Research Areas in Mobile Ad-Hoc Networks

LIM lab/JAIST meeting, Oct.03 2012

By
Quan Le-Trung, Dr.techn.

http://sites.google.com/site/quanletrung/

A gateway to outreach the world while studying in Vietnam
Contents

• Routing in MANETs, and Internetworking MANETs with Internet
• Mobility Management in All-IP Mobile Networks
• Collaboration MANETs/WSNs
 – In Continuity with Presentation at 09.30-10.30
• Wireless Ad-Hoc Router
 – Presented at 14.00-14.30
Routing in MANETs, and Internetworking MANETs with Internet

Formerly funded by EuroNGI project: “Convergence of Multi-Service Networks towards Next Generation of Internet”, Europe FP6 ICT Network of Excellence-NoE [10/2004-10/2006], and

A gateway to outreach the world while studying in Vietnam
Motivations

Introduction

- Mobile Ad Hoc Networks (MANETs)
 - Highly dynamic and Mobile
 - Infrastructureless, Unpredictable
 - Multi-Hop, Peer-to-Peer

- MANETs Features
 - Increased mobility and flexibility
 - Fast and economical deployment (reduces fixed infrastructure costs)
 - Increased spectrum reuse
 - Auto-configuration
 - Ability to inter-network through multi-hopping without using fixed network infrastructure
 - Increased robustness

- MANETs Applications
 - DoD (battlefields, communications)
 - Commercial (disasters, explorer, festivals,...)

- Technical Challenges of MANETs
 - Mobility
 - Scalability
 - Bandwidth constraint
 - RF Connectivity
 - Energy constraint
 - Routing fairness
 - Cluster cooperation
 - Distributed information processing
 - Internetworking

Solutions mostly for Standalone MANET!

Source: (Chris Ellis, Dec.2004)

Source: (Seoung-Bum Lee, 2000)
Motivations

Objective

• Bring Advantages of MANETs to Internet (ISPs, Users)
 – Fast deployment network at cheap cost
 – Instant applications where infrastructureless network is needed, e.g. exploration, battle fields, disaster,…
 – Load balancing for congested networks
 – Extended coverage area of infrastructure wireless networks (1-hop) to multi-hop and/or “Empty Area”
 – Provide Internet access to MANET Users
 – Integration of MANETs and Internet to create a global network ↔ MANET and Internet Users Transparency

• Bring Advantages of MANETs to Sensor Networks
 – Fast deployment MANET overlaying over WSAN for processing in the event areas [REACTION to EVENTS]

• Working Standardization (Internet Drafts, RFCs)
Motivations Scope

- Mainly working at the Network Layer (L3)
- Cross-Layer Relation (L3/L2) for Increasing Performance and Reducing Overhead/Packet Drops
- Performance Evaluation via Simulation in ns-2, testbed
- Point to Consider in Internetworking:
 - Addressing [MANET ↔ Internet] & Routing [Both]
 - Mobility Management [MANET ↔ Internet]
 - MAC Layer (L2) Cross-Layer Relation [MANET ↔ Internet]
 - Scalability [Both]
 - Energy-Efficiency [MANET↔WSAN]
- Point not to Consider in Internetworking:
 - Quality of Service Support
 - Security
Internetworking MANETs with the Internet

Cross Layer Model

Arch-InterMANETs

the MANETs site
- Native MANETs Applications
- New Internet-NGI Applications
- Legacy Internet Applications
- Middleware
- MANETs application security

MAC QoS support using
- Reservation Reservation
- SRMA/PA
- MANETs security at MAC layer

Network Layer
- Hybrid Hierarchical QoS Routing
- BGP-GCR+
- MANETs security network layer

Interworking Function (IWF)
- Middleware (i3)
- security

Interworking
- New Internet-NGI Applications
- Legacy Internet Applications
- Middleware
- security

the Internet site
- New Internet-NGI Applications
- Legacy Internet Applications
- Middleware
- security

TCP
- TCP Flow
- security

SSL
- TCP

IP Routing
- Constraint-based Routing
- IPsec

MPLS/GMPLS
- ATM/SONET-SDH/DWDM

Middleware
- security

Native MANETs Applications
- New Internet-NGI Applications
- Legacy Internet Applications
- Middleware
- MANETs application security

TCP/ATCP
- MANETs security transport layer

Network Layer
- Hybrid Hierarchical QoS Routing
- BGP-GCR+
- MANETs security network layer

MAC QoS support using
- Reservation Reservation
- SRMA/PA
- MANETs security at MAC layer

End-to-end Flow
- QoS MIP+MPLS, security

MIP/DHMIP/SIP, Mobile IP Security (MolPS), IPv6
+ addressing, routing + security, mobility, QoS
MANETs as Transit Networks for the Internet

Objectives
- Routing in Large-Scale MANETs
- MANETs as Backup, Load-Balancing Transit Networks for the Internet

