Join-Completions and Finite Embeddability

Constantine Tsinakis Vanderbilt University

Workshop on Logic and Computation: from proof theory to program verification

> Kanazawa, Japan February 8-9, 2011

Join-completions & FEP

Abstract-Motivation

The aim of this talk is to provide fresh perspectives on join-extensions of ordered structures, and the finite embeddability property for these structures.

5	Abstract
>	Themes
	Join-Completions
	Ordered Structures
	The FEP

Join-completions & FEP

Abstract-Motivation

The aim of this talk is to provide fresh perspectives on join-extensions of ordered structures, and the finite embeddability property for these structures.

- W. J. Blok and C. J. Van Alten, The finite embeddability property for residuated lattices, pocrims and BCK-algebras, Algebra Univers. 48 (2002), 253-271.
- W. J. Blok and C. J. Van Alten, The finite embeddability property for residuated ordered groupoids, Trans. Amer. Math. Soc. 357 (10) (2005), 4141-4157.
- M. Okada, K. Terui, The finite model property for various fragments of intuitionistic linear logic, J. Symbolic Logic 64(2) (1999), 790-802.
- H. Ono, Completions of Algebras and Completeness of Modal and Substructural Logics, Advances in Modal Logics 4 (2002), 1-20.
- H. Ono, Closure Operators and Complete Embeddings of Residuated Lattices, Studia Logica 74 (3) (2003), 427-440.
- C. J. van Alten, Completion and the finite embeddability property for residuated ordered algebras, Algebra Univers. 62 (2009), 419-451.

Abstract
Themes
Join-Completions
Ordered Structures
The FEP

C. Tsinakis - slide #2

Join-completions & FEP

(1) Abstract treatment of join-extensions

Abstract

Themes

Join-Completions

Ordered Structures

The FEP

Join-completions & FEP

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

Abstract Themes Join-Completions Ordered Structures The FEP

Join-completions & FEP

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions

Abstract
Themes
Join-Completions
Ordered Structures
The FEP

(1) Abstract treatment of join-extensions

(2) The role of nuclei and co-nuclei in logic

(3) Interaction of residuals with join extensions

(4) The finite embeddability property and some of its consequences

Abstract
Themes
Join-Completions
Ordered Structures
The FEP

C. Tsinakis - slide #3

Join-completions & FEP

Join-Completions

Join-completions & FEP

Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P provided $P \subseteq Q$ and the order of Q restricts to that of P. In case every element of Q is a join (in Q) of elements of P, we say that Q is a join-extension of P and that P is join-dense in Q. We use the term join-completion for a join-extension that is a complete lattice. The concepts of a meet-extension and a meet-completion are defined dually. Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-Extensions and Join-Completions

A poset Q is called be an extension of a poset P provided $P \subseteq Q$ and the order of Q restricts to that of P. In case every element of Q is a join (in Q) of elements of P, we say that Q is a join-extension of P and that P is join-dense in Q. We use the term join-completion for a join-extension that is a complete lattice. The concepts of a meet-extension and a meet-completion are defined dually.

Join-completions, introduced by B. Banaschewski (1956), are intimately related to representations of complete lattices studied systematically by J.R. Büchi (1952). Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Preservation of Meets

If Q is a join-extension of P, then the inclusion map $i : P \rightarrow Q$ preserves all existing meets.

Equivalently, if $X \subseteq P$ and $\bigwedge^{\mathbf{P}} X$ exists, then $\bigwedge^{\mathbf{Q}} X$ exists and $\bigwedge^{\mathbf{P}} X = \bigwedge^{\mathbf{Q}} X$

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Preservation of Meets

If Q is a join-extension of P, then the inclusion map $i : P \rightarrow Q$ preserves all existing meets.

Equivalently, if $X \subseteq P$ and $\bigwedge^{\mathbf{P}} X$ exists, then $\bigwedge^{\mathbf{Q}} X$ exists and $\bigwedge^{\mathbf{P}} X = \bigwedge^{\mathbf{Q}} X$

Dually, If Q is a meet-extension of P, then the inclusion map $i : P \rightarrow Q$ preserves all existing joins.

Abstract Themes

Join-Completions	
Join-Extensions	
Meets	
Lower Sets	
Representation	
Abstract Descript. (1)	
Operators	
Join-Completions (1)	

Ordered Structures

The FEP

Lower and Upper Sets

A subset *I* of a poset **P** is said to be a lower set of **P** if whenever $y \in P$, $x \in I$, and $y \leq x$, then $y \in I$. Note that the empty set \emptyset is a lower set.

A principal lower set is a lower set of the form

 $\downarrow a = \{x \in P \mid x \le a\} \ (a \in P).$ For $A \subseteq P$,

 $\downarrow A = \{x \in P \mid x \leq a, \text{ for some } a \in A\}$ denotes the smallest lower set containing A.

The set $\mathcal{L}(\mathbf{P})$ of lower sets of \mathbf{P} ordered by set inclusion is a complete lattice; the join is the set-union, and the meet is the set-intersection.

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Lower and Upper Sets

A subset *I* of a poset **P** is said to be a lower set of **P** if whenever $y \in P$, $x \in I$, and $y \leq x$, then $y \in I$. Note that the empty set \emptyset is a lower set.

