
1

Building Foundations for
Dependable Systems
(Preliminary Version)

Rick Schlichting

Software Systems Research Department
AT&T Labs-Research
Florham Park, NJ 07932, USA

2 © Copyright 2005 AT&T. All Rights Reserved

Work done in collaboration with:
Matti Hiltunen (AT&T)
Former Arizona PhD student Jun He (Cisco).
UIUC PhD student Kaustubh Joshi (AT&T VURI intern) and
faculty member Bill Sanders.

3 © Copyright 2005 AT&T. All Rights Reserved

Motivation
Moving towards an e-society based on information systems
and networks.

Our SocietyOur Society

Social Infrastructure Information SystemSocial Infrastructure Information System

4 © Copyright 2005 AT&T. All Rights Reserved

Next Generation Information Infrastructure

Characteristics
– Multiple machines connected by networks.
– Spectrum of network types and technologies: wired, optical,

wireless, ….
– Spectrum of distances: local-area, metro-area, wide-

area,….
– Spectrum of devices: from sensors to mobile units to high

end machines and clusters.
– Spectrum of applications.
– Dynamic execution conditions and resource demands.
– Multiple administrative domains.

MUST be dependable!

5 © Copyright 2005 AT&T. All Rights Reserved

Dependability
Definition: The trustworthiness of a computing system such that
reliance to be justifiably placed on the service it delivers.
(Laprie, et al., Dependability: Basic Concepts and Terminology, Springer-Verlag, 1992)

Includes many properties and attributes.
– Reliability
– Availability
– Safety
– Security
– Timeliness

Non-functional or Quality of Service (QoS) attributes.
– Focus is not on how something gets done, but rather how well.

Immensely challenging to build software with these attributes!
– Failures, intrusions….
– Concurrent and non-deterministic execution
– Heterogeneous systems and networks
– Resource constraints
– Multiple administrative domains
– Scale

Dealing with multiple attributes makes it even harder (multidimensional QoS).
Fundamental issue is complexity.

6 © Copyright 2005 AT&T. All Rights Reserved

System Abstractions

System abstractions can simplify the process.
Definition:

– Simplified model of a real-life hardware/software component or function.
– Extracts essential features while omitting unnecessary detail.

Goal: Building blocks for constructing more complex
systems.
Have long been used to as a way to simplify the design of
complex systems.
“Classic” examples:

– Process, file, virtual memory,….
– Layered operating system architectures (e.g., THE system).

Good abstractions are those that people use without
thinking about the underlying implementation.

2

7 © Copyright 2005 AT&T. All Rights Reserved

What about Dependability?

Certainly some good dependability-related abstractions.
– Provide enhanced QoS characteristics.

Hardware virtualization.
– Stable storage: abstract storage that never fails.
– Fail-stop processor: virtual processor whose only failure is a detectable

crash.

Services for networked systems.
– Often focus on providing common global information across machines

despite machine and network failures (virtual shared state).
– Implemented as middleware and/or using network protocols.
– Consistent global clock: abstraction of a single system-wide clock.
– Atomic multicast: shared message queue
– Distributed atomic actions (transactions): all or nothing execution across

machines.

Can also be organized as layers or hierarchies.

8 © Copyright 2005 AT&T. All Rights Reserved

9 © Copyright 2005 AT&T. All Rights Reserved

Challenges and Issues

Abstraction failures (leaky abstractions).
– Impossible to implement an abstraction in which QoS properties hold under

all conditions.
– Inherently probabilistic.

Composing abstractions.
– Reasoning about properties of combinations of abstractions.
– Conflicts and tradeoffs between different attributes.
– Performance overhead.

Unnecessary attributes.
– Matching attributes of abstractions to application and execution environment.
– Unnecessary attributes can mean extra execution overhead.

Changing QoS attributes dynamically.
– Providing ability to adapt at runtime

10 © Copyright 2005 AT&T. All Rights Reserved

Reliable

Available

Predictable

Secure/
Survivable

Maintainable
Adaptable

CHANGED USER
REQUIREMENTS

INTRUSIONS

FAILURESCHANGES IN
AVAILABLE
RESOURCES

CPUMemory

Network Bandwidth

Battery Power

11 © Copyright 2005 AT&T. All Rights Reserved

Protocols

Middleware

Reliable Available

Predictable

Secure/
Survivable

Maintainable

Adaptable

CHANGED USER
REQUIREMENTS

INTRUSIONS

FAILURESCHANGES IN
AVAILABLE
RESOURCES

CPUMemory

APPLICATION

OS

Network Bandwidth

Battery Power

12 © Copyright 2005 AT&T. All Rights Reserved

Dependable Systems Research at AT&T

Provide support for building system abstractions
and services that bridge the gap between network
and application.

