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Abstract-Motivation

The aim of this talk is to provide fresh perspectives
on join-extensions of ordered structures, and the
finite embeddability property for these structures.
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Abstract-Motivation

The aim of this talk is to provide fresh perspectives
on join-extensions of ordered structures, and the
finite embeddability property for these structures.
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Featured Themes

(1) Abstract treatment of join-extensions
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Featured Themes

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic
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Featured Themes

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions
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Featured Themes

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions

(4) The finite embeddability property and some of
its consequences
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Join-Completions
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Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P
provided P ⊆ Q and the order of Q restricts to that
of P. In case every element of Q is a join (in Q) of
elements of P, we say that Q is a join-extension of
P and that P is join-dense in Q. We use the term
join-completion for a join-extension that is a
complete lattice. The concepts of a meet-extension
and a meet-completion are defined dually.
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Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P
provided P ⊆ Q and the order of Q restricts to that
of P. In case every element of Q is a join (in Q) of
elements of P, we say that Q is a join-extension of
P and that P is join-dense in Q. We use the term
join-completion for a join-extension that is a
complete lattice. The concepts of a meet-extension
and a meet-completion are defined dually.

Join-completions, introduced by B. Banaschewski
(1956), are intimately related to representations of
complete lattices studied systematically by J.R.
Büchi (1952).
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Preservation of Meets

If Q is a join-extension of P, then the inclusion
map i : P → Q preserves all existing meets.

Equivalently, if X ⊆ P and
∧P X exists, then

∧QX

exists and
∧PX =

∧Q X
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Preservation of Meets

If Q is a join-extension of P, then the inclusion
map i : P → Q preserves all existing meets.

Equivalently, if X ⊆ P and
∧P X exists, then

∧QX

exists and
∧PX =

∧Q X

Dually, If Q is a meet-extension of P, then the
inclusion map i : P → Q preserves all existing
joins.
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Lower and Upper Sets

A subset I of a poset P is said to be a lower set of
P if whenever y ∈ P , x ∈ I, and y ≤ x, then y ∈ I.
Note that the empty set ∅ is a lower set.
A principal lower set is a lower set of the form

↓ a = {x ∈ P | x ≤ a} (a ∈ P ).
For A ⊆ P ,

↓ A = {x ∈ P | x ≤ a, for some a ∈ A}
denotes the smallest lower set containing A.
The set L(P) of lower sets of P ordered by set
inclusion is a complete lattice; the join is the
set-union, and the meet is the set-intersection.
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Lower and Upper Sets

A subset I of a poset P is said to be a lower set of
P if whenever y ∈ P , x ∈ I, and y ≤ x, then y ∈ I.
Note that the empty set ∅ is a lower set.
A principal lower set is a lower set of the form

↓ a = {x ∈ P | x ≤ a} (a ∈ P ).
For A ⊆ P ,

↓ A = {x ∈ P | x ≤ a, for some a ∈ A}
denotes the smallest lower set containing A.
The set L(P) of lower sets of P ordered by set
inclusion is a complete lattice; the join is the
set-union, and the meet is the set-intersection.

The upper sets of P are defined dually. Further, we
write U(P) for the lattice of upper sets of P,

↑ a = {x ∈ P | a ≤ x} for a ∈ P , and
↑A = {x ∈ P | a ≤ x, for some a ∈ A} for A ⊆ P .
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Canonical Representation of Join-Extensions

Each join-extension Q of a poset P can be
identified with its canonical image Q̇ :

Q̇ = {↓ x ∩ P : x ∈ Q}.

In particular, P can be identified with the poset Ṗ
of its principal lower sets:

Ṗ = {↓ x : x ∈ P}.
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Canonical Representation of Join-Extensions

Each join-extension Q of a poset P can be
identified with its canonical image Q̇ :

Q̇ = {↓ x ∩ P : x ∈ Q}.

In particular, P can be identified with the poset Ṗ
of its principal lower sets:

Ṗ = {↓ x : x ∈ P}.

