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Background 1
-

Realizability: T
® A way to extract useful information from proofs.

® Define a binary predicate t IF A by induction on formulas:
t-A=B iff Yu. ulFA=—tul- B

® Prove adequacy by induction on proofs:

T — g*lFA
|

® Related methods: logical relations, Tait-Girard reducibility
argument, . ...

o |
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Background 2

- N

Linear implication L —o A vs Intuitionistic implication A = B.
In the Curry-Howard setting,

Ax.t : L1 —o Lo roughly when z occurs at most once in ¢.

Notice: In this talk, ‘linear” actually means “affine.”

o |
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Background 2

- N

Linear implication L —o A vs Intuitionistic implication A = B.
In the Curry-Howard setting,

Ax.t : L1 —o Lo roughly when z occurs at most once in ¢.

Notice: In this talk, ‘linear” actually means “affine.”

Fundamental question: How do you distinguish — from = in
realizability semantics?

Key: When z is linear in ¢,

Cost((Az.t)u) < Cost(Ax.t) + Cost(u) + c.

o |
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Background 3
-

Resource-sensitive realizability (Hofmann-Dal Lago):
Define a ternary relation

t,plF A

® ¢ realizer = program.

® p: majorizer bounding the cost of ¢.
The adequacy theorem (or the “basic lemma”) states:

~t: A — t,plk Afor some p.

Based on this, HD prove Ptime soundness for LAL, LFPL, SAL, BLL.
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Background 4
-

fLambda—calculus characterization of Ptime (Leivant-Marion 93):
Consider A_, x with constants:

€:o0, S0, S1,P : 0 — O, dser: 0 — 0° = o
We have two representations of binary word 010:

First order sg(s1(so(€))) L 0
Church Afofiz.fo(f1(foz)) + We(a),

where W*(a) := (a — a)? = (o — «).

Theorem: f : {0,1}* — {0,1}* is Ptime if and only if it is repre-
Lsented by a term of type W*(0™) — o for some m. J
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Background 3

- N

Church numerals:

n®* =Afz. f(...f(x)...) havetype N°®*=Va(la= a)= (a= a).

n times

o |
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n®* =Afz. f(...f(x)...) havetype N°®*=Va(la= a)= (a= a).

n times

Where do they come from?
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- N

Church numerals:

n®* =Afz. f(...f(x)...) havetype N°®*=Va(la= a)= (a= a).

n times

Where do they come from?

N = ﬂ{a:OEa,Vw.(azEaix—l—lEa)}
nelN = VaVez(rea=z+lca)=0€a=>ncq

® By extracting a A-term from the proof of n € N, we obtain n®.
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o

Church numerals:

n® = Afx. f(...f (x)...)

N——

n times

Background 3

Where do they come from?

N =
neN =

ﬂ{a:OEoz, Ve(rea=>x+1€a)}

-

have type N°® =Va(a = a) = (a= «a).

VaVr(rea=z+1ca)=0€a=>nca«a

® By extracting a A-term from the proof of n € N, we obtain n®.

® n € N can be simplified to N°:

N
N.

VaVr.(r ca= a) =0 ca=

Vala = a) = (a = «a).

Church => Scott = Ptime :an application of resource-sens

|
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Background 3

- N

Scott numerals:

OO
n—+1°

ATY.Y

have type N° =Va.(N°—oa)—o(a—oa).
Axy.x(n°)

o |
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Background 3

- N

Scott numerals:

0° = lxy.y
have type N° =Va.(N°—oa)—o(a—oa).
n+1° = Azy.z(n°)

Where do they come from?

neN = n=0vVvdzeNn=x+1
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Background 3

- N

Scott numerals:

0° = lxy.y
have type N° =Va.(N°—oa)—o(a—oa).
n+1° = Azy.z(n°)

Where do they come from?
neN = n=0vVIzxeNn=x+1
Two solutions:

N'=N or N =NU{w}

We do not specify which N’ is. Still n € N’ is provable.

o |
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Background 3

- N

By noting AV B=Va.(A=a) = (B = a) = a,
neN =Va.(3z e N'm=z+1=a)= (r=0=a)=a

and one extracts Scott numeral n° from the proof of n € N’.
n € N’ simplifies to N°:

N' = Vo ( N’ = a) = ( a) = «

N//
N ©)

Va.(N" = a) = (a = «)

Va.(N° —o a) —o (a —o «a).

o |
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Background 3
-

By noting AV B=Va.(A=a) = (B = a) = a,
neN =Va.(3z e N'm=z+1=a)= (r=0=a)=a

and one extracts Scott numeral n° from the proof of n € N’.
n € N’ simplifies to N°:

N' = Vo ( N’ = a) = ( a) = «
N" = Va.(N"=a) = (a= a)
N° = Va.(N® —oa) —o(a—oa).