Support for configurable solutions
– Ability to customize properties to the characteristics of the execution

environment and the needs of the application.

Support for adaptive behavior
– Ability to change execution behavior dynamically to react to changes in the

execution environment or the application.

Cactus configuration and customization
Cholla adaptation

3

13 © Copyright 2005 AT&T. All Rights Reserved

Cactus: Building Highly Configurable
Software

Both a programming model and an implementation
framework for building customized software from collections
of software modules.

Highlights:
– Fine-grain configuration and customization.
– Multiple types of attributes and properties, each implemented by a collection

of alternative modules.
– Combination of hierarchical and non-hierarchical composition.

Focus:
– Communication-oriented services in networks, i.e., protocol stacks and

distributed services (but more general).
– Highly customizable Quality of Service (QoS) attributes related to fault

tolerance, timeliness, security, etc. (but useful for other reasons).

Addresses challenge of module interaction in highly-
configurable software.

14 © Copyright 2005 AT&T. All Rights Reserved

Customizable API

C
om

po
si

te
 p

ro
to

co
l Customizable API

EventsShared data
structures
Messages Reliability

Total order

Integrity

Msg from below

Site failure

Msg timeout

Msg from above

Hash tables etc.

Composite/Traditional Protocol
Messages/ Method invocations QoS requests/Notifications

Composite/Traditional Protocol

Event handlers

Messages/ Method invocations QoS requests/Notifications

Cactus Approach

Micro-protocols

15 © Copyright 2005 AT&T. All Rights Reserved

Cactus Model

Protocol/service = composite protocol.
– Provides service-specific API.

Property/QoS attribute = micro-protocol (MP).
– MPs interact using an events, shared data, and dynamic messages.
– Mechanisms provide decoupling of MPs ⇒ configurability.

Service customization = choose appropriate MPs.

Dynamic adaptation = load/activate/deactivate MPs at
runtime.

Two implementations of Cactus 3.0.
– C version running on different variants of Unix.
– Java version.

16 © Copyright 2005 AT&T. All Rights Reserved

Example Protocols and Services
Configurable Transport Protocol (CTP)

– Ordering, reliability, flow/congestion control, security.

Secure and Survivable Communication (SecComm)
– Privacy, authenticity, integrity, replay prevention, combinations.

Configurable Quality of Service (CQoS)
– Adding transparent multi-dimensional QoS customization to distributed object systems.

Distributed System Monitoring Service (CDSMon)
– Function to be monitored.

Location-Based Services (LBS)
– Functionality based on location for mobile services.

Ad-Hoc Networking (AHN)
– Dynamic QoS

AT&T Enterprise Messaging Network (EMN)
– Per request QoS for mobile service platforms

Others
– RTD channels, group RPC, membership, configurable DSM,….

17 © Copyright 2005 AT&T. All Rights Reserved

CQoS Architecture (Jun He)

CQoS consists of two components:
– Application and platform-specific CQoS interceptor generated from IDL.
– Generic CQoS service component implements customizable QoS using

Cactus.

Micro-protocols include:
• Fault tolerance: ActiveRep, PassiveRep, TotalOrder, MajorityVote,

Membership, StateRecovery… .
• Security: DESPrivacy, Authentication, AccessControl …
• Timeliness: PrioritySched, QueueSched, TimedSched.

Semantically different combinations of micro-protocols
provide semantically different variations of multi-
dimensional QoS.

Middleware

Client Application

CQoS

Server Application

CQoS CQoS
Service

CQoS
Interceptor

CQoS

Cactus

18 © Copyright 2005 AT&T. All Rights Reserved

Adaptive Systems
Dynamically changing system behavior.

Motivation:
Short term ⇒ react to changes in the environment: failures, spam/virus/worm attacks,
flash crowds, change in wireless connectivity, intrusions
Long term ⇒ system evolution: updating hardware, software, configuration over time

Adaptive actions:
Change parameters: router
configuration, video frame rate,
spam definitions (value
adaptations)
Change software modules: video
encoder, caching (algorithmic
adaptations)
Change resource allocation:
bandwidth, CPUs (resource
adaptations)

Adaptation Control System

Monitor 1

. . .
Monitor n

Action 1
. . .

Action m
Alerts

Monitoring
info

Commands

Training

4

19 © Copyright 2005 AT&T. All Rights Reserved

Monitor

Adaptation mechanisms versus policies:
• Mechanisms provide hooks for monitoring and effecting changes as well as

protocols for data collection, analysis, and adaptation coordination.
• Policy encapsulates tradeoff analysis and “business logic”.

Each phase can be complex in
large networked systems:

Monitoring involves data across
multiple hosts and multiple
sources.

Analyze

Analyzing may involve heuristics or
evaluation over time.

Decide

Decision may involve evaluating
tradeoffs or distributed algorithms.Adapt

Adaptation may involve distributed
coordination across multiple hosts.