The largest join-extension of P is L(P). Thus, for
any join-extension Q of P, we have

Ṗ ⊆ Q̇ ⊆ L(P).
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Canonical Representation of Join-Extensions

Each join-extension Q of a poset P can be
identified with its canonical image Q̇ :

Q̇ = {↓ x ∩ P : x ∈ Q}.

In particular, P can be identified with the poset Ṗ
of its principal lower sets:

Ṗ = {↓ x : x ∈ P}.

The largest join-extension of P is L(P). Thus, for
any join-extension Q of P, we have

Ṗ ⊆ Q̇ ⊆ L(P).

The smallest join-completion of P, is the so called
Dedekind-MacNeille completion N (P). Its
canonical image consists of all lower sets that are
intersections of principal lower sets.
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Abstract Description of Join-Extensions

It is often desirable to look at the elements of a
join-extension of P as just elements – such as the
elements of P itself – rather than certain lower sets
of P.
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Abstract Description of Join-Extensions

It is often desirable to look at the elements of a
join-extension of P as just elements – such as the
elements of P itself – rather than certain lower sets
of P.

For example, L(P) can be described abstractly as
an algebraic and dually algebraic distributive lattice
whose poset of completely join-prime elements is
P.
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Abstract Description of Join-Extensions

It is often desirable to look at the elements of a
join-extension of P as just elements – such as the
elements of P itself – rather than certain lower sets
of P.

For example, L(P) can be described abstractly as
an algebraic and dually algebraic distributive lattice
whose poset of completely join-prime elements is
P.

N (P) has this abstract description: it is the only
join and meet-completion of P (Banaschewski).
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Abstract Description of Join-Extensions

It is often desirable to look at the elements of a
join-extension of P as just elements – such as the
elements of P itself – rather than certain lower sets
of P.

For example, L(P) can be described abstractly as
an algebraic and dually algebraic distributive lattice
whose poset of completely join-prime elements is
P.

N (P) has this abstract description: it is the only
join and meet-completion of P (Banaschewski).
The inclusion i : P → N (P) preserves all existing
joins and meets. The Crawley completion C(P) –
with canonical image consisting of all complete
lower sets of P, that is, lower sets that are closed
with respect to any existing joins of their elements
– is the largest join-completion with this property.
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Closure Operators and Closure Systems

Recall that a closure operator on a poset P is a
map γ : P → P with the usual properties of being
order-preserving (x ≤ y ⇒ γ(x) ≤ γ(y)), enlarging
(x ≤ γ(x)), and idempotent (γ(γ(x)) = γ(x)). It is
completely determined by its image Pγ by virtue of
the formula

γ(x) = min{c ∈ Pγ : x ≤ c}.
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Closure Operators and Closure Systems

Recall that a closure operator on a poset P is a
map γ : P → P with the usual properties of being
order-preserving (x ≤ y ⇒ γ(x) ≤ γ(y)), enlarging
(x ≤ γ(x)), and idempotent (γ(γ(x)) = γ(x)). It is
completely determined by its image Pγ by virtue of
the formula

γ(x) = min{c ∈ Pγ : x ≤ c}.

Conversely, let us call a closure system on P, a
subposet C of P that satisfies:
min{a ∈ C : x ≤ a} exists for all x ∈ P .
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Closure Operators and Closure Systems

Recall that a closure operator on a poset P is a
map γ : P → P with the usual properties of being
order-preserving (x ≤ y ⇒ γ(x) ≤ γ(y)), enlarging
(x ≤ γ(x)), and idempotent (γ(γ(x)) = γ(x)). It is
completely determined by its image Pγ by virtue of
the formula

γ(x) = min{c ∈ Pγ : x ≤ c}.

Conversely, let us call a closure system on P, a
subposet C of P that satisfies:
min{a ∈ C : x ≤ a} exists for all x ∈ P .