® n°is alinear \-term.

® Does not support recursion by itself, but admits a natural
\_ definition of predecessor and discriminator. J
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Outline

- N

® We replace the first order words of Leivant-Marion by Scott
words.
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second order quantifier V and type fixpoint operator ., both
restricted to linear formulas.
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-

® We replace the first order words of Leivant-Marion by Scott T
words.

® For this, we introduce a variant of linear logic (=, —o) with
second order quantifier V and type fixpoint operator ., both
restricted to linear formulas.

® We prove: a function f : {0,1}* — {0,1}* is Ptime if and only
if it is represented by a term of type Church = Scott.
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Outline
-

We replace the first order words of Leivant-Marion by Scott
words.

For this, we introduce a variant of linear logic (=, —o) with
second order quantifier V and type fixpoint operator ., both
restricted to linear formulas.

We prove: a function f : {0,1}* — {0,1}* is Ptime if and only
if it is represented by a term of type Church = Scott.

To prove Ptime soundness we employ resource sensitive
realizability (after Hofmann-Dal Lago).

|
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© o o @

t.plF A

t: Realizer
p: Majorizer
A: Formula

. Realizability relation

|
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CBY lambda calculus with cost model

- N

Consider the untyped CBV lambda calculus:
(Az.t)v — tlv/x]

where v is a value, i.e. an abstraction.

o |
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Consider the untyped CBV lambda calculus:
(Az.t)v — tlv/x]

where v is a value, i.e. an abstraction.
Difficulty: Cost of one-step is not constant.
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CBY lambda calculus with cost model

o

onsider the untyped CBV lambda calculus: T
(Az.t)v — tlv/x]

where v is a value, i.e. an abstraction.
Difficulty: Cost of one-step is not constant.

Hence we explicitly mention the cost of reduction (Dal-Lago, Martini
2008):

t = u, ift—wuandn=maz{|ul—|t,1}
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CBY lambda calculus with cost model

=

Consider the untyped CBV lambda calculus: T
(Az.t)v — tlv/x]

where v is a value, i.e. an abstraction.
Difficulty: Cost of one-step is not constant.

Hence we explicitly mention the cost of reduction (Dal-Lago, Martini
2008):

t = u, ift—wuandn=maz{|ul—|t,1}

Fact: Suppose that (Az.t)v = t[v/x] and = occurs c times in ¢.
Then

1
L n < (c—1v| ife>1. J
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CBY lambda calculus with cost model

- N

Definition: When t —* v,
® [t]=vw

® Cost(t) :=|t| +n where t = v.

Theorem (Dal Lago-Martini 2008): There exists a Turing machine
M., that p-simulates CBV lambda calculus: given a (converging)

A-term t with Cost(t) = n, M,,, computes [t] in time O(n?).
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t.plE A

t: Realizer
p: Majorizer
A: Formula

. Realizability relation

|
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The dual type system DIAL;;,
-

DIAL;;, = Dual Intuitionistic Affine Logic consists of formulas
L—-oA A=B, Va.A, pa.l.

® The —o-fragment is affine logic (i.e. F'Le,)

°

The =-fragment is intuitionistic logic

® = dominates —o:
L —oA

L= A

® V. . are restricted to affine formulas (i.e. those without =):
Va.A(a) —o A(L), po. L(a)o—o L(pa. L))

\_ (Note: pua.L can be any fixed point.) J
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The dual type system DIAL;;,
-

Linear and general formulas:

L == o|VaL|pal™ | L — L,
A = L|VaA|L—oA| A= A

(x) - a occurs only positively in L.

Judgment: I'; AFt: A, where
® A consists of z : L with L a linear formula, and

® T consists of x : A with A an arbitrary formula.

o
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The dual type system DIAL;;,

- .

1 2
:U:A;I—:U:A(ax) ;:U:LI—:U:L(CMU)

I'; ARt palL (110) F;Al—t:L[,uaL/Oz](.)

