \xrightarrow{n} u$$
, if $t \to u$ and $n = max\{|u| - |t|, 1\}$

Consider the untyped CBV lambda calculus:

$$(\lambda x.t)v \to t[v/x]$$

where v is a value, i.e. an abstraction.

Difficulty: Cost of one-step is not constant.

Hence we explicitly mention the cost of reduction (Dal-Lago, Martini 2008):

$$t \xrightarrow{n} u$$
, if $t \to u$ and $n = max\{|u| - |t|, 1\}$

Fact: Suppose that $(\lambda x.t)v \stackrel{n}{\to} t[v/x]$ and x occurs c times in t.

Then

$$n = 1$$
 if $c \le 1$ $n \le (c-1)|v|$ if $c > 1$.

Definition: When $t \to^* v$,

- lacksquare [t] = v
- ullet Cost(t) := |t| + n where $t \stackrel{n}{\longrightarrow} v$.

Theorem (Dal Lago-Martini 2008): There exists a Turing machine M_{eval} that p-simulates CBV lambda calculus: given a (converging) λ -term t with $\mathbf{Cost}(t) = n$, M_{eval} computes $[\![t]\!]$ in time $O(n^4)$.

 $t, p \Vdash A$

- t: Realizer
- p: Majorizer
- **●** A: Formula
- ▶: Realizability relation

 $\mathbf{DIAL}_{lin} = \mathbf{Dual}$ Intuitionistic Affine Logic consists of formulas

$$L \multimap A, \quad A \Rightarrow B, \quad \forall \alpha.A, \quad \mu \alpha.L.$$

- **●** The \multimap -fragment is affine logic (i.e. FL_{ew})
- **●** The \Rightarrow -fragment is intuitionistic logic
- \blacksquare \Rightarrow dominates \multimap :

$$\frac{L \multimap A}{L \Rightarrow A}$$

• \forall , μ are restricted to affine formulas (i.e. those without \Rightarrow):

$$\forall \alpha. A(\alpha) \multimap A(L), \qquad \mu \alpha. L(\alpha) \circ \multimap L(\mu \alpha. L(\alpha))$$

(Note: $\mu\alpha.L$ can be any fixed point.)

Linear and general formulas:

$$L ::= \alpha \mid \forall \alpha L \mid \mu \alpha L^{(*)} \mid L \multimap L,$$

$$A ::= L \mid \forall \alpha A \mid L \multimap A \mid A \Rightarrow A.$$

(*): α occurs only positively in L.

Judgment: Γ ; $\Delta \vdash t : A$, where

- lacksquare Δ consists of x:L with L a linear formula, and
- ullet Γ consists of x:A with A an arbitrary formula.

$$\frac{}{x:A\;;\;\vdash x:A}\;(ax1)$$

$$\overline{\;\;;\;\; x:L \vdash x:L} \; (ax2)$$

$$\frac{\Gamma ; \ \Delta \vdash t : \mu \alpha L}{\Gamma ; \ \Delta \vdash t : L[\mu \alpha L/\alpha]} (\mu_e)$$

$$\frac{\Gamma ; \Delta \vdash t : L[\mu \alpha L/\alpha]}{\Gamma ; \Delta \vdash t : \mu \alpha L} (\mu_i)$$

$$\frac{\Gamma \; ; \; \Delta \vdash t \; : A \qquad \alpha \notin FV(\Gamma \; ; \; \Delta)}{\Gamma \; ; \; \Delta \vdash t \; : \forall \alpha A} \; (\forall_i)$$

$$\frac{\Gamma \; ; \; \Delta \vdash t : \forall \alpha A}{\Gamma \; ; \; \Delta \vdash t : A[L/\alpha]} \; (\forall_e)$$

$$\frac{\Gamma_1 ; \ \Delta \vdash t : A \Rightarrow B \quad \Gamma_2 ; \vdash u : A}{\Gamma_1, \Gamma_2 ; \ \Delta \vdash tu : B} (\Rightarrow_e) \qquad \frac{\Gamma, z : A ; \ \Delta \vdash t : B}{\Gamma ; \ \Delta \vdash \lambda z . t : A \Rightarrow B} (\Rightarrow_i)$$

