Building Foundations for
Dependable Systems

(Preliminary Version)

Rick Schlichting

Software Systems Research Department
AT&T Labs-Research
Florham Park, NJ 07932, USA

Work done in collaboration with:
* Matti Hiltunen (AT&T)
* Former Arizona PhD student Jun He (Cisco).

* UIUC PhD student Kaustubh Joshi (AT&T VURI intern) and
faculty member Bill Sanders.

Motivation

* Moving towards an e-society based on information systems
and networks.

Next Generation Information Infrastructure

* Characteristics
— Multiple machines connected by networks.

— Spectrum of network types and technologies: wired, optical,
wireless,

— Spectrum of distances: local-area, metro-area, wide-
area,....

— Spectrum of devices: from sensors to mobile units to high
end machines and clusters.

— Spectrum of applications.
— Dynamic execution conditions and resource demands.
— Multiple administrative domains.

= MUST be dependable!

Dependability

¢ Definition: The trustworthiness of a computing system such that
reliance to be justifiably placed on the service it delivers.

(Laprie, et al., Dependability: Basic Concepts and Terminology, Springer-Verlag, 1992)

Includes many properties and attributes.
- Reliability

Availabilty

Safety

Security

Timeliness

Non-functional or Quality of Service (QoS) attributes.
~ Focus is not on how something gets done, but rather how well.

Immensely challenging to build software with these attributes!
- Failures, intrusions....

Concurrent and non-deterministic execution

— Heterogeneous systems and networks
Resource constraints

Multiple administrative domains
~ Scale
Dealing with multiple attributes makes it even harder (multidimensional QoS).

* Fundamental issue is complexity.

System Abstractions

¢ System abstractions can simplify the process.
* Definition:
— Simplified model of a real-life hardware/software component or function.
— Extracts essential features while omitting unnecessary detail.
* Goal: Building blocks for constructing more complex
systems.
* Have long been used to as a way to simplify the design of
complex systems.
* “Classic” examples:
— Process, file, virtual memory,....
— Layered operating system architectures (e.g., THE system).
= Good abstractions are those that people use without
thinking about the underlying implementation.

What about Dependability?

* Certainly some good dependability-related abstractions.
— Provide enhanced QoS characteristics.
* Hardware virtualization.
— Stable storage: abstract storage that never fails.
— Fail-stop processor: virtual processor whose only failure is a detectable
crash.
* Services for networked systems.

— Often focus on providing common global information across machines
despite machine and network failures (virtual shared state).

— Implemented as middleware and/or using network protocols.

— Consistent global clock: abstraction of a single system-wide clock.

— Atomic multicast: shared message queue

— Distributed atomic actions (transactions): all or nothing execution across
machines.

* Can also be organized as layers or hierarchies.

Y
e P L= e il
¥ ¥
L N
— a— i ——
[— ——
Pt Ve
s
= e
-
"
"
e P P
. F
o =
L | -, |
3 [ey L o mpma
- r——— -
—e.
1 —
- 1
naw mam -

Challenges and Issues

* Abstraction failures (leaky abstractions).

— Impossible to implement an abstraction in which QoS properties hold under
all conditions.

— Inherently probabilistic.
* Composing abstractions.
— Reasoning about properties of combinations of abstractions.
— Conflicts and tradeoffs between different attributes.
— Performance overhead.

* Unnecessary attributes.

— Matching attributes of abstractions to application and execution environment.

— Unnecessary attributes can mean extra execution overhead.
* Changing QoS attributes dynamically.
— Providing ability to adapt at runtime

CHANGED USER
REQUIREMENTS

Battery Power INTRUSIONS
Secure/ 5

Survivable Available

Memory Reliable CPU
.
Predictable
Adaptable
Maintainable V\
CHANGES IN FAILURES
AVAILABLE Network Bandwidth

RESOURCES

I Rights Reserved v

CHANGED USER
REQUIREMENTS

Battery Power INTRUSIONS
APPLICATION 5

Reliable Available
pEAN | Survivable Adaptable
Predictas Maintainable
CHANGES IN FAILURES
AVAILABLE Network Bandwidth
RESOURCES

I Rights Reserved v

Dependable Systems Research at AT&T

Provide support for building system abstractions
and services that bridge the gap between network
and application.