Problems stated
- MANETs address stateless autoconfiguration
- Hybrid ad-hoc routing
- Scalability (clustering, hierarchy)
- Towards standards
 - IPv6-based mechanism (IPv6 IETF charter)
 - MANETs IETF charter (Internet drafts, rfc5s)

Internetworking: Type IV
- Internet gateways connections (Inter-Autonomous Systems) via MANETs
- Routing THROUGH MANETs via destination AS-number based

Areas of Applications
- Disasters (Links failures)
- Link backup
- Load-balancing
Features of GCR
- **Hierarchy (two-level)**
- **Hybrid**
 - Intra-cluster (centralized, leader-based, link-state)
 - Inter-cluster (on-demand AODV-based)
- **Cluster construction**
 - Local maximum degree
 - Broadcast range (R_{max}), Non-overlapped
- **Cluster maintenance**
 - One-node fault-tolerant (auto-repairable)
 - Area of application: large-scale, dense MANETs

Limitations of GCR, Extension for BGP-GCR+
- MANETs nodes are assumed to be assigned Unique IDs and Unique CIDs
- MANETs nodes data structures, packet formats, route cache are not fully specified
- Neighbor (cluster) selection criteria for nodes switching on

A summary of the characteristics of GCR

<table>
<thead>
<tr>
<th>Items</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustering</td>
<td>Two-level</td>
</tr>
<tr>
<td>Cluster head election degree</td>
<td>Local (R=1) maximum degree</td>
</tr>
<tr>
<td>Cluster maintenance</td>
<td>One-node fault-tolerant Anti-fluctuations based on Gravitational clustering and node stability</td>
</tr>
<tr>
<td>Broadcast range</td>
<td>R_{max}</td>
</tr>
<tr>
<td>Overlapped area</td>
<td>No</td>
</tr>
<tr>
<td>QoS support</td>
<td>Yes</td>
</tr>
<tr>
<td>Address assignment</td>
<td>Assumption assigned (any methods)</td>
</tr>
<tr>
<td>Area of application</td>
<td>Large-scale, dense MANETs</td>
</tr>
<tr>
<td>Space complexity of cluster head</td>
<td>$O(n^\text{AvgDeg(n)}+N_{\text{cluster}}^\text{AvgDeg(n)}+\text{AvgDeg(n)})$</td>
</tr>
<tr>
<td>Time complexity of cluster head</td>
<td>$O(f(n^\text{AvgDeg(n)}+N_{\text{cluster}}^\text{AvgDeg(n)}+\text{AvgDeg(n)})$</td>
</tr>
<tr>
<td>Space complexity of others</td>
<td>$O(\text{AvgDeg(n)})$</td>
</tr>
<tr>
<td>Time complexity of others</td>
<td>$O(f(\text{AvgDeg(n)}))$</td>
</tr>
</tbody>
</table>
BGP-GCR+ consists of three components:

- Currently, Routing component of BGP-GCR+ is implemented in ns-2
 - Cluster Formation and Maintenance
 - Intra-Cluster/Inter-Cluster Routing
 - Data Structures
 - Neighbor Cache
 - Intra-Cluster/Inter-Cluster Caches
 - Interface/BGP-GCR+ Queue and Policy

BGP-GCR+ consists of:

- QoS Routing Protocol
- Address Auto-Configuration
- Selection Procedure at internet gateways

Current Implementation of BGP-GCR+:

- QoS Routing Protocol for large-scale ad-hoc networks

Node Entry

Layer-Architecture of Mobile Node in NS-2

BGP-GCR+ Packet Flow
Implementation of BGP-GCR+ in ns-2

- **Cluster Maintenance**
 - Based on one-node fault-tolerant characteristics of Cluster Formation
 - Intra-Cluster Maintenance based on Link UP/DOWN sent to Cluster Head via Link-Change Packets from detecting nodes in its cluster
 - Inter-Cluster Maintenance based on AODV Route Maintenance (RERR sent to source the by detecting node)

- **Neighbor Cache (Extension of AODV Neighbor Cache)**
 - Double-Linked List, Timeout for each Entry, Periodically purged
 - Periodically send Hello packets to inform its existence to neighbors

- **Interface Queue and Policy (Already Implemented in ns-2)**
 - Queue/DropTail/PriQueue

- **BGP-GCR+ Queue and Policy (Extension of AODV Data Queue)**
 - Queue/DropTail

- **Packet Headers and Formats**
 - IPv6 Internet Drafts and RFCs (Data types is not exactly followed)
 - ns-2 Packet Headers (Common, IP)
 - AODV Packet Headers (RREQ, RREP, RERR)
 - DSR Packet Headers (Source Routing Header)
 - BGP-GCR+ (Hello, Join/Link-Change, Grav)
BGP-GCR+ over 802.11 DCF

Determining Time Intervals: Broadcasting, Updating Caches, Lifetime

Sending JOIN/LN

- **t = 0**
 - Send JOIN/LN

- **t = 1*ζ**, forward
 - \(A_{R-1} \rightarrow A_{s} \)

