
Algebraic Approaches to Formal Analysis of
the Mondex Electronic Purse System

COE Symposium/VERITE, Mar. 7, 2007

Graduate School of Information Science, JAIST
Weiqiang Kong

Joint-work with Kazuhiro Ogata and Kokichi Futatsugi

Overview

The Mondex electronic purse system.

Specification and Verification using the OTS/CafeOBJ method.

Falsification using the BOTS/Maude method.

Related work and conclusion.

Part 1:
Mondex* Electronic Purse System

A payment system that uses smartcards as electronic purses, which
provides an alternative form of cash to physical notes and coins.

Cards store monetary value as electronic information
Value can be (re)loaded from ATM or through phone lines;
Value can be transferred between cards via communication devices.

No need of a central control for transactions as credit/debit cards do;
Can make Card-to-Card transaction.
…

* MasterCard International. Mondex. URL: http://www.mondex.com

Communication Protocol of Mondex System

startfrom(toName,value,toSeq), startto(fromName,value,fromSeq),
req(payDetail), val(payDetail), ack(payDetail)
mk-pd(fromName,fromSeq,toName,toSeq,value)

comm-device

epa

epr

idle

idle

idle idle

epv

from purse to purse

req

val

ack

starttostartfrom

Figure adapted from
Alloy paper for Mondex

Seems to be simple, But…

Some security issues
The protocol can be stopped at any time;
A message can be lost and replayed;
A message can be read by any purse.

Two desired security properties
No value may be created in the system,
All value should be counted in the system (no value is lost).

A Chosen Case Study for Grand Challenge 6 (GC6)

Mondex was originally specified and manually proved by Z method.
[240 pages for Spec & Proof, additional 54 pages for refinement theory]

An abstract model: atomic transaction. Easily proved properties hold.
A concrete model: transaction using protocol. Prove that it is a
refinement of the abstract model.

Mondex was chosen (Jan. 2006) as a main case study for a GC6
(dependable software evolution) project:

To see what the current state-of-the-art is in mechanizing the
specification, refinement, and proof. (Ideally aim for full automation.)

Several follow-up work
KIV, Alloy, RAISE and Event-B etc.

Part 2:
The OTS/CafeOBJ Formalism – Modeling & Spec.

Specification of OTS in CafeOBJ (called OTS/CafeOBJ specification)
States are characterized by return values (observed values) of observers

State transitions are characterized by changes of return values of observers

Successor state
of S wrt

Observational Transition System (OTS)

Basic Data Types used in the OTS Modeling

Purse. Constructor mk-purse

Message. Constructors startfrom, startto, req, val, ack

Ether. Constructors nil, _,_

(1) Name (2) Previous Bal (3) Current Bal (4) Seqnum
(5) Status: idle | epr | epv | epa
(6) Paydetail: mk-pd(fromName, fromSeq, toName, toSeq, value)
(7) Exlog: a list of payment details of failed transactions.

startfrom(N:Name, V:Bal, S:Seqnum), startto(N:Name, V:Bal, S:Seqnum)
req(P:Paydetail), val(P:Paydetail), ack(P:Paydetail)

Predicates and Operations: _/in_, empty?, get, top

Specification of the OTS Model

Sys -> Ether:ether
Sys Name -> Purse:purse

Observers and transitions of the OTS model

Any initial state
Sys -> Sys:duplicate
Sys -> Sys:drop
Sys Name -> Sys:abort
Sys Name Message -> Sys:recack
Sys Name Message -> Sys:recval
Sys Name Message -> Sys:recreq
Sys Name Message -> Sys:recstartto
Sys Name Message -> Sys:recstartfrom
Sys Name Name Bal -> Sys:startpay

eq purse(init,Q) = mk-purse(Q, ibal(Q,seedval), ibal(Q,seedval),
inum(Q,seednum), idle, none, emptyexlog) .

eq ether(init) = nil .

Transition startpay

-- Effective condition of transition startpay
op c-startpay : Sys Name Name Bal -> Bool
eq c-startpay(S,P1,P2,V)

= (sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and not(P1 = P2)) .

-- Equations defining the execution of transition startpay
ceq purse(startpay(S,P1,P2,V),Q) = purse(S,Q) if c-startpay(S,P1,P2,V) .
ceq ether(startpay(S,P1,P2,V))

= startfrom(P2,V,seq(purse(S,P2))),
startto(P1,V,seq(purse(S,P1))),ether(S) if c-startpay(S,P1,P2,V) .

ceq startpay(S,P1,P2,V) = S if not c-startpay(S,P1,P2,V) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Transition recstartfrom

op c-recstartfrom : Sys Name Message -> Bool
eq c-recstartfrom(S,P,M)

= (M /in ether(S) and isstartfrom(M) and sta(purse(S,P)) = idle and
not(P = nameofm(M)) and valueofm(M) <= bal(purse(S,P))) .

