Introduction to Home Simulator

Japan Advanced Institute of Science and Technology

Yoshiki MAKINO

Agenda

- Brief introduction to home simulator
 - Motivation
 - Design
 - Implementation
 - Applications
- Future plan

About home simulator

- Built by Takashi OKADA
 - Ph.D. student(-2011.9)
 - Working at AIST(Advanced Industrial Science and Technology)

Motivation

- The effectiveness of newly introduced home appliance and services should be proved in advance.
 - Experimental homes are useful
- However...
 - Building experimental homes is expensive
 - It's not clear where the home should be.
 - There are too many home structure and configuration and a few experimental homes are not enough.
 - It is difficult to support newly emerging appliances because we don't know what will be needed at first.
 - The habit of residents vary.
 - The external environment are not stable and repeating same experiment is impossible.
- Realistic home simulator and user modeling
 - Changing parameters such as materials of wall
 - Changing home appliance algorithms
 - Changing life style of residents

Design – Overview

- Home Structure
 - Supporting many kinds of home structure
- Home Appliances and Sensors
 - Supporting realistic home devices
- Physical Environment
 - How to calculate the temperature of rooms
- Power Consumption
- Human Activity
 - What the residents do everyday

Design - Home structure

- Many parameters should be configurable
 - The connection between rooms
 - Room capacity
 - The material of walls
 - The size of windows
 - The size of doors

Design - Home appliance

- Many appliances are emulated now.
 - Home Air Conditioner
 - Refrigerator
 - -TV
 - Lighting
 - Context-aware devices
 - Motion sensor
 - Ambient Light Sensor

- ECHONET based interface is used.
 - ISO/IEC standard

Design – Physical Environment

- Temperature, humidity and illuminance of rooms
 - Emulated sensors measure the values
- Calculation methods
 - Computational Fluid Dynamics
 - Used to simulate TANS2 and it takes time too much
 - Thermal resistance
 - Graphs of rooms and walls as capacitors and resistances
 - Implemented in the home simulator

Design – Power Consumption

- Home appliances consume electric energy to work
 - Usually the algorithm of appliances are black-box
 - Modeling Air Conditioners is very difficult
 - Mathematical solving
 - Multiple Regression Analysis
 - Measuring the power consumption of real air conditioners and use it as the model

Design - Human Activity

- Schedules are computed previously
 - Duration times of activities are variables
- Reality is important
 - Population Census
 - Survey of Time Use and Leisure Activities
 - National survey on lifestyle by NHK
- The main algorithm is inspired by ``Maslow's Hierarchy of Needs''
 - Physiological desires such as sleeping and eating are more important than self-actualization.

Design - Human Activity

Schedule example

12/10/05

Implementation – Static modeling

- The structure of the simulator is Graph
 - Nodes, Edges, Networks
 - Nodes are connected by edges.
 - Data are transferred through edges while simulating
- An example
 - Room environment entity is connecting to...
 - Home Air Conditioner entity
 - Transferring thermal data
 - Adjacent room and hall walls
 - Exchanging thermal data
 - External environment entity
 - Transferring thermal data
 - Lighting entities
 - Transferring illuminance data

Implementation – Static modeling

Nodes related to thermal transfer (Thermal transferring network)

13

12/10/05

Implementation – Static modeling

Electric power distribution network

12/10/05

Implementation – Time management

- Simulation time
 - Time-stepped simulation
 - Real-time simulation is possible
 - Optimistic and no support for deadline violation

- Calculate data to be transferred
- 2. Transfer or exchange data
- 3. Update internal variables
- 1. (Wait for the next interval)
- 6. Repeat all

Implementation - Environment

- Mac mini (Core2 Duo)
- Python
 - portable!!
 - Runnable in Linux, FreeBSD, and so on.
 - The performance should be poor but enough
 - Simulating 30 homes simultaneously is possible at least
 - The interval time is 20 seconds (configurable)

Correctness of home simulator

Compared to iHouse (August)

Application Example

- HEMS with advice display feature
 - Feature quantity was calculated in advance using real data
 - Multiple Regression Analysis was used
 - Simulating homes at many locations in Japan

Collaboration with StarBED

- **HEMS** supporting Demand Response
- Network emulation by StarBED
 - Core network, Access wireless network

Future plan

- Interface of simulator
 - Support new components constructed on different simulator
 - Mixture of real systems and simulated systems
 - iHouse and simulator
- Components for HEMS
 - Storage cell, fuel cell, photovoltaic, and so on
- Mathematical modeling
 - MATLAB/Simulink
 - Realize feedback loop
 - Verify system stabilization and safety
- Human body simulation

THANK YOU VERY MUCH!!