There is a bijective correspondence between
closure operators and closure systems on P.
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Closure Operators and Closure Systems

Recall that a closure operator on a poset P is a
map γ : P → P with the usual properties of being
order-preserving (x ≤ y ⇒ γ(x) ≤ γ(y)), enlarging
(x ≤ γ(x)), and idempotent (γ(γ(x)) = γ(x)). It is
completely determined by its image Pγ by virtue of
the formula

γ(x) = min{c ∈ Pγ : x ≤ c}.

Conversely, let us call a closure system on P, a
subposet C of P that satisfies:
min{a ∈ C : x ≤ a} exists for all x ∈ P .

There is a bijective correspondence between
closure operators and closure systems on P.

If Q is a join-completion of P, then Q is a closure
system on L(P). We write γ

Q
for the associated

closure operator on L(P).
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Back to Join-Completions

!"

#
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Back to Join-Completions

!"

#

    L"!#!
!

γ#"
!

There is a bijective correspondence between
join-completions of P and closure operators γ on
L(P) with P ⊆ L(P )γ
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Join-Extensions of Ordered Structures
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Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises:

Which join-completions of P are residuated lattices
with respect to a, necessarily unique, multiplication
that extends the multiplication of P?
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Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises:

Which join-completions of P are residuated lattices
with respect to a, necessarily unique, multiplication
that extends the multiplication of P?

Let P = 〈P, ·,≤〉 be a pom and let x, y ∈ P . We set:
x\z = max{y ∈ P : xy ≤ z}, and
z/x = max{y ∈ P : yx ≤ z},
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Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises:

Which join-completions of P are residuated lattices
with respect to a, necessarily unique, multiplication
that extends the multiplication of P?

Let P = 〈P, ·,≤〉 be a pom and let x, y ∈ P . We set:
x\z = max{y ∈ P : xy ≤ z}, and
z/x = max{y ∈ P : yx ≤ z},

whenever these maxima exist.
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Residuals in Partially Ordered Monoids

Given a partially ordered monoid – pom for short –
P, the following question arises:

Which join-completions of P are residuated lattices
with respect to a, necessarily unique, multiplication
that extends the multiplication of P?

Let P = 〈P, ·,≤〉 be a pom and let x, y ∈ P . We set:
x\z = max{y ∈ P : xy ≤ z}, and
z/x = max{y ∈ P : yx ≤ z},

whenever these maxima exist.

x\z is read as “x under z”

z/x is read as “z over x”
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P.
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P.

Alternatively, a residuated pom P is one in which
the binary operation · is residuated. This means
that there exist binary operations \ and / on P
such that for all x, y, z ∈ P ,

xy ≤ z iff x ≤ z/y iff y ≤ x\z.
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P.

Alternatively, a residuated pom P is one in which
the binary operation · is residuated. This means
that there exist binary operations \ and / on P
such that for all x, y, z ∈ P ,

xy ≤ z iff x ≤ z/y iff y ≤ x\z.

We think of a residuated pom as a relational
structure P = 〈P, ·, \, /, 1,≤〉
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Residuals in Partially Ordered Monoids

A residuated partially ordered monoid – residuated
pom – P is one in which all quotients x\z and z/x
exist. In particular, the binary operations \ and /
are defined everywhere on P.

Alternatively, a residuated pom P is one in which
the binary operation · is residuated. This means
that there exist binary operations \ and / on P
such that for all x, y, z ∈ P ,

xy ≤ z iff x ≤ z/y iff y ≤ x\z.

We think of a residuated pom as a relational
structure P = 〈P, ·, \, /, 1,≤〉

A residuated lattice is a residuated lattice-ordered
monoid P = 〈P,∧,∨, ·, \, /, 1〉
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Residuals in Partially Ordered Monoids
Let P be a monoid. Then
℘(P) = 〈℘(P ),∩,∪, ·, \, /, {1}〉 is a residuated
lattice where:

X · Y = {x · y | x ∈ X, y ∈ Y },

X\Y = {z | X · {z} ⊆ Y }, and

Y/X = {z | {z} ·X ⊆ Y }.
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Residuals in Partially Ordered Monoids
Let P be a monoid. Then
℘(P) = 〈℘(P ),∩,∪, ·, \, /, {1}〉 is a residuated
lattice where:

X · Y = {x · y | x ∈ X, y ∈ Y },

X\Y = {z | X · {z} ⊆ Y }, and

Y/X = {z | {z} ·X ⊆ Y }.