- **t = (R_Max-1)*ζ**, forward
 - \(A_{s} \rightarrow B_{0} \)

- **t = T0 = R_Max*ζ**
 - \(A_{s} \rightarrow C_{d} \)

- **t = T0**
 - \(C_{0} \) to \(C_{d} \)

Receiving JOIN/LN

- **t = T0**
 - \(A_{s} \rightarrow C_{d} \)

- **RTT = 2*n*Avg_PerHopTime**

- **Max_RTT = 2*N*Avg_PerHopTime**

- **N: Network Diameter**

- **InterRouteCache_LifeTime = μ*Max_RTT**

Routing Calculation

- \(T_0 = \alpha.\zeta.R_{\text{Max}} \) (0 ≤ \(\alpha \) ≤ 1)

- \(\zeta : \text{Avg}_\text{PerHopTime}, \ r : \text{Coverage radius} \)

- \(T_1 = \frac{\bar{d}}{s} = \beta.\frac{2r}{s} \) (0 ≤ \(\beta \) ≤ 1) → \(T_1 \geq T_0 \)

Additional Notes

- Coverage range: \(r \), \(\alpha \), \(\zeta \), \(\beta \)

- Roaming out of \(A_{R-1} \) range

- Link Broken → send JOIN/LN
Determining Time Intervals: Broadcasting, Updating Caches, Lifetime

\[T_0 = \alpha \cdot I_{N-Update-Fixed} \cdot R_{Max} \cdot Avg_{PerHopTime} \quad (\alpha \leq 1, R_{Max}: \text{cluster radius}) \quad (1) \]

\[T_1 = \left(\frac{a \cdot r}{\text{Max\{speed\}}} \right) (r: \text{node coverage radius, } 0 \leq a \leq 2, \text{Average: } \bar{a} = 1) \quad (2) \]

\[T_0 \leq T_1 \iff I_{N-Update-Fixed} \leq \left(\frac{a \cdot r}{\text{Max\{speed\}}} \right) \cdot \frac{1}{R_{Max} \cdot Avg_{PerHopTime}} \quad (3) \]

\[\rightarrow I_{N-Update} = \left[(1 - \beta_1) \cdot I_{N-Update-Fixed} + 2 \cdot \beta_1 \cdot I_{N-Update-Fixed} \cdot \text{Random :: uniform()} \right] (\beta_1 = 0.90) \quad (4) \]

\[\rightarrow I_{H-Broadcast} = \left[(1 - \beta_2) \cdot I_{N-Update-Fixed} + 2 \cdot \beta_2 \cdot I_{N-Update-Fixed} \cdot \text{Random :: uniform()} \right] (\beta_2 = 0.75) \quad (5) \]

\[\rightarrow I_{N-Lifetime} = \left[1.5 \cdot \text{ALLOWED HELLO LOSS} \cdot I_{N-Update-Fixed} \right] \quad (6) \]

\[I_{R-Lifetime} = \mu_1 \cdot Max_{RTT} = \mu_1 \cdot 2 \cdot N \cdot Avg_{PerHopTime} \quad (N: \text{Network Diameter}) \quad (7) \]

\[I_{R_Update} = \mu_2 \cdot Max_{RTT} \quad (\mu_1 \geq 1, 1 \geq \mu_2 \geq 0.5) \quad (8) \]
Multiple routes for Load-Balancing or Backup for A7

A1→A3 via A2 using A2's NeighborCache instead of A1→A2→A0→A3

A10 updates shorter route when A8 moves in its coverage range

A6 moves out of A7 and A0 coverage ranges, links A7↔A6 and A6↔A0 are broken

A7→A0 via A5 or A4

Link A5 ↔ A0 is congested

A7→A0 via A4

Load-Balancing via ClusterHead and/or BranchPoint in 1-hop vicinity

Mobility Management in All-IP Mobile Networks

Contents

• A Review on existing mechanisms in Internet Mobility Management
 – IP Mobility Management
 – IP Mobility Management over WLAN (1-Hop)
 – IP Mobility Management over MANET (Multi-Hop)
• Needing functions on Internet connectivity for MANETs
• Discovering problems on Internet gateway forwarding strategies for MANETs & Solutions
• A new Internet gateway selection metric
 – Shortest Euclidean distance
 – Load-balancing for traffic in/out the Internet from/to MANET
 – Load-balancing for Internal MANET traffic
Review IP Mobility Management [MIPv4] (1/5)

Foreign Agent Care-of Address

- Mobile Node
 - Link-layer Connectivity
 - Agent Solicitation
 - Agent Advertisement
 - Registration
 - MIPv4 Registration Request
 - MIPv4 Registration Reply

- Foreign Agent

- Home Agent
 - Link-layer Connectivity
 - Agent Solicitation
 - Agent Advertisement
 - Registration
 - MIPv4 Registration Request
 - MIPv4 Registration Reply