--
ceq purse(recstartfrom(S,P,M),Q) =

mk-purse(Q,
(if (P = Q) then bal(purse(S,Q)) else pbal(purse(S,Q)) fi),
bal(purse(S,Q)),
(if (P = Q) then nextseqnum(seq(purse(S,Q))) else seq(purse(S,Q)) fi),
(if (P = Q) then epr else sta(purse(S,Q)) fi),
(if (P = Q) then

mk-pd(Q,seq(purse(S,Q)),nameofm(M),seqofm(M),valueofm(M))
else pay(purse(S,Q)) fi),

log(purse(S,Q))) if c-recstartfrom(S,P,M) .
ceq ether(recstartfrom(S,P,M)) = ether(S) if c-recstartfrom(S,P,M) .
ceq recstartfrom(S,P,M) = S if not c-recstartfrom(S,P,M) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Transition recstartto

op c-recstartto : Sys Name Message -> Bool
eq c-recstartto(S,P,M)

= (M /in ether(S) and isstartto(M) and sta(purse(S,P)) = idle and not(P = nameofm(M))) .
--
ceq purse(recstartto(S,P,M),Q) =

mk-purse(Q,
(if (P = Q) then bal(purse(S,Q)) else pbal(purse(S,Q)) fi),
bal(purse(S,Q)),
(if (P = Q) then nextseqnum(seq(purse(S,Q))) else seq(purse(S,Q)) fi),
(if (P = Q) then epv else sta(purse(S,Q)) fi),
(if (P = Q) then

mk-pd(nameofm(M),seqofm(M),Q,seq(purse(S,Q)),valueofm(M))
else pay(purse(S,Q)) fi),

log(purse(S,Q))) if c-recstartto(S,P,M) .
ceq ether(recstartto(S,P,M)) =

req(mk-pd(nameofm(M),seqofm(M),P,seq(purse(S,P)),valueofm(M))),ether(S)
if c-recstartto(S,P,M) .

ceq recstartto(S,P,M) = S if not c-recstartto(S,P,M) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Transition recreq

op c-recreq : Sys Name Message -> Bool
eq c-recreq(S,P,M)

= (M /in ether(S) and isreq(M) and sta(purse(S,P)) = epr and
pay(purse(S,P)) = pdofm(M)) .

--
ceq purse(recreq(S,P,M),Q) =

mk-purse(Q,pbal(purse(S,Q)),
(if (P = Q) then (bal(purse(S,Q)) - value(pdofm(M)))

else bal(purse(S,Q)) fi),
seq(purse(S,Q)),
(if (P = Q) then epa else sta(purse(S,Q)) fi),
pay(purse(S,Q)),log(purse(S,Q))) if c-recreq(S,P,M) .

ceq ether(recreq(S,P,M)) = val(pdofm(M)),ether(S) if c-recreq(S,P,M) .
ceq recreq(S,P,M) = S if not c-recreq(S,P,M) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Transition recval

op c-recval : Sys Name Message -> Bool
eq c-recval(S,P,M)

= (M /in ether(S) and isval(M) and sta(purse(S,P)) = epv and
pay(purse(S,P)) = pdofm(M)) .

--
ceq purse(recval(S,P,M),Q) =

mk-purse(Q,pbal(purse(S,Q)),
(if (P = Q) then (bal(purse(S,Q)) + value(pdofm(M)))

else bal(purse(S,Q)) fi),
seq(purse(S,Q)),
(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)), log(purse(S,Q))) if c-recval(S,P,M) .

ceq ether(recval(S,P,M)) = ack(pdofm(M)),ether(S) if c-recval(S,P,M) .
ceq recval(S,P,M) = S if not c-recval(S,P,M) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Transition recack

op c-recack : Sys Name Message -> Bool
eq c-recack(S,P,M)

= (M /in ether(S) and isack(M) and sta(purse(S,P)) = epa and
pay(purse(S,P)) = pdofm(M)) .

--
ceq purse(recack(S,P,M),Q) =

mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),seq(purse(S,Q)),
(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)),log(purse(S,Q))) if c-recack(S,P,M) .

ceq ether(recack(S,P,M)) = ether(S) if c-recack(S,P,M) .
ceq recack(S,P,M) = S if not c-recack(S,P,M) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Transitions drop and duplicate

-- transition drop
op c-drop : Sys -> Bool
eq c-drop(S) = not empty?(ether(S)) .
--
ceq purse(drop(S),Q) = purse(S,Q) if c-drop(S) .
ceq ether(drop(S)) = get(ether(S)) if c-drop(S) .
ceq drop(S) = S if not c-drop(S) .

-- transition duplicate
op c-duplicate : Sys -> Bool
eq c-duplicate(S) = not empty?(ether(S)) .
--
ceq purse(duplicate(S),Q) = purse(S,Q) if c-duplicate(S) .
ceq ether(duplicate(S)) = top(ether(S)),ether(S) if c-duplicate(S) .
ceq duplicate(S) = S if not c-duplicate(S) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Transition abort

eq purse(abort(S,P),Q) =
mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),

(if (P = Q) then nextseqnum(seq(purse(S,Q)))
else seq(purse(S,Q)) fi),

(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)),
(if (P = Q) then

(if ((sta(purse(S,Q)) = epa) or (sta(purse(S,Q)) = epv))
then pay(purse(S,Q)) @ log(purse(S,Q)) else log(purse(S,Q)) fi)

else log(purse(S,Q)) fi)) .
eq ether(abort(S,P)) = ether(S) .