Let P be a pom. Then
L(P) = 〈L(P ),∩,∪, ·, \, /, {1}〉 is a residuated
lattice where:

X · Y =↓ {x · y | x ∈ X, y ∈ Y },

X\Y = {z | X · {z} ⊆ Y }, and

Y/X = {z | {z} ·X ⊆ Y }.

Note: (↓ x) · (↓ y) =↓ (x · y); hence Ṗ, is a
submonoid of L(P)
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Nuclei and Closure Retractions

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
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Nuclei and Closure Retractions

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
A closure system C of a residuated poset P is
called a closure retraction of P if x/y, y\x ∈ C, for
all x ∈ C and y ∈ P .
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Nuclei and Closure Retractions

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
A closure system C of a residuated poset P is
called a closure retraction of P if x/y, y\x ∈ C, for
all x ∈ C and y ∈ P .
Let γ be a closure operator on a residuated pom
P, and let Pγ be the closure system associated
with γ. Then γ is a nucleus iff Pγ is a closure
retraction of P.
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Nuclei and Closure Retractions

A nucleus on a pom P is a closure operator γ on P

such that γ(a)γ(b) ≤ γ(ab) (equivalently,
γ(γ(a)γ(b)) = γ(ab)), for all a, b ∈ P .
A closure system C of a residuated poset P is
called a closure retraction of P if x/y, y\x ∈ C, for
all x ∈ C and y ∈ P .
Let γ be a closure operator on a residuated pom
P, and let Pγ be the closure system associated
with γ. Then γ is a nucleus iff Pγ is a closure
retraction of P.
A closure retraction Pγ of a residuated pom P is a
residuated pom. The product of x, y ∈ Pγ is given
by x ◦γ y = γ(x · y), and the residuals are the
restrictions on Pγ of the residuals of P. In
particular, if P is a residuated lattice, then so is Pγ,
with x ∨γ y = γ(x ∨ y) and x ∧γ y = x ∧ y



Abstract
Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Retractions
Theorem
Lemma

The FEP

Join-completions & FEP C. Tsinakis - slide #17

Theorem

Let Q be a join completion of a pom P, and let δ
Q

be the corresponding closure operator on ℘(P).

The following statements are equivalent:

(1) Q is a residuated lattice with respect to a
multiplication extending the multiplication of P.

(2) a\
L(P)

b ∈ Q and b/
L(P)

a ∈ Q, for all a ∈ P and
b ∈ Q.

(3) γ
Q

is a nucleus on L(P)

(4) Q is a closure retraction on L(P).

Furthermore, if the preceding conditions are sat-
isfied, then the inclusion map P →֒ Q preserves
multiplication, all meets and all existing residuals.
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Crucial Lemma

Let P be a pom and let Q be a join-completion of
P that is a pom with respect to a multiplication that
extends the multiplication of P. Then for all
a, b ∈ P , if a\

P
b exists, then a\

Q
b exists and

a\
P
b = a\

Q
b = a\

L(P)
b.

Likewise for the other residual.
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The Finite Embeddability Property
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Definitions and Basic Properties
A class K of algebras is said to have the finite
embeddability property (FEP) if every finite partial
subalgebra of a member of K can be embedded
into a finite member of K. If K is a class of ordered
algebras, the preceding embedding must be an
ordered embedding.
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Definitions and Basic Properties
A class K of algebras is said to have the finite
embeddability property (FEP) if every finite partial
subalgebra of a member of K can be embedded
into a finite member of K. If K is a class of ordered
algebras, the preceding embedding must be an
ordered embedding.
[Blok - van Alten]
■ (FEP) =⇒ (SFMP) =⇒ (FMP)
■ If K is closed under finite products, then the