A principal lower set is a lower set of the form

 $\downarrow a = \{x \in P \mid x \le a\} \ (a \in P).$ For $A \subseteq P$,

 $\downarrow A = \{x \in P \mid x \leq a, \text{ for some } a \in A\}$ denotes the smallest lower set containing A.

The set $\mathcal{L}(\mathbf{P})$ of lower sets of \mathbf{P} ordered by set inclusion is a complete lattice; the join is the set-union, and the meet is the set-intersection.

The upper sets of P are defined dually. Further, we write $\mathcal{U}(\mathbf{P})$ for the lattice of upper sets of P, $\uparrow a = \{x \in P \mid a \leq x\}$ for $a \in P$, and $\uparrow A = \{x \in P \mid a \leq x, \text{ for some } a \in A\}$ for $A \subseteq P$. Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-completions & FEP

C. Tsinakis - slide #7

Canonical Representation of Join-Extensions

Each join-extension \mathbf{Q} of a poset \mathbf{P} can be identified with its canonical image $\dot{\mathbf{Q}}$:

 $\mathbf{Q} = \{ \downarrow x \cap P : x \in Q \}.$

In particular, P can be identified with the poset $\dot{\mathbf{P}}$ of its principal lower sets:

 $\dot{\mathbf{P}} = \{ \downarrow x : x \in P \}.$

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-completions & FEP

Canonical Representation of Join-Extensions

Each join-extension \mathbf{Q} of a poset \mathbf{P} can be identified with its canonical image $\dot{\mathbf{Q}}$:

 $\mathbf{Q} = \{ \downarrow x \cap P : x \in Q \}.$

In particular, P can be identified with the poset $\dot{\mathbf{P}}$ of its principal lower sets:

 $\dot{\mathbf{P}} = \{ \downarrow x : x \in P \}.$

The largest join-extension of P is $\mathcal{L}(P)$. Thus, for any join-extension Q of P, we have $\dot{P} \subseteq \dot{Q} \subseteq \mathcal{L}(P)$.

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Canonical Representation of Join-Extensions

Each join-extension ${\bf Q}$ of a poset ${\bf P}$ can be identified with its canonical image $\dot{{\bf Q}}$:

 $\mathbf{Q} = \{ \downarrow x \cap P : x \in Q \}.$

In particular, P can be identified with the poset $\dot{\mathbf{P}}$ of its principal lower sets:

 $\mathbf{\hat{P}} = \{ \downarrow x : x \in P \}.$

The largest join-extension of P is $\mathcal{L}(P)$. Thus, for any join-extension Q of P, we have $\dot{P} \subseteq \dot{Q} \subseteq \mathcal{L}(P)$.

The smallest join-completion of \mathbf{P} , is the so called Dedekind-MacNeille completion $\mathcal{N}(\mathbf{P})$. Its canonical image consists of all lower sets that are intersections of principal lower sets.

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

It is often desirable to look at the elements of a join-extension of P as just elements – such as the elements of P itself – rather than certain lower sets of P.

Abstract Themes

Join-Completions

Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-completions & FEP

It is often desirable to look at the elements of a join-extension of P as just elements – such as the elements of P itself – rather than certain lower sets of P.

For example, $\mathcal{L}(\mathbf{P})$ can be described abstractly as an algebraic and dually algebraic distributive lattice whose poset of completely join-prime elements is \mathbf{P} .

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-completions & FEP

It is often desirable to look at the elements of a join-extension of P as just elements – such as the elements of P itself – rather than certain lower sets of P.

For example, $\mathcal{L}(\mathbf{P})$ can be described abstractly as an algebraic and dually algebraic distributive lattice whose poset of completely join-prime elements is \mathbf{P} .

 $\mathcal{N}(\mathbf{P})$ has this abstract description: it is the only join and meet-completion of \mathbf{P} (Banaschewski).

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

It is often desirable to look at the elements of a join-extension of P as just elements – such as the elements of P itself – rather than certain lower sets of P.

For example, $\mathcal{L}(\mathbf{P})$ can be described abstractly as an algebraic and dually algebraic distributive lattice whose poset of completely join-prime elements is \mathbf{P} .

 $\mathcal{N}(\mathbf{P})$ has this abstract description: it is the only join and meet-completion of \mathbf{P} (Banaschewski). The inclusion $i : \mathbf{P} \to \mathcal{N}(\mathbf{P})$ preserves all existing joins and meets. The Crawley completion $\mathcal{C}(\mathbf{P})$ – with canonical image consisting of all complete lower sets of \mathbf{P} , that is, lower sets that are closed with respect to any existing joins of their elements – is the largest join-completion with this property. Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1) Ordered Structures

The FEP

0000

Recall that a closure operator on a poset P is a map $\gamma : \mathbf{P} \to \mathbf{P}$ with the usual properties of being order-preserving $(x \leq y \Rightarrow \gamma(x) \leq \gamma(y))$, enlarging $(x \leq \gamma(x))$, and idempotent $(\gamma(\gamma(x)) = \gamma(x))$. It is completely determined by its image \mathbf{P}_{γ} by virtue of the formula

 $\gamma(x) = \min\{c \in P_{\gamma} : x \le c\}.$

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-completions & FEP

Recall that a closure operator on a poset P is a map $\gamma : \mathbf{P} \to \mathbf{P}$ with the usual properties of being order-preserving $(x \leq y \Rightarrow \gamma(x) \leq \gamma(y))$, enlarging $(x \leq \gamma(x))$, and idempotent $(\gamma(\gamma(x)) = \gamma(x))$. It is completely determined by its image \mathbf{P}_{γ} by virtue of the formula

 $\gamma(x) = \min\{c \in P_{\gamma} : x \le c\}.$

Conversely, let us call a closure system on P, a subposet C of P that satisfies:

 $\min\{a \in C : x \leq a\}$ exists for all $x \in P$.