$$\frac{\Gamma, z : A ; \ \Delta \vdash t : B}{\Gamma ; \ \Delta \vdash \lambda z . t : A \Rightarrow B} (\Rightarrow_i)$$

$$\frac{\Gamma_1 ; \ \Delta_1 \vdash t : L \multimap B \qquad \Gamma_2 ; \ \Delta_2 \vdash u : L}{\Gamma_1, \Gamma_2 ; \ \Delta_1, \Delta_2 \vdash tu : B} (\multimap_e) \qquad \frac{\Gamma ; \ \Delta, z : L \vdash t : B}{\Gamma ; \ \Delta \vdash \lambda z . t : L \multimap B} (\multimap_i)$$

$$\frac{\Gamma \; ; \; \Delta, z : L \vdash t : B}{\Gamma \; ; \; \Delta \vdash \lambda z . t : L \multimap B} \; (\multimap_i)$$

$$\frac{\Gamma, x: A, y: A \; ; \; \Delta \vdash t: B}{\Gamma, z: A \; ; \; \Delta \vdash t[z/x, z/y]: B} \; (Contr)$$

$$\frac{\Gamma \; ; \; \Delta, x : L \vdash t : B}{\Gamma, x : L \; ; \; \Delta \vdash t : B} \; (Derel)$$

$$\frac{\Gamma \; ; \; \Delta \vdash t : B}{\Gamma, \Gamma' \; ; \; \Delta, \Delta' \vdash t : B} \; (Weak)$$

Church and Scott data types

Church numerals and words:

$$\begin{array}{lll} \mathsf{N}^{\bullet} & \equiv & \forall \alpha (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha) \\ & \mathsf{n}^{\bullet} & \equiv & \lambda fx. \underbrace{f(...f(x)...)}_{n \ times} \\ & \mathsf{mult}^{\bullet} & \equiv & \lambda xy\lambda f.x(yf) : \mathsf{N}^{\bullet} \Rightarrow \mathsf{N}^{\bullet} \Rightarrow \mathsf{N}^{\bullet} \\ & \mathsf{mon}^{\bullet}_{n} & \equiv & \lambda x\lambda f. \underbrace{x(\cdots(xf)\cdots)}_{n \ times} : \mathsf{N}^{\bullet} \Rightarrow \mathsf{N}^{\bullet} \\ & \mathsf{W}^{\bullet} & \equiv & \forall \alpha(\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha) \\ & \mathsf{w}^{\bullet} & \equiv & \lambda f_{0}.\lambda f_{1}.\lambda x. f_{i_{1}}(f_{i_{2}}(...(f_{i_{n}}(x)...))) \\ & & (w = i_{1} \cdots i_{n}) \end{array}$$

Church and Scott data types

Scott numerals and words:

Church and Scott data types

Finite sets and tensor product:

$$\mathsf{B}_{n}^{\circ} \ \equiv \ \forall \alpha. \underbrace{\alpha \multimap ... \alpha \multimap}_{n \ times} \alpha \quad L \otimes M \ \equiv \ \forall \alpha. (L \multimap M \multimap \alpha) \multimap \alpha$$

$$\mathsf{b}_{i}^{\circ} \ \equiv \ \lambda x_{0} \cdots x_{n-1}. x_{i} \qquad t \otimes u \ \equiv \ \lambda x. xtu \quad (t : L, \ u : M)$$

Decomposer and iteration:

$$\begin{split} \operatorname{dec}^{\circ} &= \lambda z. z (\lambda y. \mathsf{b}_{0}^{\circ} \otimes y) (\lambda y. \mathsf{b}_{1}^{\circ} \otimes y) (\mathsf{b}_{2}^{\circ} \otimes \epsilon^{\circ}) \; : \; \mathsf{W}^{\circ} \multimap \mathsf{B}_{3}^{\circ} \otimes \mathsf{W}^{\circ} \\ \operatorname{iter}^{\bullet} &= \lambda x f g. x f g \; : \; \mathsf{N}^{\bullet} \Rightarrow (L \multimap L) \Rightarrow (L \multimap L) \end{split}$$

FP-completeness

Theorem: Let $f: \{0,1\}^* \to \{0,1\}^*$. T.f.a.e.