* Support for configurable solutions

— Ability to customize properties to the characteristics of the execution
environment and the needs of the application.

* Support for adaptive behavior

— Ability to change execution behavior dynamically to react to changes in the
execution environment or the application.

Cactus = configuration and customization

Cholla = adaptation

Cactus: Building Highly Configurable
Software

* Both a programming model and an implementation
framework for building customized software from collections
of software modules.

* Highlights:
— Fine-grain configuration and customization.

— Multiple types of attributes and properties, each implemented by a collection
of alternative modules.

— Combination of hierarchical and non-hierarchical composition.
* Focus:
— Communication-oriented services in networks, i.e., protocol stacks and
distributed services (but more general).
— Highly customizable Quality of Service (QoS) attributes related to fault
tolerance, timeliness, security, etc. (but useful for other reasons).
* Addresses challenge of module interaction in highly-
configurable software.

Cactus Approach

Messages/ Method invocations QoS requests/Notifications

Customizable AP|

Shared data Micro-protocols
structures

. fes :ge :
Hash tables etc
Event handlers
Customizable API

Messages/ Method invocations

Events

Msg from above

Msg from below
Site failure
Msg timeout

Reliability

Total order,

Composite protocol

QoS requests/Notifications

Cactus Model

* Protocol/service = composite protocol.
— Provides service-specific API.

* Property/QoS attribute = micro-protocol (MP).
— MPs interact using an events, shared data, and dynamic messages.
— Mechanisms provide decoupling of MPs = configurability.

* Service customization = choose appropriate MPs.

* Dynamic adaptation = load/activate/deactivate MPs at
runtime.

* Two implementations of Cactus 3.0.
— C version running on different variants of Unix.
— Java version.

Example Protocols and Services

* Configurable Transport Protocol (CTP)
— Ordering, reliability, flow/congestion control, security.
* Secure and Survivable Communication (SecComm)
— Privacy, authenticity, integrity, replay prevention, combinations.
* Configurable Quality of Service (CQo0S)
— Adding transparent multi- al QoS izati
* Distributed System Monitoring Service (CDSMon)
— Function to be monitored.
* Location-Based Services (LBS)
— Functionality based on location for mobile services.
* Ad-Hoc Networking (AHN)
— Dynamic QoS
* AT&T Enterprise Messaging Network (EMN)
— Per request QoS for mobile service platforms
* Others
— RTD channels, group RPC, membership, configurable DSM,....

1 to i object systems.

CQoS Architecture (Jun He)

[client Application | [Server Application |

| Middleware |)

\
Cactus

* CQoS consists of two components:
— Application and platform-specific CQoS interceptor generated from IDL.
— Generic CQoS service component implements customizable QoS using
Cactus.
* Micro-protocols include:
« Fault tolerance: ActiveRep, PassiveRep, TotalOrder, MajorityVote,
Membership, StateRecovery... .
« Security: DESPrivacy, Authentication, AccessControl ...
« Timeliness: PrioritySched, QueueSched, TimedSched.

* Semantically different combinations of micro-protocols
provide semantically different variations of multi-
dimensional QoS.

Adaptive Systems
Dynamically changing system behavior.

Motivation:

* Short term = react to changes in the environment: failures, spam/virus/worm attacks,
flash crowds, change in wireless connectivity, intrusions

* Long term = system evolution: updating hardware, software, configuration over time

Adaptive actions:

* Change parameters: router
configuration, video frame rate,
spam definitions (value
adaptations)

Change software modules: video

encoder, caching (algorithmic %
adaptations) Thining
v

/ Commands

‘ Ableptation Contral System ‘

ini
* Change resource allocation:
bandwidth, CPUs (resource @3
adaptations) CLJi
=

Execution Control Feedback Loop

Each phase can be complex in

large networked systems:

* Monitoring involves data across
multiple hosts and multiple
sources.

¢ Analyzing may involve heuristics or
evaluation over time.

Monitor

Decision may involve evaluating

Adapt Analyze tradeoffs or distributed algorithms.

¢ Adaptation may involve distributed
coordination across multiple hosts.