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-completions & FEP

Recall that a closure operator on a poset P is a map $\gamma : \mathbf{P} \to \mathbf{P}$ with the usual properties of being order-preserving $(x \leq y \Rightarrow \gamma(x) \leq \gamma(y))$, enlarging $(x \leq \gamma(x))$, and idempotent $(\gamma(\gamma(x)) = \gamma(x))$. It is completely determined by its image \mathbf{P}_{γ} by virtue of the formula

 $\gamma(x) = \min\{c \in P_{\gamma} : x \le c\}.$

Conversely, let us call a closure system on P, a subposet C of P that satisfies:

 $\min\{a \in C : x \leq a\}$ exists for all $x \in P$.

There is a bijective correspondence between closure operators and closure systems on P.

Abstract Themes

Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Recall that a closure operator on a poset P is a map $\gamma : \mathbf{P} \to \mathbf{P}$ with the usual properties of being order-preserving $(x \leq y \Rightarrow \gamma(x) \leq \gamma(y))$, enlarging $(x \leq \gamma(x))$, and idempotent $(\gamma(\gamma(x)) = \gamma(x))$. It is completely determined by its image \mathbf{P}_{γ} by virtue of the formula

 $\gamma(x) = \min\{c \in P_{\gamma} : x \le c\}.$

Conversely, let us call a closure system on P, a subposet C of P that satisfies:

 $\min\{a \in C : x \leq a\}$ exists for all $x \in P$.

There is a bijective correspondence between closure operators and closure systems on P.

If Q is a join-completion of P, then Q is a closure system on $\mathcal{L}(\mathbf{P})$. We write $\gamma_{\mathbf{Q}}$ for the associated closure operator on $\mathcal{L}(\mathbf{P})$.

Abstract Themes

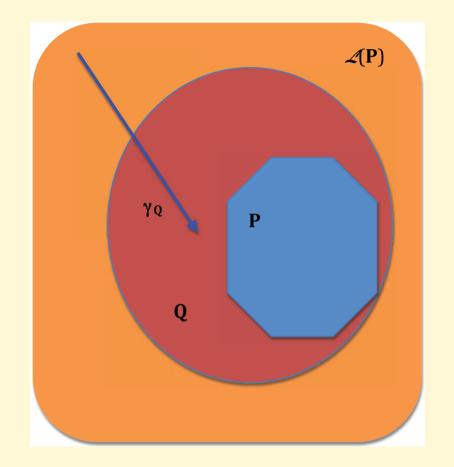
Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

Join-completions & FEP

Back to Join-Completions

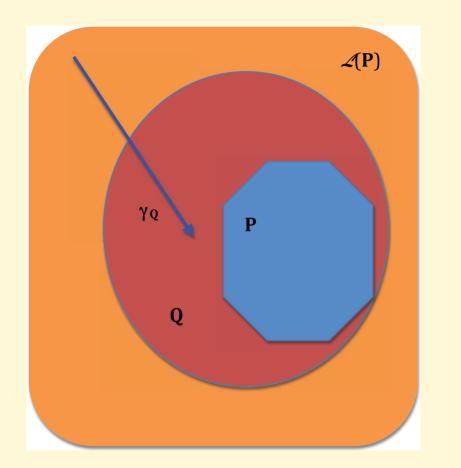


Ordered Structures

The FEP

Join-completions & FEP

Back to Join-Completions



Abstract Themes Join-Completions Join-Extensions Meets Lower Sets Representation Abstract Descript. (1) Operators Join-Completions (1)

Ordered Structures

The FEP

There is a bijective correspondence between join-completions of P and closure operators γ on $\mathcal{L}(\mathbf{P})$ with $P \subseteq \mathcal{L}(P)_{\gamma}$

Join-completions & FEP

Join-Extensions of Ordered Structures

Join-completions & FEP

Given a partially ordered monoid – pom for short – P, the following question arises:

Which join-completions of \mathbf{P} are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of \mathbf{P} ?

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Retractions Theorem Lemma

The FEP

Join-completions & FEP

Given a partially ordered monoid – pom for short – P, the following question arises:

Which join-completions of \mathbf{P} are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of \mathbf{P} ?

