Algebraic Approachesto Formal Analysis of
the Mondex Electronic Purse System

COE Symposium/VERITE, Mar. 7, 2007

Graduate School of Information Science, JAIST
Weligiang Kong

Joint-wor k with Kazuhiro Ogata and Kokichi Futatsugi

Overview

The Mondex electronic purse system.

= Specification and Verification using the OTS/CafeOBJ method.

Falsification using the BOTS/Maude method.

Related work and conclusion.

Part 1.
Mondex™ Electronic Purse System

= A payment system that uses smartcards as electronic purses, which
provides an aternative form of cash to physical notes and coins.

= Cards store monetary value as electronic information
= Value can be (re)loaded from ATM or through phone lines;
= Value can be transferred between cards via communication devices.

= No need of acentral control for transactions as credit/debit cards do:
= Can make Card-to-Card transaction.

" MasterCard International. Mondex. URL: http://www.mondex.com

Communication Protocol of Mondex System

B { comm-device } i

from purse

startfrom

LM L~

eI°<

___________ /

req

val

ack

to purse
startto

/--JP‘.'_@:_
-

idle

Figure adapted from
Alloy paper for Mondex

startfrom(toName,value,toSeq), startto(fromName,value,fromSeq),
reg(payDetail), val(payDetail), ack(payDetail)
mk-pd(fromName,fromSeq,toName,toSeq,value)

Seemsto be simple, But...

= Some security issues
The protocol can be stopped at any time;
A message can be lost and replayed,;
A message can be read by any purse.

= Two desired security properties
No value may be created in the system,
All value should be counted in the system (no value is lost).

A Chosen Case Study for Grand Challenge 6 (GC6)

= Mondex was originally specified and manually proved by Z method.

An abstract model: atomic transaction. Easily proved properties hold.

A concrete model: transaction using protocol. Provethat itisa
refinement of the abstract model.

= Mondex was chosen (Jan. 2006) as a main case study for a GC6
(dependabl e software evolution) project:

To see what the current state-of-the-art isin mechanizing the
specification, refinement, and proof. (Ideally aim for full automation.)

= Severa follow-up work
KIV, Alloy, RAISE and Event-B etc.

Part 2:
The OTS/CafeOBJ Formalism — Modeling & Spec.

= QObservational Transition System (OTS)

init

= Specification of OTS in CafeOBJ (called OTS/CafeOBJ specification)
States are characterized by return values (observed values) of observers
eq o(init,z1,...,zm) = f(x1,...,Tm) .
State transitions are characterized by changes of return values of observers

ceq O(T(Sa Yi,- - - ayn)axla R 75Bm)
:B—T(S,yl, yﬂnxl?"'axm) if C_T(S7y17"'7yn) .

Successor state
of S wrt 7

Basic Data Typesused in the OTS Modeling

= Purse. Constructor mk-purse
(1) Name (2) PreviousBal (3) Current Bal (4) Segnum
(5) Status: idle | epr | epv | epa

(6) Paydetail: mk-pd(fromName, fromSeq, toName, toSeq, value)
(7) Exlog: alist of payment details of failed transactions.

= Message. Constructors startfrom, startto, req, val, ack

startfrom(N:Name, V:Bal, S:Seqnum), startto(N:Name, V:Bal, S:Seqnum)
req(P:Paydetail), val(P:Paydetail), ack(P:Paydetail)

= Ether. Constructorsnil, ,

Predicates and Operations: /in_, empty?, get, top

Specification of the OTS Model

= Obsarvers and transitions of the OTS model

purse : Sys Name -> Purse startpay . Sys Name Name Bal -> Sys
ether : Sys->Ether recstartfrom : Sys Name Message -> Sys
recstartto . Sys Name Message -> Sys
recreq . Sys Name Message -> Sys
recval . Sys Name Message -> Sys
recack . Sys Name Message -> Sys
abort . Sys Name -> Sys
drop . Sys -> Sys
duplicate . Sys -> Sys

= Any initial state

eq purse(init,Q) = mk-purse(Q, ibal(Q,seedval), ibal(Q,seedval),
inum(Q,seednum), idle, none, emptyexlog) .
eq ether(init) = nil .

nmodeled
comm-device

to purse

Trangition startpay 7

/ idle

-- Effective condition of transition startpay idle
op c-startpay : Sys Name Name Bal -> Bool
eq c-startpay(S,P1,P2,V)

= (sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and not(P1 = P2)) .