Decide

Adaptation mechanisms versus policies:

. Mechanisms provide hooks for monitoring and effecting changes as well as
protocols for data collection, analysis, and adaptation coordination.

. Policy encapsulates tradeoff analysis and “business logic”.

Cholla Adaptation Architecture

* Support for value and/or algorithmic
adaptations.

* Challenges:
— Decoupling control from regular functionality.
— Coordinating adaptations
» Inter-component coordination on a single host
» Inter-host coordination for distributed services
— Composition of adaptation policies.
— Developing appropriate adaptation policies.
— Efficient realization of policies.
* Solution: Cholla adaptation
architecture

— Uses Cactus as underlying platform for
implementing adaptive mechanisms and protocols.

4
CPU Power .
Availability Avaifability Software Architecture
Protocol Sg§5|on

Adaptation Adaptation|

Controller Controller
Network
Congestion — E

jhts Reserved L - a K T L — -

Control and inter-component coordination

Vid Sender

Meta / Controller
Controller '\ Trans Prot
Controller

—

Agreement

Graceful
Adap prot

Inter-host coordination

Adaptation Controller

* Implements execution feedback control loop:
— Monitors system state and controls adaptation.
* Monitoring:
— Input variables from controlled components.
— Input from external monitoring.
¢ Control:
— Generates outputs based on inputs plus adaptation policies.

— Changes execution parameters in controlled components (value
adaptations).

— Orchestrates module changeovers (algorithmic adaptations).
* Implementations:
— FLAC: Fuzzy logic based adaptation controller. Focuses on value
adaptations and inter-component coordination.
— CAC: Cactus based adaptation controller. Focuses on algorithmic
adaptations and inter-host coordination.

— Others possible....

Policy Generation
(Kaustubh Joshi, Bill Sanders)

* Goal: Use stochastic models of system and environment to
generate optimal policies for selecting adaptive actions.

Policy State
Poh::y Lookup —>‘ Controller System ‘
compul Table Adaptive
L Action

Hodel %-M
Off-line Model H Desi
Specification Tool luman Designer

* Formulation of the problem as a Markov Decision Process
— Must deal with state space explosion: state aggregation, model decomposition

* Currently applying to AT&T EMN system.

For More Information

Bhatti, Hiltunen, Schlichting, and Chiu. Coyote: A System for Constructing Fine-Grain
Configurable Communication Services. ACM Trans. on Computer Systems 16, 4 (Nov.
1998), 321-366.

Chen, Hiltunen, and Schlichting, Constructing Adaptive Software in Distributed Systems
Proc. 21st Conf. on Distributed Computing Systems (ICDCS), (April 2001), 635-643

Wong, Hiltunen, and Schlichting. A Configurable and Extensible Transport Protocol. Proc.
Infocom 2001, (April 2001), 319-328.

Hiltunen, Schlichting, and Ugarte. Building Survivable Services using Redundancy and
Adaptation, |IEEE Trans. on Computers (February 2003), 181-194

He, Hiltunen, Rajagopalan, and Schlichting. Providing QoS Customization in Distributed
Object Systems, Software-Practice and Experience 33,4 (April 2003), 295-320.

He, Hiltunen, Schlichting. Customized Dependability Attributes for Mobile Service
Platforms. Proc. DSN-2004 Dependable Computing and Communication Symp. (June
2004), 574-583

Joshi, Hiltunen, Sanders, Schlichting, and Agbaria. Online Model-Based Adaptation for
Optimizing Performance and Dependability. Proc. WOSS ‘04 (Oct 2004).

Hiltunen, Schlichting. The Lost Art of Abstraction. Proc. DSN Workshop on Architecting
Dependable Systems, Springer-Verlag LNCS, 2005, to appear.

Conclusions and Future Work

* Useful system abstractions are the key to building a highly
dependable information infrastructure for e-society.

¢ Ourresearch is addressing issues related to building such
abstractions:

— Cactus: flexible fine grain configuration based on two-level composition model.

— Cholla: Control and coordinated adaptation.

¢ Future work
— Using Cactus and protocols/services built using Cactus.
— New protocols for cross-host coordination.
— Policies, policies, policies!