All must be done in a
running system and an

environment that continues
to change.

Execution Control Feedback Loop

20 © Copyright 2005 AT&T. All Rights Reserved

Cholla Adaptation Architecture

Support for value and/or algorithmic
adaptations.
Challenges:

– Decoupling control from regular functionality.
– Coordinating adaptations

» Inter-component coordination on a single host
» Inter-host coordination for distributed services

– Composition of adaptation policies.
– Developing appropriate adaptation policies.
– Efficient realization of policies.

Solution: Cholla adaptation
architecture

– Uses Cactus as underlying platform for
implementing adaptive mechanisms and protocols.

21 © Copyright 2005 AT&T. All Rights Reserved

Network
Device

IP

Transport
Protocol

Video
Sender

Network
Device

IP

Transport
Protocol

Video
Display

Network
Congestion

CPU
Availability

Power
Availability

Network
Device

IP

Transport
Protocol

Video
Display

22 © Copyright 2005 AT&T. All Rights Reserved

Operating System

Protocol

Software Architecture

Adaptation
Controller

Adaptation
Controller

Session

23 © Copyright 2005 AT&T. All Rights Reserved

IP

Transport
Protocol

Video
Sender

Adaptation Controller

Vid Sender
Controller
Trans Prot
Controller

Meta
Controller

Secure
Adap. mpFast

Adap. mpGraceful
Adap prot

Agreement

Control and inter-component coordination

Inter-host coordination

24 © Copyright 2005 AT&T. All Rights Reserved

Adaptation Controller
Implements execution feedback control loop:

– Monitors system state and controls adaptation.

Monitoring:
– Input variables from controlled components.
– Input from external monitoring.

Control:
– Generates outputs based on inputs plus adaptation policies.
– Changes execution parameters in controlled components (value

adaptations).
– Orchestrates module changeovers (algorithmic adaptations).

Implementations:
– FLAC: Fuzzy logic based adaptation controller. Focuses on value

adaptations and inter-component coordination.
– CAC: Cactus based adaptation controller. Focuses on algorithmic

adaptations and inter-host coordination.
– Others possible….

5

25 © Copyright 2005 AT&T. All Rights Reserved

Policy Generation
(Kaustubh Joshi, Bill Sanders)

Goal: Use stochastic models of system and environment to
generate optimal policies for selecting adaptive actions.

Formulation of the problem as a Markov Decision Process
– Must deal with state space explosion: state aggregation, model decomposition

Currently applying to AT&T EMN system.

SystemController
State

Adaptive
Action

Policy
Lookup
Table

Policy
computation

Model Parameter
Estimation

Measurement

Human DesignerOff-line Model
Specification Tool

26 © Copyright 2005 AT&T. All Rights Reserved

Conclusions and Future Work

Useful system abstractions are the key to building a highly
dependable information infrastructure for e-society.

Our research is addressing issues related to building such
abstractions:

– Cactus: flexible fine grain configuration based on two-level composition model.
– Cholla: Control and coordinated adaptation.

Future work
– Using Cactus and protocols/services built using Cactus.
– New protocols for cross-host coordination.
– Policies, policies, policies!

27 © Copyright 2005 AT&T. All Rights Reserved

For More Information
Bhatti, Hiltunen, Schlichting, and Chiu. Coyote: A System for Constructing Fine-Grain

Configurable Communication Services. ACM Trans. on Computer Systems 16, 4 (Nov.
1998), 321-366.

Chen, Hiltunen, and Schlichting, Constructing Adaptive Software in Distributed Systems.
Proc. 21st Conf. on Distributed Computing Systems (ICDCS), (April 2001), 635-643.

Wong, Hiltunen, and Schlichting. A Configurable and Extensible Transport Protocol. Proc.
Infocom 2001, (April 2001), 319-328.

Hiltunen, Schlichting, and Ugarte. Building Survivable Services using Redundancy and
Adaptation, IEEE Trans. on Computers (February 2003), 181-194.

He, Hiltunen, Rajagopalan, and Schlichting. Providing QoS Customization in Distributed
Object Systems, Software-Practice and Experience 33,4 (April 2003), 295-320.

He, Hiltunen, Schlichting. Customized Dependability Attributes for Mobile Service
Platforms. Proc. DSN-2004 Dependable Computing and Communication Symp. (June
2004), 574-583.

Joshi, Hiltunen, Sanders, Schlichting, and Agbaria. Online Model-Based Adaptation for
Optimizing Performance and Dependability. Proc. WOSS ‘04 (Oct 2004).

Hiltunen, Schlichting. The Lost Art of Abstraction. Proc. DSN Workshop on Architecting
Dependable Systems, Springer-Verlag LNCS, 2005, to appear.