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Desired Security Properties – Property 1

No value may be created in the system:

eq inv100(S,P1,P2) =
((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and

pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
implies
((bal(purse(S,P1)) + bal(purse(S,P2))) <= (pbal(purse(S,P1)) + pbal(purse(S,P2))))) .

eq inv340(S,P1,P2) =
((pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
implies
((bal(purse(S,P1)) + bal(purse(S,P2))) <= (pbal(purse(S,P1)) + pbal(purse(S,P2))))) .

Two different purses that have same payment details and in status idle:
No transaction ever happens for each of them (pay details are none),
A transaction between them just finished, normally or abnormally does not matter.

How to Express Property 2?

All value should be counted in the system (no value is lost).

No lost(impossible)non-abort

(impossible)No lostnon-log

No lostlostlog
abort

non-abortabort
from

to

epa

epr

idle

idle

idle idle

epv

unmodeled
comm-device

from purse to purse

req

val

ack

starttostartfrom

Two different purses that have same payment details and in status idle:
No transaction ever happens for each of them (pay details are none),
A transaction between them just finished, normally or abnormally does not matter.

Desired Security Properties – Property 2

eq inv500(S,P1,P2) =
((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and

pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
implies
(if (pay(purse(S,P1)) /inexlog log(purse(S,P1)))

and (pay(purse(S,P2)) /inexlog log(purse(S,P2)))
then ((bal(purse(S,P1)) + bal(purse(S,P2)) + lost(pay(purse(S,P1)),log(purse(S,P1))))

= (pbal(purse(S,P1)) + pbal(purse(S,P2))))
else ((bal(purse(S,P1)) + bal(purse(S,P2)))

= (pbal(purse(S,P1)) + pbal(purse(S,P2)))) fi)) .

All value should be counted in the system (no value is lost).

Part 3:
Falsification of Desired Security Properties

A way similar to Bounded Model Checking by employing Maude
search command for finding counterexamples.

Motivations:
Easier, more automatic than proof and informative counterexamples;
Before verification: provides certain degree’s confidence;
During verification: filter out incorrect lemmas.

A Sample Conditional Rewrite Rule

crl[startpay_p1_p2_con]:

(purse[p1] : PUR1) (purse[p2] : PUR2) (ether : ETH) (steps : C)
=>

(purse[p1] : PUR1) (purse[p2] : PUR2)
(ether : (startfrom(p2, con, seq(PUR2)), startto(p1, con, seq(PUR1)),ETH))
(steps : (C + 1))

if (sta(PUR1) = idle and sta(PUR2) = idle and not(p1 = p2) and C < bound) .

Two purses p1 and p2 are considered, and bound is set to 9

Search Command for Property 1

search [1] in MONDEX :
init =>* (purse[P1] : PUR1) (purse[P2] : PUR2) S

such that not(
(sta(PUR1) = idle and sta(PUR2) = idle and
pay(PUR1) = pay(PUR2) and not(name(P1) = name(P2)))
implies
((bal(PUR1) + bal(PUR2)) <= (pbal(PUR1) + pbal(PUR2)))

) .

Two purses p1 and p2 are considered, and bound is set to 9
No solution.
states: 1725347 rewrites: 1304806394 in 8348686ms cpu (8579704ms real)
(156288 rewrites/second)

Costs about 2 hours on Jaist XT3 massively parallel processing system.
No response after 12 hours’ running on my desktop (3.2 GHz, 2 GB RAM).

Part 4:
Related Work – Modeling and Verification

RAISE and Alloy work is very similar to the Z work wrt. modeling.
KIV work’s ASM models modified the Z modeling in several aspects:

In general: operational style vs. relational style
In particular: merges status “eafrom” and “eato” into “idle”; removes
ignore operation etc.

Our work is inspired by KIV’s ASM modeling method, but:
startfrom, startto messages need not to be always available.
No condition for abort. But KIV defined condition for it.
drop and duplicate are explicitly defined. But KIV uses “ether’ ⊆ ether”,
and does not model message replay explicitly.

Verification: Directly proving invariants vs. Refinement proof
Share some exactly same and similar proof obligations.

Related Work – Falsification

In RAISE work, RSL specification is translated into SAL
Falsification within a finite reachable state space.

Falsification of refinement.
The possible loss of messages is not modeled.
Sequence numbers are in the range 0…3.
Besides, many changes to the ether.

In Alloy work, Alloy-analyzer (model-finding using SAT-Solver)
Falsification within a finite scope (how many objects are used)

Falsification of refinement.

We are able to use inductively defined data types, such as Ether.

Conclusion:

Show how Mondex can be analyzed using two algebraic approaches
for both verification and falsification within a couple of weeks.

An alternative way of modeling of the Mondex system as an OTS,
An alternative way of expressing and verification of the security
properties directly as invariants of the OTS,
An automatic way of falsification that may help in several aspects.

Intruder purses are to be considered. After introducing a
cryptographically secured communication protocol, prove that
messages cannot be forged rather than assuming it.

Thanks!