Gateways

Co-Located Care-of Address

(1): MN moves to a new domain
(2): MN gets & registers its new CoA with its HA
(3): MN sends data directly to CN
(4): CN sends data to MN indirectly via MN's HA
(5): MN's HA tunnels data to MN's FA
(6): MN's FA delivers data to MN
IP Mobility Management [MIPv6] (2/5)

Link-layer Handoff
- Mobile Node
 - Router Discovery and Address Configuration
 - Router Advertisement
 - Neighbor Solicitation
- Router Discovery & Movement Detection
 - Router Advertisement
 - Neighbor Solicitation

Address Auto-Configuration e.g. Duplicate Address Detection
- Mobile Node
 - Neighbor Solicitation

Registration Home Agent & Correspondent Node
- Mobile Node
 - MIPv6 Binding Update
 - MIPv6 Binding Acknowledgement
 - Home Test Init
 - Care-of Test Init
 - Home Test
 - Care-of Test
- Correspondent Node
 - Resuming Sending Data Packets (Indirectly via HA)
 - MIPv6 Binding Update
 - MIPv6 Binding Acknowledgement
 - Expecting Coming Data Packets (Directly from CN)

Diagram
1. Mobile Node (MN) moves to a new domain
2. MN gets & registers its new CoA with its HA
3. MN registers its CoA with CN
4. MN & CN communicate directly each other
Reducing signaling overhead [Hierarchical]

Reducing handoff latency

Proactive [Soft]

Semi-Soft LowLatencyIPv4 Post-Registration

Using L2 trigger LowLatencyIPv4 Pre-Registration

Using cache/neighbor graph

Forward & backward techniques FMIPv4/v6

Combination

IP Mobility Management

Tunneling-based HMIPv4/v6

Mobile-specific routing CIP/HAWAI

Paging CIP/HAWAI

MN

RtSolPr

PrRtAdv

F-BU

Disconnection

Packet Re-Routing

Packet Sending

nAR

Router/HA

Router/HA

New Access Router (nAR)

Previous Access Router (pAR)

Home Network

Domain_1

Domain_2

Domain_3

F-BAck

F-NA

F-BAck

F-BAck

F-BAck

Internet (IPv6)
Review: IP Mobility Management over WLAN (4/5)

Proactive or Pre-Registration or Make-Before-Break

- Using cache/neighbor graph
- Using multiple interfaces

Reactive or Post-Registration or Break-Before-Make

- Reducing discovery phase
- Selective/observed scanning
- Interleaving data/probe intervals
- Refining Min-Max ChannelTime

Using Frequency Handoff Region
Using Proactive Neighbor Caching
Using Selective Neighbor Caching

Combination

IP Mobility Management over WLAN

Probing:
A: Probe Request (Broadcast)
B: Probe Response
C: Probe Request (Broadcast)
D: Probe Response

802.11 Packet Sequence

Authentication:
E: Authentication
F: Authentication

Re-Association:
G: Re-Association Request
H: Re-Association Response

Send Security Block
Ack Security Block
Move Notify
Move Response

IAPP Packet Sequence

APs in Range

New AP
Old AP
Comparison between different mechanisms for MANET Internet access and mobility management

<table>
<thead>
<tr>
<th>Index</th>
<th>Mechanism</th>
<th>Location-determination</th>
<th>IGW-discovery</th>
<th>IGW-selection-metrics</th>
<th>IGW-forwarding</th>
<th>Addressing</th>
<th>Handoff-style</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MIPMANET [73]a</td>
<td>Flooding RREQ Proactive</td>
<td>Shortest-hop-count</td>
<td>Half-tunneling & AODV [12]a</td>
<td>Not specified, but Home Address must be IP-global unicast</td>
<td>Route-optimization-based</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MIP+OLSR [173]a</td>
<td>Using routing table Proactive</td>
<td>Not specified, implicitly shortest-hop-count</td>
<td>Default route & OLSR [18]a</td>
<td>Not specified</td>
<td>Forced (when a prefix change)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MEWLANATD/RD [187]a</td>
<td>Using routing table (DSDV) or TBBR-Tree Proactive</td>
<td>Shortest-hop-count</td>
<td>Default route & DSDV or TBBR</td>
<td>Not specified</td>
<td>Forced (when a route change or node leave)</td>
<td></td>
</tr>
</tbody>
</table>
Discovered Problems on Internet Gateway Forwarding in MANET

- **Inconsistent Context**
 - Default Routing (Type I)
 - Default Routing (Type II)
 - Default Routing (Type III)
 - MIPv4-FA Triangle Routing
 - MIPv4-FA Ingress Filtering