-- Equations defining the execution of transition startpay
ceq purse(startpay(S,P1,P2,V),Q) = purse(S,Q) if c-startpay(S,P1,P2,V) .
ceq ether(startpay(S,P1,P2,V))
= startfrom(P2,V,seq(purse(S,P2))),
startto(P1,V,seq(purse(S,P1))),ether(S) if c-startpay(S,P1,P2,V) .
ceq startpay(S,P1,P2,V) =S if not c-startpay(S,P1,P2,V) .

___id—l?_/ startfr gtartto "ic_j|_e___
Transition recstartfrom @ /

op c-recstartfrom : Sys Name Message -> Bool / die
eq c-recstartfrom(S,P,M) idle
= (M /in ether(S) and isstartfrom(M) and sta(purse(S,P)) = idle and

not(P = nameofm(M)) and valueofm(M) <= bal(purse(S,P))) .

ceq purse(recstartfrom(S,P,M),Q) =
mk-purse(Q,

(if (P = Q) then bal(purse(S,Q)) else pbal(purse(S,Q)) fi),

bal(purse(S,Q)),

(if (P = Q) then nextsegnum(seq(purse(S,Q))) else seq(purse(S,Q)) fi),

(if (P = Q) then epr else sta(purse(S,Q)) fi),

(if (P = Q) then
mk-pd(Q,seq(purse(S,Q)),nameofm(M),seqofm(M),valueofm(M))
else pay(purse(S,Q)) fi),

log(purse(S,Q))) If c-recstartfrom(S,P,M) .
ceq ether(recstartfrom(S,P,M)) = ether(S) if c-recstartfrom(S,P,M) .
ceq recstartfrom(S,P,M) =S if not c-recstartfrom(S,P,M) .

Transition recstartto

op c-recstartto : Sys Name Message -> Bool
eq c-recstartto(S,P,M)

unmodeled
comm-device

from purse

/ idle

= (M /in ether(S) and isstartto(M) and sta(purse(S,P)) = id i@e nd not(P = nameofm(M))) .

ceq purse(recstartto(S,P,M),Q) =
mk-purse(Q,

(if (P = Q) then bal(purse(S,Q)) else pbal(purse(S,Q)) fi),

bal(purse(S,Q)),

(if (P = Q) then nextsegnum(seq(purse(S,Q))) else seq(purse(S,Q)) fi),
(if (P = Q) then epv else sta(purse(S,Q)) fi),

(if (P = Q) then

mk-pd(nameofm(M),seqofm(M),Q,seq(purse(S,Q)),valueofm(M))
else pay(purse(S,Q)) fi),

log(purse(S,Q)))
ceq ether(recstartto(S,P,M)) =

If c-recstartto(S,P,M) .

req(mk-pd(nameofm(M),seqgofm(M),P,seq(purse(S,P)),valueofm(M))),ether(S)

ceq recstartto(S,P,M) =S

If c-recstartto(S,P,M) .
iIf not c-recstartto(S,P,M) .

unmodeled
comm-device
from purse topurse

startfrom startto

R e
Transition recreq _—

/ idle

op c-recreq : Sys Name Message -> Bool
eq c-recreq(S,P,M)
= (M /in ether(S) and isreq(M) and sta(purse(S,P)) = epr and
pay(purse(S,P)) = pdofm(M)) .

ceq purse(recreq(S,P,M),Q) =
mk-purse(Q,pbal(purse(S,Q)),
(if (P = Q) then (bal(purse(S,Q)) - value(pdofm(M)))
else bal(purse(S,Q)) fi),

seq(purse(S,Q)),

(if (P = Q) then epa else sta(purse(S,Q)) fi),

pay(purse(S,Q)),log(purse(S,Q))) if c-recreq(S,P,M) .
ceq ether(recreq(S,P,M)) = val(pdofm(M)),ether(S) if c-recreq(S,P,M) .
ceq recreq(S,P,M) =S If not c-recreq(S,P,M) .