Let $\mathbf{P} = \langle P, \cdot, \leq \rangle$ be a pom and let $x, y \in P$. We set: $x \setminus z = \max\{y \in P : xy \leq z\}$, and $z/x = \max\{y \in P : yx \leq z\}$, Abstract Themes

Join-Completions

Ordered Structures		
Poms (1)		
Poms (2)		
Poms (3)		
Nuclei & Retractions		
Theorem		
Lemma		

The FEP

Join-completions & FEP

Given a partially ordered monoid – pom for short – P, the following question arises:

Which join-completions of \mathbf{P} are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of \mathbf{P} ?

Let $\mathbf{P} = \langle P, \cdot, \leq \rangle$ be a pom and let $x, y \in P$. We set: $x \setminus z = \max\{y \in P : xy \leq z\}$, and $z/x = \max\{y \in P : yx \leq z\}$,

whenever these maxima exist.

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Retractions
Theorem
Lemma

The FEP

Join-completions & FEP

Given a partially ordered monoid – pom for short – P, the following question arises:

Which join-completions of \mathbf{P} are residuated lattices with respect to a, necessarily unique, multiplication that extends the multiplication of \mathbf{P} ?

Let
$$\mathbf{P} = \langle P, \cdot, \leq \rangle$$
 be a pom and let $x, y \in P$. We set:
 $x \setminus z = \max\{y \in P : xy \leq z\}$, and
 $z/x = \max\{y \in P : yx \leq z\}$,

whenever these maxima exist.

 $x \setminus z$ is read as "x under z" z/x is read as "z over x" Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Retractions
Theorem
Lemma

The FEP

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Retractions
Theorem
Lemma

The FEP

Join-completions & FEP

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Alternatively, a residuated pom P is one in which the binary operation \cdot is residuated. This means that there exist binary operations \setminus and / on Psuch that for all $x, y, z \in P$,

 $xy \le z$ iff $x \le z/y$ iff $y \le x \setminus z$.

Abstract Themes

Join-Completions

Ordered Structures	
Poms (1)	
Poms (2)	
Poms (3)	
Nuclei $\&$ Retractions	
Theorem	
Lemma	

The FEP

Join-completions & FEP

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Alternatively, a residuated pom P is one in which the binary operation \cdot is residuated. This means that there exist binary operations \setminus and / on Psuch that for all $x, y, z \in P$,

 $xy \le z$ iff $x \le z/y$ iff $y \le x \setminus z$.

We think of a residuated pom as a relational structure $\mathbf{P} = \langle P, \cdot, \backslash, /, 1, \leq \rangle$

Abstract Themes

Join-Completions

Ordered Structures	
Poms (1)	
Poms (2)	
Poms (3)	
Nuclei $\&$ Retractions	
Theorem	
Lemma	

The FEP

A residuated partially ordered monoid – residuated pom – P is one in which all quotients $x \setminus z$ and z/xexist. In particular, the binary operations \setminus and / are defined everywhere on P.

Alternatively, a residuated pom P is one in which the binary operation \cdot is residuated. This means that there exist binary operations \setminus and / on Psuch that for all $x, y, z \in P$,

 $xy \le z$ iff $x \le z/y$ iff $y \le x \setminus z$.

We think of a residuated pom as a relational structure $\mathbf{P} = \langle P, \cdot, \backslash, /, 1, \leq \rangle$

A residuated lattice is a residuated lattice-ordered monoid $\mathbf{P} = \langle P, \wedge, \vee, \cdot, \backslash, /, 1 \rangle$

Abstract Themes

Join-Completions

Ordered Structures	
Poms (1)	
Poms (2)	
Poms (3)	
Nuclei $\&$ Retractions	
Theorem	
Lemma	

The FEP

Join-completions & FEP

Residuals in Partially Ordered Monoids

Let P be a monoid. Then $\wp(\mathbf{P}) = \langle \wp(P), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$ is a residuated lattice where:

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\},\$$
$$X \setminus Y = \{z \mid X \cdot \{z\} \subseteq Y\}, \text{ and }$$
$$Y/X = \{z \mid \{z\} \cdot X \subseteq Y\}.$$

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Retractions
heorem
emma

The FEP

Join-completions & FEP

Residuals in Partially Ordered Monoids

Let P be a monoid. Then $\wp(\mathbf{P}) = \langle \wp(P), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$ is a residuated lattice where:

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\},\$$
$$X \setminus Y = \{z \mid X \cdot \{z\} \subseteq Y\}, \text{ and }$$
$$Y/X = \{z \mid \{z\} \cdot X \subseteq Y\}.$$

Let P be a pom. Then $\mathcal{L}(\mathbf{P}) = \langle \mathcal{L}(P), \cap, \cup, \cdot, \setminus, /, \{1\} \rangle$ is a residuated lattice where:

$$\begin{aligned} X \cdot Y = &\downarrow \{x \cdot y \mid x \in X, y \in Y\}, \\ X \setminus Y = \{z \mid X \cdot \{z\} \subseteq Y\}, \text{ and} \\ Y/X = \{z \mid \{z\} \cdot X \subseteq Y\}. \end{aligned}$$

Note: $(\downarrow x) \cdot (\downarrow y) = \downarrow (x \cdot y);$ hence $\dot{\mathbf{P}}$, is a submonoid of $\mathcal{L}(\mathbf{P})$

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Retractions
Theorem
Lemma

The FEP

Join-completions & FEP

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Retractions Theorem Lemma

The FEP

Join-completions & FEP

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

A closure system C of a residuated poset P is called a closure retraction of P if x/y, $y \setminus x \in C$, for all $x \in C$ and $y \in P$. Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei & Retractions
Theorem
Lemma
Lemma

The FEP

Join-completions & FEP

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

A closure system C of a residuated poset P is called a closure retraction of P if x/y, $y \setminus x \in C$, for all $x \in C$ and $y \in P$.