- **Cascading Effect in MANET**
 - Node Location Determination

- **MIPv4-FA Traversing NAT**

Solutions on Internet Gateway Forwarding in MANET

• Inconsistent Context [IP-in-IP Tunneling]
 – Default Routing (Type I)
 – Default Routing (Type II)
 – Default Routing (Type III)
 – MIPv4-FA Triangle Routing
 – MIPv4-FA Ingress Filtering
• Cascading Effect in MANET Node Location Determination [Inserting IGW host route]
• MIPv4-FA Traversing NAT [IP-in MIP UDP-in IP tunneling]

A New Proposed Internet Gateway Selection Metric

\[
\text{Min}\{w(i, j)\} \quad j \in V_{IGW} \quad (1)
\]

\[
w(i, j) = \alpha_1.D(i, j) + \alpha_2.LB_{Internet}(j) + \alpha_3.LB_{MANET}(i, j)
\quad (2)
\]

\[
\alpha_1 + \alpha_2 + \alpha_3 = 1
\quad (3)
\]

\[
LB_{Internet}(j) = n_{Reg}(j) \quad (4)
\]

\[
LB_{MANET}(i, j) = \begin{cases}
0 & \text{if } \left[\text{AvgDeg}(i, j)\right] \mod K = 0 \\
\frac{1}{\left[\text{AvgDeg}(i, j)\right] \mod K}, & \text{otherwise}
\end{cases} \quad (5)
\]

\[
\text{AvgDeg}(i, j) = \begin{cases}
\left(l_j.w_j - \frac{r.(l_j + w_j)}{2} + r^2\right) \left(l_j.w_j\right)^2, & \text{if } i: \text{local} \\
\left(l_j.w_j - \frac{r.(l_j + w_j)}{2} + r^2\right) \left(l_j.w_j\right)^2, & \text{if } i: \text{visited}
\end{cases} \quad (6)
\]

Objectives
- Shortest Euclidean distance (hop-count)
- Load-balancing Internet traffic [in/out]
- Load-balancing Intra-MANET traffic

Simulation Scenarios & Performance Metrics

• **Packet delivery ratio**
 - ratio between total data packets sent by sources and total data packet received correctly by destinations [%]

• **Normalized signalling overhead**
 - ratio between the total number of packets carrying signalling information (including the ad hoc routing, the Internet gateway discovery, and the MIP registration), and the total number of data packets [scalar]

• **Average packet trans. delay**
 - average time of sending data packets from a particular ad hoc source to its associated Internet gateway [sec] [Not shown here]
Simulation Results

TCP Delivery Ratio

Simulation Case Studies

CBR Delivery Ratio

Simulation Case Studies

Normalized Signaling Overhead

Simulation Case Studies

Formerly funded by CRUISE project: Creating Ubiquitous Intelligent Sensing Environment, FP6 NoE–IST-4-027738, on the Application and Communication Aspects of Wireless Sensor Networking, [01/2006-12/2007]

Collaboration MANETs/WSNs

A gateway to outreach the world while studying in Vietnam
Objectives

- A framework, i.e. Arch-AdSenNets, for internetworking MANETs with WSANs
- A network model within above framework for MANET nodes and actors collaboration
- An implementation of distributed (heuristic) algorithms of network model into ns-2 (piggybacked over OLSR)

A gateway to outreach the world while studying in Vietnam
Arch-AdSenNets

Protocol Stack in Arch-AdSenNets

MANETs site
- Applications Middlewares
- Transport Layer
 - [Ad-Hoc Routing: Link-state based/Low latency]
 - Deliver sensor events to MANETs nodes
 - Deliver instructions/queries via gateways to sensors
 - Ad-hoc communications for supporting decision
 - [MAC+PHY]
 - IEEE 802.11 DCF

Interworking Function (IWF)

SensorNets site
- Application-specific User Tasks and Queries Middlewares
- [Transport Layer]
 - Reliable delivering events to actors/sinks
 - Global/Wide-area collaborative information processing
- In-Network Data Aggregation
 - Data Dissemination/Diffusion
 - Distributed Data-Storage at Concentrators/Gateways
- [SensorNets Routing: Energy-efficient/Low delay/Scalable]
 - Deliver events from sensors to gateways
 - Deliver instructions/queries from gateways to sensors
 - Geographic-based forwarding
- [MAC+PHY]
 - Reliable event detections via local collaboration
 - Energy-efficiency
 - IEEE 802.15.4
Network Model [Objectives & Assumptions]

- **Objectives**
 - Maximizing resources of MANET nodes spend on processing detected events
 - Minimizing resources of MANET nodes spend on moving to areas of detected events

- **Assumptions**
 - Observation cycle $T = \sqrt{N_A} \cdot \tau$
 - Action types of MANET nodes
 - Processing
 - Movement
 - Resource consumption rate is the same: $[\varphi/sec]$
 - Event weight is proportional to
 - Importance of event type
 - Scale of event [No. of source sensors detecting the event]
 - Network topology (l.w) is modeled as a grid
 - An actor is located centrally in each cell (DxD)
 - An actor has two interfaces
 - MANET (e.g. 802.11) for communicating with other actors/MANET nodes → instructing MANETs movements to event areas
 - Sensor (e.g. 802.15.4) for collecting sensor readings (detected events)
Network Model [Formulation of Optimized Problem]