I';s AFt: Lipal/al e I'; At pal Hi

I'; AFt: A a%FV(F;A)(v.) I';s AFt:VaA v.)
I': AFt:VaA ! I';s ARt AlL/al c

o |
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The dual type system DIAL;;,

fI‘l;AI—t:A:>B Fg;l—u:A( ) I'z:A; A+-t: B (T)
e =2

I'v,I'9; AFtu:B ' AF)Xz2t: A= B

I'h; AyFt:L—oB I'o; Aok u:L ) I'; A,z:LFHt: B
Fl,FQ;Al,Agl_tu:B ’ F,Al‘)\ZtL—OB "
I'Nz:Ay:A; AFt: B (Contr) F;A,x:LI—t:B(D "
ontr ere
[z:A; AFtlz/x,z/y|l: B e:L; AFt: B /

I'; AFt: B
(Weak)

. I': ANA'Ft:B

o |
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-

Church and Scott data types

Church numerals and words :

N.

n

mult®

Mmon

W.

Vala — a) = (a — «a)

Az f(of(z)...)
n times

AxyAf.x(yf) : N® = N®* = N°
AxAf.x(---(x f)---):N* = N°
N——

n times

Vala — a) = (a — a) = (a — «a)

Mo-Afr-Az. fiy (fio (- (fi (2)..2)))

(w:il"'in)

-

itive realizability — p.18/3



Church and Scott data types

-

Scott numerals and words :

NO

upvVa(f —o a) —o (a — a)
ATY.Y

Axy.x(n°)

Az Axy.xz : N® —o N°
Az.z(Ax.x)(0°%) : N® —o N°

pBVa(f — a) —o (8 — a) — (@ — «a)
ATYZ.2
Axyz.x(we)

Axyz.y(we)

Church => Scott = Ptime :an application of resource-sens

-

|
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Church and Scott data types
- -

Finite sets and tensor product :

B> = Va.ag—o..a—oa LM = Va(L—-oM-—oa)—o«
nt;;zes
b? = Azg- Tp_1.7; tQu = Ar.axtu (t: L, u: M)

Decomposer and iteration :
dec® = Az.z(Ay.b ® y)(Ay.b] @ y)(bs ® €®) : W° — B ® W°
iter®* = Mrfgxfg : N = (L —-L)= (L —L)

o |
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FP-completeness

-

Theorem: Let f:{0,1}* — {0,1}*. T.f.a.e.
1. fis a Ptime function

2. Thereis a \-termf : W*®* = W° in DIAL,,,, such that
f(wl) = Wy < fWI %E Wg.

(1= 2) Is routine.

We prove (2= 1) by realizability.

o |
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t.plF A

t: Realizer
p: Majorizer
A: Formula

. Realizability relation

|
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Mayjorizers

- N

Consider simple types over base type o.
A higher order additive term p is a A-term built from constants

n : o (for every natural number n)

+ : o0— 0 — o.

|dentified under a8n- and arithmetical equivalences.

o |
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Mayjorizers

- N

Consider simple types over base type o.
A higher order additive term p is a A-term built from constants

n : o (for every natural number n)

+ : o0— 0 — o.

|dentified under a8n- and arithmetical equivalences.
Mapping of DIAL;;, formulas to simple types:

o(L) = o, o(A = B)=0(A) = o(B), o(Va A) = o(A).
t : A will be mojorized by p : o(A).

o(N*) = o(Va(a — a)= (o — a)) = 0—0

LO(W.) = o(Va(a —a)= (@ —oa)=> (a0 —oa)) = O—)O—)OJ
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Saturated sets

- N

A nonempty set X C A x N is a saturated set (of type o) If

(cost) (1, n) € X = Cost(t) < n;

(monotonicity) (t, n) € X = (¢, m) € X for every m > n;
(exchange) ((Azy.t(x,y))vw, n) € X = ((Ayx.t(y,x))wv, n) € X;
(contraction) ((Azy.t(z,y))vv, n) € X = ((Az.t(z,2))v, n) € X;
(identity) (v,n) € X = ((Ax.x)v,n+3) € X;

o |
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t.plE A

t: Realizer
p: Majorizer
A: Formula

I-: Realizability relation

|
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Realizability relation

- N

A valuation n» maps each propositional variable « to a saturated set

n(a).
t,pl-, A, where p : o(A), is defined by induction on A:

o t,nlH, aliff (¢, n) € n(a).

o t,plky L — Aiffu,m I, L = tu,p+ m Ik, A for every u,m,
and Cost(t) <| p.

e t,plky, B= Aiffu,qlF-, B= tu,p(q) I, A forevery u,q,
and Cost(t) <| p.

o |
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Adequacy

- N

o t,plky, VaAiftt, plk e xy Afor every saturated set X.

° t n I, paL iff (¢,n) € X for every saturated set X such that
n{an} C X, whereL ={(t,n) : t,nl, L}.

o |
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-

Adequacy
-

o t,plky, VaAiftt, plk e xy Afor every saturated set X.