(FEP) and the (SFMP) are equivalent.
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Definitions and Basic Properties
A class K of algebras is said to have the finite
embeddability property (FEP) if every finite partial
subalgebra of a member of K can be embedded
into a finite member of K. If K is a class of ordered
algebras, the preceding embedding must be an
ordered embedding.
[Blok - van Alten]
■ (FEP) =⇒ (SFMP) =⇒ (FMP)
■ If K is closed under finite products, then the

(FEP) and the (SFMP) are equivalent.
[T. Evans]
■ Any variety that satisfies the (FEP) has a

solvable word problem. In particular, its
equational theory is decidable.

■ A finitely presented algebra in any variety
satisfying the (FEP) is residually finite.
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Positive and Negative Results

Many subvarieties of RL – including CRL and RL
– fail the (FEP).
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Positive and Negative Results

Many subvarieties of RL – including CRL and RL
– fail the (FEP).
However, many integral subvarieties of RL do!
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Positive and Negative Results

Many subvarieties of RL – including CRL and RL
– fail the (FEP).
However, many integral subvarieties of RL do!

[Blok and van Alten; 2002 and 2005]
IRL and CIRL satisfy the (FEP).
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Positive and Negative Results

Many subvarieties of RL – including CRL and RL
– fail the (FEP).
However, many integral subvarieties of RL do!

[Blok and van Alten; 2002 and 2005]
IRL and CIRL satisfy the (FEP).

We provide a streamlined proof for CIRL, for the
sake of suggesting future possibilities for the
theory developed thus far.
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Positive and Negative Results

Many subvarieties of RL – including CRL and RL
– fail the (FEP).
However, many integral subvarieties of RL do!

[Blok and van Alten; 2002 and 2005]
IRL and CIRL satisfy the (FEP).

We provide a streamlined proof for CIRL, for the
sake of suggesting future possibilities for the
theory developed thus far.
Let A ∈ CIRL, and let B be any partial subalgebra
of A. We’ll first show that B can be embedded into
a lattice-complete algebra C ∈ CIRL so that:
if (bi | i ∈ I) is a family of elements of B such that
∨A

i∈I bi ∈ B, then
∨A

i∈I bi =
∨B

i∈I bi =
∨C

i∈I bi.
Likewise for meets.
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Positive and Negative Results

Many subvarieties of RL – including CRL and RL
– fail the (FEP).
However, many integral subvarieties of RL do!

[Blok and van Alten; 2002 and 2005]
IRL and CIRL satisfy the (FEP).

We provide a streamlined proof for CIRL, for the
sake of suggesting future possibilities for the
theory developed thus far.
Let A ∈ CIRL, and let B be any partial subalgebra
of A. We’ll first show that B can be embedded into
a lattice-complete algebra C ∈ CIRL so that:
if (bi | i ∈ I) is a family of elements of B such that
∨A

i∈I bi ∈ B, then
∨A

i∈I bi =
∨B

i∈I bi =
∨C

i∈I bi.
Likewise for meets.
What do we expect to preserve for “·" and “→"?
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Proof (I)

Let M be the submonoid of A generated by B. We
use the same notation M to denote the induced
partial subalgebra of A: B ≤ M ≤ A

Note that even if B is finite, M need not be so.
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Proof (I)

Let M be the submonoid of A generated by B. We
use the same notation M to denote the induced
partial subalgebra of A: B ≤ M ≤ A

Note that even if B is finite, M need not be so.

Consider the join-completion L(M) of M. We view
M as a subposet of L(M), and recall that the
inclusion map preserves multiplication, all existing
residuals and all existing meets.
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Proof (I)

Let M be the submonoid of A generated by B. We
use the same notation M to denote the induced
partial subalgebra of A: B ≤ M ≤ A

Note that even if B is finite, M need not be so.

Consider the join-completion L(M) of M. We view
M as a subposet of L(M), and recall that the
inclusion map preserves multiplication, all existing
residuals and all existing meets.