Given:
\[V_M, V_A, V_S, V_{M/A}, \dot E^i, \dot E_T, \gamma_T, C, C_m, \varphi, T, l, w, D, v \]

Find:
\[\forall A_j, A_n \in V_A, \forall m \in V_M, \forall e_m \in E^i : x_{jn/m}^i, y_{j}^{e_m}(i,m) \]

Goal:
\[\text{Max} \{ u^i \} = \text{Max} \left\{ \sum_{A_j \in V_A} \sum_{m \in V_{M/A}} \sum_{e_m \in E^i} y_{j}^{e_m}(i,m) \right\}, \text{Min} \{ c^i \} = \text{Min} \left\{ \sum_{A_j \in V_A} \sum_{n \in V_A} \sum_{m \in V_{M/A}} d_{jn} \tau \cdot x_{jn/m}^i \right\} \]

Subject to constraints:

\[\forall A_j, A_n \in V_A, \forall m \in V_M : x_{jn/m}^i \in \{0,1\} \]

\[\forall m \in V_M, \forall A_j \in V_A : \sum_{A_n \in V_A} x_{jn/m}^i \in \{0,1\} \]

\[\forall A_j \in V_A, \forall m \in V_M, \forall e_m \in E^i : 0 \leq \varphi \cdot y_{j}^{e_m}(i,m) \leq C_m^i \]

\[\forall m \in V_M : \varphi \left(\sum_{e_m \in E^i} y_{j}^{e_m}(i,m) + \sum_{n \in V_A} d_{jn} \cdot \tau \cdot x_{jn/m}^i \right) \leq C_m^i \]

\[\forall A_j \in V_A, e_m \in E^i : \sum_{m \in V_{M/A}} y_{j}^{e_m}(i,m) \leq \tau_{j}^{e_m} \]
Network Model [Distributed Algorithms]

Actor/Data Concentrator ($A_j \in V_A$) MANETs Node ($m \in V_M$)

Triggered if both:
- periodically at the beginning of each observation cycle
- Need more MANETs nodes for processing

Advertising (ADV) Packet Content:
- No. of unprocessed/not-finished/new events (E_{ij})
- Calculating No. of new MANETs nodes needed for processing
- Attaching its Location

Waiting time (t_{ADV}^{WM}), application-specific

Bid (BID) Packet Content:
- No. of hops (in actor coverage area) to all advertised actors that this node received ADVs

Waiting time (t_{BID}^{WM}), application-specific

Invitation (INV) Packet Content:
- No. of MANETs nodes in 1-hop, 2-hop,...need to move into this actor area for processing
- Determining by running SELECT algorithm
- Attaching its Location

Waiting time (t_{INV}^{WM}), application-specific

Confirm (FIX) Packet Content:
- Only the shortest number of hops (in average coverage area) to the nearest actor it will move into for processing

Optimized Problem
Centralized
Solved by Micro-GA [See ref.]

Developing Distributed Algorithm

Setup Phase: Initial Allocation of MANETs achieving WPMM Fairness [Not shown here]

Negotiation Phase: Re-Allocation upon Appearance of New Events

Results
Pareto Optimal Set solved by Micro-GA
Simulation from ns-2
Results Comparison

• Theoretical (Numerical) Results
 – Solved by the micro-genetic algorithm [Micro-GA software]
 – Solutions are a set of possible optimal values, i.e. Pareto-Optimal Set
 • \{Max\{u\}_i, Min\{c\}_i\}, i.e., \{Utility, Cost\}
 • Increasing utility must compensate for increasing cost, and vice versa
 – Each point in Pareto-Optimal Set compared with to any other point:
 » Either its utility is lower and its cost is lower, or
 » Its utility is higher and its cost is higher

• Simulated Results
 – Taken from running negotiation phase in ns-2 in each observation cycle T

• Metric for testing is the “CONVERGENCE“
 – Max\{u\}_i/Min\{c\}_i defines an lower/upper bound (threshold), respectively
 – Convergence If simulation values
 • Utility is higher, while cost is lower, than any point in Pareto Set
 – Goodness of Convergence
 • Compared with Max\{Max\{u\}_i\}, Min\{Min\{c\}_i\}, Average\{Max\{u\}_i, Min\{c\}_i\}
Results Comparison