- 1. *f* is a Ptime function
- 2. There is a λ -term $f: W^{\bullet} \Rightarrow W^{\circ}$ in \mathbf{DIAL}_{lin} such that

$$f(w_1) = w_2 \iff \mathsf{fw}_1^{\bullet} \longrightarrow_{\beta}^* \mathsf{w}_2^{\circ}.$$

 $(1 \Rightarrow 2)$ is routine.

We prove $(2 \Rightarrow 1)$ by realizability.

$t, p \Vdash A$

- t: Realizer
- p: Majorizer
- A: Formula
- ▶: Realizability relation

Majorizers

Consider simple types over base type o.

A higher order additive term p is a λ -term built from constants

n : o (for every natural number n)

 $+ : o \rightarrow o \rightarrow o.$

Identified under $\alpha\beta\eta$ - and arithmetical equivalences.

Majorizers

Consider simple types over base type o.

A higher order additive term p is a λ -term built from constants

n : o (for every natural number n)

 $+ : o \rightarrow o \rightarrow o.$

Identified under $\alpha\beta\eta$ - and arithmetical equivalences. Mapping of \mathbf{DIAL}_{lin} formulas to simple types:

$$o(L) = o,$$
 $o(A \Rightarrow B) = o(A) \rightarrow o(B),$ $o(\forall \alpha A) = o(A).$

t:A will be mojorized by p:o(A).

$$o(\mathsf{N}^{\bullet}) = o(\forall \alpha(\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha)) = o \to o$$

$$o(\mathsf{W}^{\bullet}) = o(\forall \alpha(\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha)) = o \to o \to o \bot$$

Saturated sets

```
A nonempty set X \subseteq \Lambda \times \mathbb{N} is a saturated set (of type o) if (cost) (t,n) \in X \Longrightarrow \mathbf{Cost}(t) \leq n; (monotonicity) (t,n) \in X \Longrightarrow (t,m) \in X for every m \geq n; (exchange) ((\lambda xy.t(x,y))vw, n) \in X \Longrightarrow ((\lambda yx.t(y,x))wv, n) \in X; (contraction) ((\lambda xy.t(x,y))vv, n) \in X \Longrightarrow ((\lambda z.t(z,z))v, n) \in X; (identity) (v,n) \in X \Longrightarrow ((\lambda x.x)v, n+3) \in X;
```

$t, p \Vdash A$

- t: Realizer
- p: Majorizer
- A: Formula
- ▶: Realizability relation

Realizability relation

A valuation η maps each propositional variable α to a saturated set $\eta(\alpha)$.

 $t, p \Vdash_{\eta} A$, where p : o(A), is defined by induction on A:

- $t, n \Vdash_{\eta} \alpha \text{ iff } (t, n) \in \eta(\alpha).$
- $t, p \Vdash_{\eta} L \multimap A \text{ iff } u, m \Vdash_{\eta} L \Longrightarrow tu, p + m \Vdash_{\eta} A \text{ for every } u, m,$ and $\mathbf{Cost}(t) \leq \downarrow p.$
- $t, p \Vdash_{\eta} B \Rightarrow A \text{ iff } u, q \Vdash_{\eta} B \Longrightarrow tu, p(q) \Vdash_{\eta} A \text{ for every } u, q,$ and $\mathbf{Cost}(t) \leq \downarrow p$.