Let γ be a closure operator on a residuated pom P, and let P_{γ} be the closure system associated with γ . Then γ is a nucleus iff P_{γ} is a closure retraction of P.

Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Retractions
Theorem
Lemma

The FEP

A nucleus on a pom P is a closure operator γ on P such that $\gamma(a)\gamma(b) \leq \gamma(ab)$ (equivalently, $\gamma(\gamma(a)\gamma(b)) = \gamma(ab)$), for all $a, b \in P$.

A closure system C of a residuated poset P is called a closure retraction of P if x/y, $y \setminus x \in C$, for all $x \in C$ and $y \in P$.

Let γ be a closure operator on a residuated pom P, and let P_{γ} be the closure system associated with γ . Then γ is a nucleus iff P_{γ} is a closure retraction of P.

A closure retraction \mathbf{P}_{γ} of a residuated pom \mathbf{P} is a residuated pom. The product of $x, y \in \mathbf{P}_{\gamma}$ is given by $x \circ_{\gamma} y = \gamma(x \cdot y)$, and the residuals are the restrictions on \mathbf{P}_{γ} of the residuals of \mathbf{P} . In particular, if \mathbf{P} is a residuated lattice, then so is \mathbf{P}_{γ} , with $x \vee_{\gamma} y = \gamma(x \vee y)$ and $x \wedge_{\gamma} y = x \wedge y$ Abstract Themes

Join-Completions

Ordered Structures
Poms (1)
Poms (2)
Poms (3)
Nuclei $\&$ Retractions
Theorem
Lemma

The FEP

Join-completions & FEP

Theorem

Let Q be a join completion of a pom P, and let δ_{Q} be the corresponding closure operator on $\wp(P)$. The following statements are equivalent:

- (1) Q is a residuated lattice with respect to a multiplication extending the multiplication of P.
- (2) $a \setminus_{\mathcal{L}(\mathbf{P})} b \in Q$ and $b /_{\mathcal{L}(\mathbf{P})} a \in Q$, for all $a \in P$ and $b \in Q$.
- (3) $\gamma_{\mathbf{Q}}$ is a nucleus on $\mathcal{L}(\mathbf{P})$
- (4) \mathbf{Q} is a closure retraction on $\mathcal{L}(\mathbf{P})$.

Furthermore, if the preceding conditions are satisfied, then the inclusion map $\mathbf{P} \hookrightarrow \mathbf{Q}$ preserves multiplication, all meets and all existing residuals.

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Retractions Theorem Lemma

The FEP

Join-completions & FEP

C. Tsinakis - slide #17

Crucial Lemma

Let P be a pom and let Q be a join-completion of P that is a pom with respect to a multiplication that extends the multiplication of P. Then for all $a, b \in P$, if $a \setminus_{\mathbf{P}} b$ exists, then $a \setminus_{\mathbf{Q}} b$ exists and

$$a\backslash_{\mathbf{P}}b = a\backslash_{\mathbf{Q}}b = a\backslash_{\mathcal{L}(\mathbf{P})}b.$$

Likewise for the other residual.

Abstract Themes

Join-Completions

Ordered Structures Poms (1) Poms (2) Poms (3) Nuclei & Retractions Theorem Lemma

The FEP

Join-completions & FEP

The Finite Embeddability Property

Join-completions & FEP

Definitions and Basic Properties

A class \mathcal{K} of algebras is said to have the finite embeddability property (FEP) if every finite partial subalgebra of a member of \mathcal{K} can be embedded into a finite member of \mathcal{K} . If \mathcal{K} is a class of ordered algebras, the preceding embedding must be an ordered embedding.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Definitions and Basic Properties

A class \mathcal{K} of algebras is said to have the finite embeddability property (FEP) if every finite partial subalgebra of a member of \mathcal{K} can be embedded into a finite member of \mathcal{K} . If \mathcal{K} is a class of ordered algebras, the preceding embedding must be an ordered embedding.

[Blok - van Alten]

- (FEP) \implies (SFMP) \implies (FMP)
- If K is closed under finite products, then the (FEP) and the (SFMP) are equivalent.

Abstract Themes Join-Completions Ordered Structures The FEP Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Definitions and Basic Properties

A class \mathcal{K} of algebras is said to have the finite embeddability property (FEP) if every finite partial subalgebra of a member of \mathcal{K} can be embedded into a finite member of \mathcal{K} . If \mathcal{K} is a class of ordered algebras, the preceding embedding must be an ordered embedding.