<table>
<thead>
<tr>
<th>Pareto Optimal Set of Case Study LA.T (10x10x2f, 100m/s, 300m, T=120; F=24f)</th>
<th>Processing Time (Utility) Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pareto Index</td>
<td>f1</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>146,772</td>
</tr>
<tr>
<td>2</td>
<td>169,4420</td>
</tr>
<tr>
<td>3</td>
<td>114,9070</td>
</tr>
<tr>
<td>4</td>
<td>143,6000</td>
</tr>
<tr>
<td>5</td>
<td>149,8160</td>
</tr>
<tr>
<td>6</td>
<td>121,8210</td>
</tr>
<tr>
<td>7</td>
<td>132,3250</td>
</tr>
<tr>
<td>8</td>
<td>118,2970</td>
</tr>
<tr>
<td>9</td>
<td>136,7860</td>
</tr>
<tr>
<td>10</td>
<td>147,0840</td>
</tr>
</tbody>
</table>

\[
\max \{f_1(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8)\}
\min \{f_2(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8)\}
\]

\[
U = f_1(x_1, y_1 + x_8, y_3) + (x_4, y_4 + x_2, y_5 + x_7, y_7) + (x_1, y_2 + x_3, y_6 + x_6, y_8)
\]

\[
C = f_2 = \tau(x_1 + x_4 + x_2 + x_3 + x_5 + x_6)
\]

Constraints:
\[
x_{i(1 \leq i \leq 8)} \in \{0,1\}
\]

\[
0 \leq y_{i(1 \leq i \leq 8)} \leq 2.\tau
\]

\[
0 \leq (x_7, y_1 + x_1, y_2 + 2.\tau, x_1) \leq 2.\tau
\]

\[
0 \leq (x_8, y_3 + x_4, y_4 + 2.\tau, x_4) \leq 2.\tau
\]

\[
0 \leq (x_2, y_5 + 2.\tau, x_2 + x_3, y_6 + 2.\tau, x_3) \leq 2.\tau
\]

\[
0 \leq (x_5, y_7 + 2.\tau, x_5 + x_6, y_8 + 2.\tau, x_6) \leq 2.\tau
\]

\[
0 \leq (x_7, y_1 + x_4, y_4 + x_2, y_5 + x_5, y_7) \leq 4.\tau
\]

\[
0 \leq (x_1, y_2 + x_8, y_3 + x_3, y_6 + x_6, y_8) \leq 8.\tau
\]

Simulation Scenario [Case A]
+ Four actors {A1, A2, A3, A4}
+ Four MANET nodes for processing events {M1, M2, M3, M4}
+ Topology (l=w=300m, D=150m), MANET node velocity (v=5 m/s)
+ Time (τ=D/v=150/5=30 sec, observation cycle: T=2*τ=60 sec)
Event E1 in A1 (T1=4*τ=120 sec).
Event E2 in A2 (T2=8*τ=240 sec).
Results Comparison

Initial Positions [Case A.1]
- A1(75.0, 75.0) M1(5.0, 5.0)
- A2(225.0, 75.0) M2(295.0, 5.0)
- A3(75.0, 225.0) M3(5.0, 295.0)
- A4(225.0, 225.0) M4(295.0, 295.0)

Initial Positions [Case A.2]
- A1(75.0, 75.0) M1(5.0, 295.0)
- A2(225.0, 75.0) M2(285.0, 285.0)
- A3(75.0, 225.0) M3(290.0, 290.0)
- A4(225.0, 225.0) M4(295.0, 295.0)

Table 1: First Simulation Scenario (4M x 4M x 2E, 300mx300m, E1=120 sec, E2=240 sec) A.1

<table>
<thead>
<tr>
<th>MANETs</th>
<th>t₀</th>
<th>t₁</th>
<th>t₀</th>
<th>t₁</th>
<th>t₀</th>
<th>t₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>A1</td>
<td>A2</td>
<td>_</td>
<td>_</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>M2</td>
<td>A1</td>
<td>A2</td>
<td>_</td>
<td>_</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>M3</td>
<td>A1</td>
<td>A2</td>
<td>_</td>
<td>A2</td>
<td>0.0000</td>
<td>14.1171</td>
</tr>
<tr>
<td>M4</td>
<td>A2</td>
<td>A2</td>
<td>_</td>
<td>_</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>14.1171</td>
</tr>
</tbody>
</table>

Processing Time of all MANETs nodes [sec]

<table>
<thead>
<tr>
<th>ACTOR</th>
<th>t₀</th>
<th>t₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>120,000</td>
<td>0.0000</td>
</tr>
<tr>
<td>A2</td>
<td>55,000</td>
<td>185,000</td>
</tr>
<tr>
<td>A3</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>A4</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>175,000</td>
<td>185,000</td>
</tr>
<tr>
<td>Finish at</td>
<td>110,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: First Simulation Scenario (4M x 4M x 2E, 300mx300m, E1=120 sec, E2=240 sec) A.2

<table>
<thead>
<tr>
<th>MANETs</th>
<th>t₀</th>
<th>t₁</th>
<th>t₀</th>
<th>t₁</th>
<th>t₀</th>
<th>t₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>A2</td>
<td>A1</td>
<td>_</td>
<td>_</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>M2</td>
<td>A2</td>
<td>A1</td>
<td>_</td>
<td>A1</td>
<td>0.0000</td>
<td>10.6614</td>
</tr>
<tr>
<td>M3</td>
<td>A2</td>
<td>A1</td>
<td>_</td>
<td>A1</td>
<td>0.0000</td>
<td>11.9008</td>
</tr>
<tr>
<td>M4</td>
<td>A2</td>
<td>A1</td>
<td>_</td>
<td>A1</td>
<td>0.0000</td>
<td>13.5201</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>36.0823</td>
</tr>
</tbody>
</table>