Adequacy

- $t, p \Vdash_{\eta} \forall \alpha A \text{ iff } t, p \Vdash_{\eta \{\alpha \leftarrow X\}} A \text{ for every saturated set } X.$
- $t, n \Vdash_{\eta} \mu \alpha L$ iff $(t, n) \in X$ for every saturated set X such that $\hat{L}_{\eta\{\alpha \leftarrow X\}} \subseteq X$, where $\hat{L}_{\eta} = \{(t, n) : t, n \Vdash_{\eta} L\}$.

Adequacy

- $t, p \Vdash_{\eta} \forall \alpha A \text{ iff } t, p \Vdash_{\eta \{\alpha \leftarrow X\}} A \text{ for every saturated set } X.$
- $t, n \Vdash_{\eta} \mu \alpha L$ iff $(t, n) \in X$ for every saturated set X such that $\hat{L}_{\eta\{\alpha \leftarrow X\}} \subseteq X$, where $\hat{L}_{\eta} = \{(t, n) : t, n \Vdash_{\eta} L\}$.

Adequacy Theorem: If $\vdash t : A$, then $t, p \Vdash A$ for some p : o(A).

Proof: By induction on the length of the proof.

Examples

1.
$$\lambda fx.fx.6 \Vdash (L \multimap M) \multimap (L \multimap M)$$

Suppose
$$v, n \Vdash L \multimap M$$
 and $w, m \Vdash L$. $(\lambda f.f)v, n+3 \Vdash L \multimap M$ $(\lambda x.x)w, m+3 \Vdash L$ $(\lambda f.f)v((\lambda x.x)w), n+m+6 \Vdash M$ $(\lambda fx.fx)vw, n+m+6 \Vdash M$. Hence $\lambda fx.fx, 6 \Vdash (L \multimap M) \multimap (L \multimap M)$.

Examples

1.
$$\lambda fx.fx.6 \Vdash (L \multimap M) \multimap (L \multimap M)$$

Suppose $v, n \Vdash L \multimap M$ and $w, m \Vdash L$.

$$(\lambda f.f)v, n+3 \Vdash L \multimap M$$

$$(\lambda x.x)w, m+3 \Vdash L$$

$$(\lambda f.f)v((\lambda x.x)w), n+m+6 \Vdash M$$

$$(\lambda fx.fx)vw, n+m+6 \vdash M$$
. Hence

$$\lambda fx.fx.6 \Vdash (L \multimap M) \multimap (L \multimap M).$$

2.
$$(L \multimap L \multimap M) \multimap (L \multimap M)$$
 cannot be realized.

Examples

1.
$$\lambda fx.fx.6 \Vdash (L \multimap M) \multimap (L \multimap M)$$

Suppose $v, n \Vdash L \multimap M$ and $w, m \Vdash L$.

$$(\lambda f.f)v, n+3 \Vdash L \multimap M$$

$$(\lambda x.x)w, m+3 \Vdash L$$

$$(\lambda f.f)v((\lambda x.x)w), n+m+6 \Vdash M$$

$$(\lambda fx.fx)vw, n+m+6 \vdash M$$
. Hence

$$\lambda fx.fx.6 \Vdash (L \multimap M) \multimap (L \multimap M).$$

2.
$$(L \multimap L \multimap M) \multimap (L \multimap M)$$
 cannot be realized.

3.
$$\lambda fx.fxx, \lambda fx.fxx+9 \Vdash (A \Rightarrow A \Rightarrow B) \Rightarrow A \Rightarrow B$$

Lemma: For every $w \in \{0,1\}^n$, we have $w^{\bullet}, q_n \Vdash W^{\bullet}$ with

$$q_n = \lambda z_0 z_1 . n(z_0 + z_1 + 3) + 3 : o^2 \to o.$$

Lemma: For every $w \in \{0,1\}^n$, we have $w^{\bullet}, q_n \Vdash W^{\bullet}$ with

$$q_n = \lambda z_0 z_1 . n(z_0 + z_1 + 3) + 3 : o^2 \to o.$$

Lemma: If $\lambda x.p(x):(o^2\to o)\to o$, then $p(q_n)$ is a polynomial in n.