Let C̄ = {a → b | a ∈ M, b ∈ B} ⊆ L(M).
Notation: We use a → b for a →

L(M)
b.
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Proof (I)

Let M be the submonoid of A generated by B. We
use the same notation M to denote the induced
partial subalgebra of A: B ≤ M ≤ A

Note that even if B is finite, M need not be so.

Consider the join-completion L(M) of M. We view
M as a subposet of L(M), and recall that the
inclusion map preserves multiplication, all existing
residuals and all existing meets.

Let C̄ = {a → b | a ∈ M, b ∈ B} ⊆ L(M).
Notation: We use a → b for a →

L(M)
b.

Note that B ⊆ C̄, since 1 ∈ M and 1 → b = b, for all
b ∈ B.
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Proof (I)

Let M be the submonoid of A generated by B. We
use the same notation M to denote the induced
partial subalgebra of A: B ≤ M ≤ A

Note that even if B is finite, M need not be so.

Consider the join-completion L(M) of M. We view
M as a subposet of L(M), and recall that the
inclusion map preserves multiplication, all existing
residuals and all existing meets.

Let C̄ = {a → b | a ∈ M, b ∈ B} ⊆ L(M).
Notation: We use a → b for a →

L(M)
b.

Note that B ⊆ C̄, since 1 ∈ M and 1 → b = b, for all
b ∈ B.

Let C be the closure system generated by C̄:
C = {

∧
X | X ⊆ C̄} (Note that

∧
∅ = 1 ∈ C.)
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Proof (II)

Claim: C is a closure retraction of L(M). Indeed,
let a ∈ L(M) and x ∈ C. We need to show that
a → x ∈ C. There exists a family (mi | i ∈ I) of
elements of M , and a family (mj → bj | j ∈ J) of
elements of C̄ such that a =

∨
i∈I mi and

x =
∧

j∈J(mj → bj). We have:
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Proof (II)

Claim: C is a closure retraction of L(M). Indeed,
let a ∈ L(M) and x ∈ C. We need to show that
a → x ∈ C. There exists a family (mi | i ∈ I) of
elements of M , and a family (mj → bj | j ∈ J) of
elements of C̄ such that a =

∨
i∈I mi and

x =
∧

j∈J(mj → bj). We have:

a → x =
∨

i∈I mi →
∧

j∈J(mj → bj)

=
∧

i∈I

∧
j∈J(mi → (mj → bj)

=
∧

i∈I

∧
j∈J(mimj → bj) ∈ C
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Proof (II)

Claim: C is a closure retraction of L(M). Indeed,
let a ∈ L(M) and x ∈ C. We need to show that
a → x ∈ C. There exists a family (mi | i ∈ I) of
elements of M , and a family (mj → bj | j ∈ J) of
elements of C̄ such that a =

∨
i∈I mi and

x =
∧

j∈J(mj → bj). We have:

a → x =
∨

i∈I mi →
∧

j∈J(mj → bj)

=
∧

i∈I

∧
j∈J(mi → (mj → bj)

=
∧

i∈I

∧
j∈J(mimj → bj) ∈ C

In view of the general theory, C ∈ CIRL, and the
residuals and (arbitrary) meet operations in it agree
with those in L(M). Note further the following:
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Proof (II)

Claim: C is a closure retraction of L(M). Indeed,
let a ∈ L(M) and x ∈ C. We need to show that
a → x ∈ C. There exists a family (mi | i ∈ I) of
elements of M , and a family (mj → bj | j ∈ J) of
elements of C̄ such that a =

∨
i∈I mi and

x =
∧

j∈J(mj → bj). We have:

a → x =
∨

i∈I mi →
∧

j∈J(mj → bj)

=
∧

i∈I

∧
j∈J(mi → (mj → bj)

=
∧

i∈I

∧
j∈J(mimj → bj) ∈ C

In view of the general theory, C ∈ CIRL, and the
residuals and (arbitrary) meet operations in it agree
with those in L(M). Note further the following:

When multiplication or residuals (more precisely,
restrictions of residuals of A) are defined in B, they
agree with the corresponding operations in C.
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Proof (III)

Let (xi | i ∈ I) is a family of elements of B such
that

∧A

i∈I xi ∈ B. Then
∧B

i∈I xi =
∧A

i∈I xi =
∧M

i∈I xi =
∧C

i∈I xi.
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Proof (III)

Let (xi | i ∈ I) is a family of elements of B such
that

∧A

i∈I xi ∈ B. Then
∧B

i∈I xi =
∧A

i∈I xi =
∧M

i∈I xi =
∧C

i∈I xi.

Lastly, let (xi | i ∈ I) be a family in B such that
∨A

i∈I xi ∈ B. Then
∨B

i∈I xi =
∨A

i∈I xi =
∨M

i∈I xi.
Claim:

∨B

i∈I xi =
∨C

i∈I xi.
Clearly

∨C

i∈I xi ≤
∨B

i∈I xi.
Conversely, suppose that m → b (m ∈ M, b ∈ B) is
an upper bound of all the elements xi in C. For
each i,
xi ≤ m → b =⇒ mxi ≤ b =⇒

∨A

i∈I mxi ≤ b =⇒

m
∨A

i∈I xi = m
∨B

i∈I xi ≤ b =⇒
∨B

i∈I xi ≤ m → b. It
follows that

∨B

i∈I xi ≤
∨C

i∈I xi.
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Finiteness

Suppose now that B is finite. We claim that C̄, and
hence C, is finite. Let B = {b1, . . . , bn}. Let
F = 〈x1, . . . , xn〉 be the free commutative monoid
on n generators: F ∼= (Z−)n. Endowing F with the
cartesian product order, we get a member of
CIRL, which will also be denoted by F. Note that
F satisfies the (ACC), and every antichain in it is
finite.
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Finiteness

Suppose now that B is finite. We claim that C̄, and
hence C, is finite. Let B = {b1, . . . , bn}. Let
F = 〈x1, . . . , xn〉 be the free commutative monoid
on n generators: F ∼= (Z−)n. Endowing F with the
cartesian product order, we get a member of
CIRL, which will also be denoted by F. Note that
F satisfies the (ACC), and every antichain in it is
finite.

Let ϕ : F → M be the monoid epimorphism that
extends the assignment xi 7→ bi. We’ll think of ϕ as
a map ϕ : F → L(M), but remember that
ϕ[F ] = M . An important observation here is that ϕ
is an order homomorphism.
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Finiteness

Suppose now that B is finite. We claim that C̄, and
hence C, is finite. Let B = {b1, . . . , bn}. Let
F = 〈x1, . . . , xn〉 be the free commutative monoid
on n generators: F ∼= (Z−)n. Endowing F with the
cartesian product order, we get a member of
CIRL, which will also be denoted by F. Note that
F satisfies the (ACC), and every antichain in it is
finite.

Let ϕ : F → M be the monoid epimorphism that
extends the assignment xi 7→ bi. We’ll think of ϕ as
a map ϕ : F → L(M), but remember that
ϕ[F ] = M . An important observation here is that ϕ
is an order homomorphism.

To prove that C̄ is finite, it will suffice to show that,
for a fixed b ∈ B, the set {a → b | a ∈ M} is finite.
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Finiteness

Now ϕ−1(↓ b) =↓ Y , for some finite antichain
Y ⊆ F . Further, by integrality, b ≤ a → b, and so
↓ Y = ϕ−1(↓ b) ⊆ ϕ−1(↓ a → b). It follows that
ϕ−1(↓ a → b) =↓ Z, for some Z ⊆ ↑Y . Since ↑Y is
finite, and ↓ a1 → b 6=↓ a2 → b implies
ϕ−1(↓ a1 → b) 6= ϕ−1(↓ a2 → b), we can conclude
that the set {a → b | a ∈ M} is finite. The proof is
now complete.
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