Transition recval

op c-recval : Sys Name Message -> Bool
eq c-recval(S,P,M)

unmodeled
comm-device

from purse

startfrom

idle .

e"<

/

= (M /in ether(S) and isval(M) and sta(purse(S,P)) = epv and

pay(purse(S,P)) = pdofm(M)) .

(_:e_:q purse(recval(S,P,M),Q) =
mk-purse(Q,pbal(purse(S,Q)),

(if (P = Q) then (bal(purse(S,Q)) + value(pdofm(M)))

else bal(purse(S,Q)) fi),
seq(purse(S,Q)),

(if (P = Q) then idle else sta(purse(S,Q)) fi),

pay(purse(S,Q)), log(purse(S,Q)))
ceq ether(recval(S,P,M)) = ack(pdofm(M)),ether(S)

ceq recval(S,P,M) =S

to purse

startto

P

req

ack

if c-recval(S,P,M) .
iIf c-recval(S,P,M) .
If not c-recval(S,P,M) .

unmodeled
comm-device
from purse topurse

startfrom startto

de | | de
Transition recack /

ack
idle
Gt
op c-recack : Sys Name Message -> Bool
eq c-recack(S,P,M)
= (M /in ether(S) and isack(M) and sta(purse(S,P)) = epa and
pay(purse(S,P)) = pdofm(M)) .

ceq purse(recack(Ss,P,M),Q) =
mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),seq(purse(S,Q)),
(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)),log(purse(S,Q))) if c-recack(S,P,M) .
ceq ether(recack(S,P,M)) = ether(S) If c-recack(S,P,M) .
ceq recack(S,P,M) =S iIf not c-recack(S,P,M) .

eaaled
comm-device

from purse topurse

e

Transitionsdrop and duplicate

idle
-- transitiondrop
op c-drop : Sys -> Bool

eq c-drop(S) = not empty?(ether(S)) .

ceq purse(drop(S),Q) = purse(S,Q) if c-drop(S) .
ceq ether(drop(S)) = get(ether(S)) if c-drop(S) .
ceq drop(S) =S iIf not c-drop(S) .

-- transition duplicate
op c-duplicate : Sys -> Bool
eq c-duplicate(S) = not empty?(ether(S)) .

ceq purse(duplicate(S),Q) = purse(S,Q) if c-duplicate(S) .
ceq ether(duplicate(S)) = top(ether(S)),ether(S) if c-duplicate(S) .
ceq duplicate(S) =S iIf not c-duplicate(S) .

Transition abort T

eq purse(abort(S,P),Q) =
mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),
(if (P = Q) then nextsegnum(seq(purse(S,Q)))
else seq(purse(S,Q)) fi),
(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)),
(if (P = Q) then
(if ((sta(purse(S,Q)) = epa) or (sta(purse(S,Q)) = epv))
then pay(purse(S,Q)) @ log(purse(S,Q)) else log(purse(S,Q)) fi)

else log(purse(S,Q)) fi)) .
eq ether(abort(S,P)) = ether(S) .

Desired Security Properties— Property 1

= No vaue may be created in the system:

= Two different purses that have same payment details and in statusidle:
No transaction ever happens for each of them (pay details are none),
A transaction between them just finished, normally or abnormally does not matter.

eq inv100(S,P1,P2) =

((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and
pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
implies

((bal(purse(S,P1)) + bal(purse(S,P2))) <= (pbal(purse(S,P1)) + pbal(purse(S,P2))))) .

eq inv340(S,P1,P2) =
((pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
iImplies
((bal(purse(S,P1)) + bal(purse(S,P2))) <= (pbal(purse(S,P1)) + pbal(purse(S,P2))))) .

How to Express Property 27

All value should be counted in the system (no value islost).

Two different purses that have same payment details and in statusidle:

No transaction ever happens for each of them (pay details are none),
A transaction between them just finished, normally or abnormally does not matter.