Lemma: For every $w \in \{0,1\}^n$, we have $w^{\bullet}, q_n \Vdash W^{\bullet}$ with

$$q_n = \lambda z_0 z_1 . n(z_0 + z_1 + 3) + 3 : o^2 \to o.$$

Lemma: If $\lambda x.p(x):(o^2\to o)\to o$, then $p(q_n)$ is a polynomial in n.

Example: When p(x) = (x(x00))(x00),

$$p(q_n) = (q_n(q_n00))(q_n00)$$

$$= (q_n(3n+3))(3n+3)$$

$$= n(3n+3+3n+3+3)+3$$

$$= O(n^2)$$

Theorem: Let L be a linear formula. If $\vdash f : W^{\bullet} \Rightarrow L$, then there exists a polynomial P such that for every $w \in \{0,1\}^n$, $\mathbf{Cost}(\mathsf{fw}^{\bullet}) \leq P(n)$.

Theorem: Let L be a linear formula. If $\vdash f : W^{\bullet} \Rightarrow L$, then there exists a polynomial P such that for every $w \in \{0,1\}^n$, $\mathbf{Cost}(\mathsf{fw}^{\bullet}) \leq P(n)$.

Proof: By adequacy,

 $f, \lambda x.p(x) \Vdash W^{\bullet} \Rightarrow L \text{ for some } \lambda x.p(x) : (o^2 \rightarrow o) \rightarrow o.$

 $w^{\bullet}, q_n \Vdash W^{\bullet}$ by above. Hence

 $\mathsf{fw}^{\bullet}, p(q_n) \Vdash L$, so $\mathbf{Cost}(\mathsf{fw}^{\bullet}) \leq p(q_n) = P(n)$.

Theorem: Let L be a linear formula. If $\vdash f : W^{\bullet} \Rightarrow L$, then there exists a polynomial P such that for every $w \in \{0,1\}^n$, $\mathbf{Cost}(\mathsf{fw}^{\bullet}) \leq P(n)$.

Proof: By adequacy,

 $f, \lambda x.p(x) \Vdash W^{\bullet} \Rightarrow L \text{ for some } \lambda x.p(x) : (o^2 \rightarrow o) \rightarrow o.$

 $w^{\bullet}, q_n \Vdash W^{\bullet}$ by above. Hence

 $\mathsf{fw}^{\bullet}, p(q_n) \Vdash L$, so $\mathbf{Cost}(\mathsf{fw}^{\bullet}) \leq p(q_n) = P(n)$.

Corollary: Let $f: W^{\bullet} \Rightarrow W^{\circ}$. For every $w \in \{0,1\}^{*}$, the β -normal form of fw^{\bullet} can be computed in time polynomial in |w|.

In resource sensitive realizability, $L\multimap B$ and $A\Rightarrow B$ are distinguished by means of majorizers.

ullet $L \multimap B$ majorized by first order resources

In resource sensitive realizability, $L\multimap B$ and $A\Rightarrow B$ are distinguished by means of majorizers.

- $L \multimap B$ majorized by first order resources
- \blacksquare $A \Rightarrow B$ majorized by higher order resources

In resource sensitive realizability, $L \multimap B$ and $A \Rightarrow B$ are distinguished by means of majorizers.

- $L \multimap B$ majorized by first order resources
- \blacksquare $A \Rightarrow B$ majorized by higher order resources
- **●** Scott numerals are linear; $n^{\circ}, O(n) \Vdash N^{\circ}$.

In resource sensitive realizability, $L \multimap B$ and $A \Rightarrow B$ are distinguished by means of majorizers.

- $L \multimap B$ majorized by first order resources
- \blacktriangle $A \Rightarrow B$ majorized by higher order resources
- **●** Scott numerals are linear; $n^{\circ}, O(n) \Vdash N^{\circ}$.
- Church numerals are nonlinear; $n^{\bullet}, \lambda x.n(x+3)+3 \Vdash N^{\bullet}$. It has a multiplying effect.