Processing Time of all MANETs nodes [sec]

<table>
<thead>
<tr>
<th>ACTOR</th>
<th>t₀</th>
<th>t₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.0000</td>
<td>120,000</td>
</tr>
<tr>
<td>A2</td>
<td>240,000</td>
<td>0.0000</td>
</tr>
<tr>
<td>A3</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>A4</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>240,000</td>
<td>120,000</td>
</tr>
<tr>
<td>Finish at</td>
<td>105,000</td>
<td></td>
</tr>
</tbody>
</table>
Results Comparison

max \left\{ f_1(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}) \right\}

min \left\{ f_2(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12}) \right\}

U = f_1 = (x_7, y_1 + x_8, y_3) + (x_4, y_4 + x_2, y_5 + x_5, y_7 + x_9, y_9 + x_{11}, y_{11}) + (x_1, y_2 + x_3, y_6 + x_6, y_8 + x_{10}, y_{10} + x_{12}, y_{12})

C = f_2 = \tau(x_1 + x_4 + x_2 + x_3 + x_5 + x_6) + 2\tau(x_9 + x_{10} + x_{11} + x_{12})

Constraints:

x_{i|is\in\{12\}} \in \{0,1\}

0 \leq y_{i|is\in\{12\}} \leq 2\tau

0 \leq (x_7, y_1 + x_1, y_2 + \tau x_1) \leq 2\tau

0 \leq (x_8, y_3 + x_4, y_4 + \tau x_4) \leq 2\tau

0 \leq (x_2, y_5 + \tau x_2 + x_3, y_6 + \tau x_3) \leq 2\tau

0 \leq (x_9, y_7 + \tau x_5 + x_6, y_8 + \tau x_6) \leq 2\tau

0 \leq (x_9, y_9 + 2\tau x_9 + x_{10}, y_{10} + 2\tau x_{10}) \leq 2\tau

0 \leq (x_{11}, y_{11} + 2\tau x_{11} + x_{12}, y_{12} + 2\tau x_{12}) \leq 2\tau

0 \leq (x_7, y_1 + x_4, y_4 + x_2, y_5 + x_5, y_7 + x_9, y_9 + x_{11}, y_{11}) \leq 8\tau

0 \leq (x_1, y_2 + x_3, y_3 + x_6, y_6 + x_8, y_8 + x_{10}, y_{10} + x_{12}, y_{12}) \leq 8\tau

Simulation Scenario [Case B]

+ Six actors \{A1, A2, A3, A4, A5, A6\}

+ Six MANET nodes for processing events \{M1, M2, M3, M4, M5, M6\}

+ Topology (l=450m, w=300, D=150m)

+ MANET node velocity (v=5 m/s)

+ Time (\tau/D/v=150/5=30 sec, observation cycle: T=2\tau=60 sec)

+ Event E1 in A1 (T1=8\tau=240 sec)

+ Event E2 in A2 (T2=8\tau=240 sec)

+ A1(75,75), A2(225,75), A3(75,225), A4(225,225), A5(75,375), A6(225,375)

+ M1(5,5), M2(295,5), M3(5,295), M4(295,295), M5(5,445), M6(295,445)
Results Comparison

- utility values of simulation are always larger than those of $\max\{\max\{f_1\}\}$
- cost values of simulation are always lower than those of $\max\{\max\{f_1\}\}$
 - the simulation results converge to the theoretical optimal results (Pareto optimal set) solved by the Micro-GA.

<table>
<thead>
<tr>
<th>Values</th>
<th>Theoretical optimal values solved by the Micro-GA</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\max{\max{f_1}}$ case</td>
<td>$\min{\min{f_2}}$ case</td>
</tr>
<tr>
<td>Case study I.A.1</td>
<td>168,4420</td>
<td>39,7239</td>
</tr>
<tr>
<td>Case study I.A.2</td>
<td>168,4420</td>
<td>39,7239</td>
</tr>
<tr>
<td>Case study I.B</td>
<td>188,7400</td>
<td>44,3693</td>
</tr>
<tr>
<td>Case study II</td>
<td>219,2940</td>
<td>155,6000</td>
</tr>
</tbody>
</table>

Contacts

Quan Le-Trung, Dr.techn.
Wireless Embedded Internet group
School of CSE, International University-HCM City
6 quarter, Linh Trung ward, Thu Duc district
Ho Chi Minh city, Vietnam
E-mail:
quanle.trung@gmail.com, ltquan@hcmiu.edu.vn
Home page:
http://sites.google.com/site/quanletrung/