1o

abort non-abort
from
log lost No lost
abort
non-log No lost (impossible)
non-abort (impossible) No lost

from

unmodeled
comm-device

purse

startfrom

e

—

/

req

val

ack

to purse

startto

_—
=

epv

Desired Security Properties— Property 2
= All value should be counted in the system (no value islost).

eq invb00(S,P1,P2) =
((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and
pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
implies

(if (pay(purse(S,P1)) /inexlog log(purse(S,P1)))
and (pay(purse(S,P2)) /inexlog log(purse(S,P2)))

= (pbal(purse(S,P1)) + pbal(purse(S,P2))))
else ((bal(purse(S,P1)) + bal(purse(S,P2)))
\ = (pbal(purse(S,P1)) + pbal(purse(S,P2)))) fi)) .

\

then ((bal(purse(S,P1)) + bal(purse(S,P2)) + lost(pay(purse(S,P1)),log(purse(S,P1))))

/

Part 3.
Falsification of Desired Security Properties

= A way similar to Bounded Model Checking by employing Maude
search command for finding counterexamples.

= Motivations:
= Easier, more automatic than proof and informative counterexamples,
= Before verification: provides certain degree’s confidence;
= During verification: filter out incorrect lemmas.

A Sample Conditional Rewrite Rule

= Two purses pl and p2 are considered, and bound isset to 9

cri[startpay pl p2 con]:
(purse[pl] : PUR1) (purse[p2]: PUR2) (ether:ETH) (steps:C)
=>
(purse[pl] : PUR1) (purse[p2]: PUR2)

(ether : (startfrom(p2, con, seq(PURZ2)), startto(pl, con, seq(PUR1)),ETH))
(steps: (C + 1))

if (sta(PUR1) = idle and sta(PUR2) = idle and not(p1 = p2) and C < bound) .

Search Command for Property 1

search [1] in MONDEX :
init =>* (purse[P1] : PUR1) (purse[P2]: PUR2) S
such that not(

(sta(PUR1) = idle and sta(PUR?2) = idle and
pay(PUR1) = pay(PUR2) and not(name(P1) = name(P2)))
implies
((bal(PUR1) + bal(PUR2)) <= (pbal(PUR1) + pbal(PUR2)))
).

= Two purses pl and p2 are considered, and bound isset to 9
No solution.
states: 1725347 rewrites: 1304806394 in 8348686ms cpu (8579704ms real)
(156288 rewrites/second)

Costs about 2 hours on Jaist XT3 massively parallel processing system.
No response after 12 hours’ running on my desktop (3.2 GHz, 2 GB RAM).

Part 4.
Related Work —Modeling and Verification

= RAISE and Alloy work isvery similar to the Z work wrt. modeling.
= KIV work’s ASM models modified the Z modeling in several aspects:

= |n generadl: operational stylevs. relational style

= |n particular: merges status “eafrom” and “eato” into “idle”; removes
Ignore operation etc.

= Qur work isinspired by KIV’s ASM modeling method, but:
= startfrom, startto messages need not to be always available.
= No condition for abort. But KIV defined condition for it.

= drop and duplicate are explicitly defined. But KIV uses “ether’ < ether”,
and does not model message replay explicitly.

= Verification: Directly proving invariants vs. Refinement proof
= Share some exactly same and similar proof obligations.

Related Work — Falsification

= |In RAISE work, RSL specification istranslated into SAL
= Fasification within afinite reachable state space.

Falsification of refinement.

The possible loss of messages is not modeled.
= Seguence numbers are in therange 0...3.

= Besides, many changesto the ether.

= |nAlloy work, Alloy-analyzer (model-finding using SAT-Solver)
= Falsification within a finite scope (how many objects are used)

= Falsfication of refinement.

= Weareableto useinductively defined datatypes, such as Ether.

Conclusion:

» Show how Mondex can be analyzed using two algebraic approaches
for both verification and falsification within a couple of weeks.

= An aternative way of modeling of the Mondex system asan OTS,

= An aternative way of expressing and verification of the security
properties directly as invariants of the OTS,

= Anautomatic way of falsification that may help in several aspects.

» Intruder purses are to be considered. After introducing a
cryptographically secured communication protocol, prove that
messages cannot be forged rather than assuming it.

Thanks!