[Blok - van Alten]

- (FEP) \implies (SFMP) \implies (FMP)
- If K is closed under finite products, then the (FEP) and the (SFMP) are equivalent.
- [T. Evans]
- Any variety that satisfies the (FEP) has a solvable word problem. In particular, its equational theory is decidable.
- A finitely presented algebra in any variety satisfying the (FEP) is residually finite.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten

Proof (I) Proof (II) Proof (III) Proof (IV)

Proof (V)

Join-completions & FEP

Many subvarieties of \mathcal{RL} – including \mathcal{CRL} and \mathcal{RL} – fail the (FEP).

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Many subvarieties of \mathcal{RL} – including \mathcal{CRL} and \mathcal{RL} – fail the (FEP).

However, many integral subvarieties of \mathcal{RL} do!

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

C. Tsinakis - slide #21

Join-completions & FEP

Many subvarieties of \mathcal{RL} – including \mathcal{CRL} and \mathcal{RL} – fail the (FEP).

However, many integral subvarieties of \mathcal{RL} do!

[Blok and van Alten; 2002 and 2005] \mathcal{IRL} and \mathcal{CIRL} satisfy the (FEP).

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

C. Tsinakis - slide #21

Join-completions & FEP

Many subvarieties of \mathcal{RL} – including \mathcal{CRL} and \mathcal{RL} – fail the (FEP).

However, many integral subvarieties of \mathcal{RL} do!

[Blok and van Alten; 2002 and 2005] IRL and CIRL satisfy the (FEP).

We provide a streamlined proof for CIRL, for the sake of suggesting future possibilities for the theory developed thus far.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Many subvarieties of \mathcal{RL} – including \mathcal{CRL} and \mathcal{RL} – fail the (FEP).

However, many integral subvarieties of \mathcal{RL} do!

[Blok and van Alten; 2002 and 2005] IRL and CIRL satisfy the (FEP).

We provide a streamlined proof for CIRL, for the sake of suggesting future possibilities for the theory developed thus far.

Let $A \in CIRL$, and let B be any partial subalgebra of A. We'll first show that B can be embedded into a lattice-complete algebra $C \in CIRL$ so that: if $(b_i | i \in I)$ is a family of elements of B such that $\bigvee_{i \in I}^{A} b_i \in B$, then $\bigvee_{i \in I}^{A} b_i = \bigvee_{i \in I}^{B} b_i = \bigvee_{i \in I}^{C} b_i$. Likewise for meets. Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

......

Join-completions & FEP

Many subvarieties of \mathcal{RL} – including \mathcal{CRL} and \mathcal{RL} – fail the (FEP).

However, many integral subvarieties of \mathcal{RL} do!

[Blok and van Alten; 2002 and 2005] IRL and CIRL satisfy the (FEP).

We provide a streamlined proof for CIRL, for the sake of suggesting future possibilities for the theory developed thus far.

Let $A \in CIRL$, and let B be any partial subalgebra of A. We'll first show that B can be embedded into a lattice-complete algebra $C \in CIRL$ so that: if $(b_i | i \in I)$ is a family of elements of B such that $\bigvee_{i \in I}^{A} b_i \in B$, then $\bigvee_{i \in I}^{A} b_i = \bigvee_{i \in I}^{B} b_i = \bigvee_{i \in I}^{C} b_i$. Likewise for meets.

What do we expect to preserve for " \cdot " and " \rightarrow "?

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

000000

Join-completions & FEP

Let M be the submonoid of A generated by B. We use the same notation M to denote the induced partial subalgebra of A: $B \le M \le A$ Note that even if B is finite, M need not be so.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Let M be the submonoid of A generated by B. We use the same notation M to denote the induced partial subalgebra of A: $B \le M \le A$ Note that even if B is finite, M need not be so. Consider the join-completion $\mathcal{L}(M)$ of M. We view M as a subposet of $\mathcal{L}(M)$, and recall that the inclusion map preserves multiplication, all existing residuals and all existing meets.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Let M be the submonoid of A generated by B. We use the same notation M to denote the induced partial subalgebra of A: $B \le M \le A$ Note that even if B is finite, M need not be so.

Consider the join-completion $\mathcal{L}(\mathbf{M})$ of \mathbf{M} . We view \mathbf{M} as a subposet of $\mathcal{L}(\mathbf{M})$, and recall that the inclusion map preserves multiplication, all existing residuals and all existing meets.

Let $\overline{C} = \{a \to b \mid a \in M, b \in B\} \subseteq \mathcal{L}(M)$. Notation: We use $a \to b$ for $a \to_{\mathcal{L}(M)} b$. Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

C. Tsinakis - slide #22

Join-completions & FEP

Let M be the submonoid of A generated by B. We use the same notation M to denote the induced partial subalgebra of A: $B \le M \le A$ Note that even if B is finite, M need not be so.

Consider the join-completion $\mathcal{L}(\mathbf{M})$ of \mathbf{M} . We view \mathbf{M} as a subposet of $\mathcal{L}(\mathbf{M})$, and recall that the inclusion map preserves multiplication, all existing residuals and all existing meets.

Let $\overline{C} = \{a \to b \mid a \in M, b \in B\} \subseteq \mathcal{L}(M)$. Notation: We use $a \to b$ for $a \to_{\mathcal{L}(M)} b$.