° t n I, paL iff (¢,n) € X for every saturated set X such that
Lytacxy C X, whereL ={(t,n) : t,nl, L}.

Adequacy Theorem: If -t : A, thent,p - A for some p: o(A).

Proof: By induction on the length of the proof.

|
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Examples

|71.)\f:c.f:c,6||—(L—oM)—o(L—oM) —‘

Suppose v,n I L —o M and w, m I+ L.
(Af.fluyun+3I-FL—oM

(Az.x)w,m + 3 IF L
(Af.flo((Az.x)w),n +m +6 - M
(Afx.fx)vw,n+m+6IF M. Hence
MNx.fr,6lF (L —o M) —o (L —o M).

o |
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Suppose v,n I L —o M and w, m I+ L.
(Af.fluyun+3I-FL—oM

(Az.x)w,m + 3 IF L
(Af.flo((Az.x)w),n +m +6 - M
(Afx.fx)vw,n+m+6IF M. Hence
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Examples

|71. M. fr,6lF (L —oM)—o (L—oM)

Suppose v,n I L —o M and w, m I+ L.
(Af.fluyun+3I-FL—oM

(Az.x)w,m + 3 IF L
(Af.flo((Az.x)w),n +m +6 - M
(Afx.fx)vw,n+m+6IF M. Hence
MNx.fr,6lF (L —o M) —o (L —o M).

2. (L —o L — M) —o (L —o M) cannot be realized.

3. Mzx.fex, Nfr.frx +9IF (A= A= B)= A= 1B

o |
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Ptime soundness

- N

Lemma: For every w € {0,1}", we have w*, ¢, I W* with

gn = Azoz1.n(20 +21 +3) +3:0° = 0.

o |
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Lemma: For every w € {0,1}", we have w*, ¢, I W* with

gn = Azoz1.n(20 +21 +3) +3:0° = 0.

Lemma: If Az.p(z) : (0* — 0) — o, then p(q,) is a polynomial in n.
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-

Ptime soundness

Lemma: For every w € {0,1}", we have w*, ¢, I W* with

gn = Azoz1.n(20 +21 +3) +3:0° = 0.

-

Lemma: If Az.p(z) : (0* — 0) — o, then p(q,) is a polynomial in n.

Example: When p(x) = (z(200))(x00),

p(qn)

(¢1(gn00))(4,,00)
(gn(3n + 3))(3n + 3)
n(3n+3+3n+3+3)+3

O(n?)

Church => Scott = Ptime :an application of resource-sens

|

itive realizability — p.29/31



Ptime soundness

-

Theorem: Let L be a linear formula. If - f : W® = L, then there
exists a polynomial P such that for every w € {0,1}",
Cost(fw®) < P(n).

o |
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Ptime soundness

- N

Theorem: Let L be a linear formula. If - f : W® = L, then there
exists a polynomial P such that for every w € {0,1}",
Cost(fw®) < P(n).

Proof: By adequacy,

f, \z.p(x) IF W® = L for some \z.p(z) : (0> — o) — o.
w*, ¢, IF W*® by above. Hence

fw®, p(qn) IF L, so Cost(fw®) < p(g,) = P(n).

o |
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-

Ptime soundness

-

Theorem: Let L be a linear formula. If - f : W® = L, then there
exists a polynomial P such that for every w € {0,1}",
Cost(fw®) < P(n).

Proof: By adequacy,

f, \z.p(x) IF W® = L for some \z.p(z) : (0> — o) — o.
w*, ¢, IF W*® by above. Hence

fw®, p(qn) IF L, so Cost(fw®) < p(g,) = P(n).

Corollary: Let f : W* = W°. For every w € {0,1}*, the S-normal

form of fw® can be computed in time polynomial in |w|.

|
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Final Remark

- N

In resource sensitive realizability, L —o B and A = B are
distinguished by means of majorizers.

® [ —o B majorized by first order resources

o |
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Final Remark

-

In resource sensitive realizability, L —o B and A = B are
distinguished by means of majorizers.

® [ —o B majorized by first order resources
® A = B majorized by higher order resources

® Scott numerals are linear; n°,O(n) IF N°.
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Final Remark

-

In resource sensitive realizability, L —o B and A = B are
distinguished by means of majorizers.

® [ —o B majorized by first order resources

® A = B majorized by higher order resources
® Scott numerals are linear; n°,O(n) IF N°.
o

Church numerals are nonlinear; n®, Az.n(x + 3) + 3 I N°.
It has a multiplying effect.

o |
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