Note that $B \subseteq \overline{C}$, since $1 \in M$ and $1 \rightarrow b = b$, for all $b \in B$.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Let M be the submonoid of A generated by B. We use the same notation M to denote the induced partial subalgebra of A: $B \le M \le A$ Note that even if B is finite, M need not be so.

Consider the join-completion $\mathcal{L}(\mathbf{M})$ of \mathbf{M} . We view \mathbf{M} as a subposet of $\mathcal{L}(\mathbf{M})$, and recall that the inclusion map preserves multiplication, all existing residuals and all existing meets.

Let $\overline{C} = \{a \to b \mid a \in M, b \in B\} \subseteq \mathcal{L}(M)$. Notation: We use $a \to b$ for $a \to_{\mathcal{L}(M)} b$.

Note that $B \subseteq \overline{C}$, since $1 \in M$ and $1 \rightarrow b = b$, for all $b \in B$.

Let C be the closure system generated by \overline{C} : $C = \{ \bigwedge X \mid X \subseteq \overline{C} \}$ (Note that $\bigwedge \emptyset = 1 \in C$.) Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Claim: C is a closure retraction of $\mathcal{L}(\mathbf{M})$. Indeed, let $a \in \mathcal{L}(\mathbf{M})$ and $x \in C$. We need to show that $a \to x \in C$. There exists a family $(m_i \mid i \in I)$ of elements of M, and a family $(m_j \to b_j \mid j \in J)$ of elements of \overline{C} such that $a = \bigvee_{i \in I} m_i$ and $x = \bigwedge_{j \in J} (m_j \to b_j)$. We have:

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Claim: C is a closure retraction of $\mathcal{L}(\mathbf{M})$. Indeed, let $a \in \mathcal{L}(\mathbf{M})$ and $x \in C$. We need to show that $a \to x \in C$. There exists a family $(m_i \mid i \in I)$ of elements of M, and a family $(m_j \to b_j \mid j \in J)$ of elements of \overline{C} such that $a = \bigvee_{i \in I} m_i$ and $x = \bigwedge_{j \in J} (m_j \to b_j)$. We have:

$$a \to x = \bigvee_{i \in I} m_i \to \bigwedge_{j \in J} (m_j \to b_j)$$

=
$$\bigwedge_{i \in I} \bigwedge_{j \in J} (m_i \to (m_j \to b_j))$$

=
$$\bigwedge_{i \in I} \bigwedge_{j \in J} (m_i m_j \to b_j) \in C$$

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Claim: C is a closure retraction of $\mathcal{L}(\mathbf{M})$. Indeed, let $a \in \mathcal{L}(\mathbf{M})$ and $x \in C$. We need to show that $a \to x \in C$. There exists a family $(m_i \mid i \in I)$ of elements of M, and a family $(m_j \to b_j \mid j \in J)$ of elements of \overline{C} such that $a = \bigvee_{i \in I} m_i$ and $x = \bigwedge_{j \in J} (m_j \to b_j)$. We have:

$$a \to x = \bigvee_{i \in I} m_i \to \bigwedge_{j \in J} (m_j \to b_j)$$

=
$$\bigwedge_{i \in I} \bigwedge_{j \in J} (m_i \to (m_j \to b_j))$$

=
$$\bigwedge_{i \in I} \bigwedge_{j \in J} (m_i m_j \to b_j) \in C$$

In view of the general theory, $C \in CIRL$, and the residuals and (arbitrary) meet operations in it agree with those in $\mathcal{L}(\mathbf{M})$. Note further the following:

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Claim: C is a closure retraction of $\mathcal{L}(\mathbf{M})$. Indeed, let $a \in \mathcal{L}(\mathbf{M})$ and $x \in C$. We need to show that $a \to x \in C$. There exists a family $(m_i \mid i \in I)$ of elements of M, and a family $(m_j \to b_j \mid j \in J)$ of elements of \overline{C} such that $a = \bigvee_{i \in I} m_i$ and $x = \bigwedge_{j \in J} (m_j \to b_j)$. We have:

$$a \to x = \bigvee_{i \in I} m_i \to \bigwedge_{j \in J} (m_j \to b_j)$$

= $\bigwedge_{i \in I} \bigwedge_{j \in J} (m_i \to (m_j \to b_j))$
= $\bigwedge_{i \in I} \bigwedge_{j \in J} (m_i m_j \to b_j) \in C$

In view of the general theory, $C \in CIRL$, and the residuals and (arbitrary) meet operations in it agree with those in $\mathcal{L}(M)$. Note further the following: When multiplication or residuals (more precisely, restrictions of residuals of A) are defined in B, they agree with the corresponding operations in C. Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

0000

Join-completions & FEP

Let $(x_i \mid i \in I)$ is a family of elements of B such that $\bigwedge_{i \in I}^{\mathbf{A}} x_i \in B$. Then $\bigwedge_{i \in I}^{\mathbf{B}} x_i = \bigwedge_{i \in I}^{\mathbf{A}} x_i = \bigwedge_{i \in I}^{\mathbf{M}} x_i = \bigwedge_{i \in I}^{\mathbf{C}} x_i$.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Let $(x_i \mid i \in I)$ is a family of elements of B such that $\bigwedge_{i \in I}^{\mathbf{A}} x_i \in B$. Then $\bigwedge_{i \in I}^{\mathbf{B}} x_i = \bigwedge_{i \in I}^{\mathbf{A}} x_i = \bigwedge_{i \in I}^{\mathbf{M}} x_i = \bigwedge_{i \in I}^{\mathbf{C}} x_i$.

Lastly, let $(x_i | i \in I)$ be a family in B such that $\bigvee_{i \in I}^{\mathbf{A}} x_i \in B$. Then $\bigvee_{i \in I}^{\mathbf{B}} x_i = \bigvee_{i \in I}^{\mathbf{A}} x_i = \bigvee_{i \in I}^{\mathbf{M}} x_i$. Claim: $\bigvee_{i \in I}^{\mathbf{B}} x_i = \bigvee_{i \in I}^{\mathbf{C}} x_i$. Clearly $\bigvee_{i \in I}^{\mathbf{C}} x_i \leq \bigvee_{i \in I}^{\mathbf{B}} x_i$. Conversely, suppose that $m \to b$ ($m \in M, b \in B$) is an upper bound of all the elements x_i in C. For each i,

$$\begin{aligned} x_i &\leq m \to b \implies mx_i \leq b \implies \bigvee_{i \in I}^{\mathbf{A}} mx_i \leq b \implies \\ m \bigvee_{i \in I}^{\mathbf{A}} x_i &= m \bigvee_{i \in I}^{\mathbf{B}} x_i \leq b \implies \bigvee_{i \in I}^{\mathbf{B}} x_i \leq m \to b. \text{ It} \\ \text{follows that } \bigvee_{i \in I}^{\mathbf{B}} x_i \leq \bigvee_{i \in I}^{\mathbf{C}} x_i. \end{aligned}$$

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

C. Tsinakis - slide #24

Suppose now that B is finite. We claim that \overline{C} , and hence C, is finite. Let $B = \{b_1, \ldots, b_n\}$. Let $\mathbf{F} = \langle x_1, \ldots, x_n \rangle$ be the free commutative monoid on *n* generators: $\mathbf{F} \cong (\mathbb{Z}^-)^n$. Endowing F with the cartesian product order, we get a member of \mathcal{CIRL} , which will also be denoted by F. Note that F satisfies the (ACC), and every antichain in it is finite.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Suppose now that B is finite. We claim that \overline{C} , and hence C, is finite. Let $B = \{b_1, \ldots, b_n\}$. Let $\mathbf{F} = \langle x_1, \ldots, x_n \rangle$ be the free commutative monoid on *n* generators: $\mathbf{F} \cong (\mathbb{Z}^-)^n$. Endowing F with the cartesian product order, we get a member of \mathcal{CIRL} , which will also be denoted by F. Note that F satisfies the (ACC), and every antichain in it is finite.

Let $\varphi : \mathbf{F} \to \mathbf{M}$ be the monoid epimorphism that extends the assignment $x_i \mapsto b_i$. We'll think of φ as a map $\varphi : \mathbf{F} \to \mathcal{L}(\mathbf{M})$, but remember that $\varphi[F] = M$. An important observation here is that φ is an order homomorphism. Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Suppose now that B is finite. We claim that \overline{C} , and hence C, is finite. Let $B = \{b_1, \ldots, b_n\}$. Let $\mathbf{F} = \langle x_1, \ldots, x_n \rangle$ be the free commutative monoid on *n* generators: $\mathbf{F} \cong (\mathbb{Z}^-)^n$. Endowing F with the cartesian product order, we get a member of \mathcal{CIRL} , which will also be denoted by F. Note that F satisfies the (ACC), and every antichain in it is finite.

Let $\varphi : \mathbf{F} \to \mathbf{M}$ be the monoid epimorphism that extends the assignment $x_i \mapsto b_i$. We'll think of φ as a map $\varphi : \mathbf{F} \to \mathcal{L}(\mathbf{M})$, but remember that $\varphi[F] = M$. An important observation here is that φ is an order homomorphism.

To prove that \overline{C} is finite, it will suffice to show that, for a fixed $b \in B$, the set $\{a \to b \mid a \in M\}$ is finite. Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)

Join-completions & FEP

Now $\varphi^{-1}(\downarrow b) = \downarrow Y$, for some finite antichain $Y \subseteq F$. Further, by integrality, $b \leq a \rightarrow b$, and so $\downarrow Y = \varphi^{-1}(\downarrow b) \subseteq \varphi^{-1}(\downarrow a \rightarrow b)$. It follows that $\varphi^{-1}(\downarrow a \rightarrow b) = \downarrow Z$, for some $Z \subseteq \uparrow Y$. Since $\uparrow Y$ is finite, and $\downarrow a_1 \rightarrow b \neq \downarrow a_2 \rightarrow b$ implies $\varphi^{-1}(\downarrow a_1 \rightarrow b) \neq \varphi^{-1}(\downarrow a_2 \rightarrow b)$, we can conclude that the set $\{a \rightarrow b \mid a \in M\}$ is finite. The proof is now complete.

Abstract Themes

Join-Completions

Ordered Structures

The FEP

Definitions Blok - van Alten Proof (I) Proof (II) Proof (III) Proof (IV) Proof (V)