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Introduction

Background

• Bounded model checking (BMC) is often used to find counterexamples.

– But, it cannot find counterexamples that exist at deep positions:

the state explosion problem.

Counterexamples at shallow positions
can be found.

But, those at deep positions
cannot.

A transition tree (a reachable state space)

depth d
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Introduction

Contribution

• To make it possible to find counterexamples at deeper positions than

depth d.

A transition tree (a reachable state space)

depth d Counterexamples at deeper 
positions than depth d 
can be found.

depth d’

To make it possible to find counterexamples at positions

between depth d and depth d′, where d′ is greater than d.
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Introduction

Proposed Solution

• A way to find counterexamples showing that state machines do not

satisfy invariant properties by combining BMC and induction on the

structure of reachable state spaces.

When a state predicate p is proved invariant wrt a state machine

by induction, other state predicates q1, . . . qN are made as lemmas.

Instead of finding a counterexample of p, we try to find a

counterexample of either of q1, . . . qN .

– Observational transition systems (OTSs) are used as state machines,

– Alg spec lang & sys Maude is used as a model checker, and

– Alg spec lang & sys CafeOBJ is used as a proof assistant.
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Observational Transition Systems (OTSs)

Informal Description of OTSs

OTSs are transition systems, which can be straightforwardly written as

algebraic specifications.

Transition
ty1,...,yn

State υ Suc. State υ’

Observer
ox1,...,xm

value1

Observer
ox1,...,xm

value2
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Observational Transition Systems (OTSs)

Definition of OTSs

Suppose a universal state space Υ and data types D∗ used in OTSs.

An OTS S is 〈O, I, T 〉 such that

• O : A finite set of observers.

Each observer is an indexed function ox1:Do1,...,xm:Dom : Υ → Do.

υ1 =S υ2 iff ∀ox1,...,xm : O.∀x1 : Do1 . . .(ox1,...,xm(υ1) = ox1,...,xm(υ2)).

• I : The set of initial states such that I ⊆ Υ.

• T : A finite set of transitions.

Each transition is an indexed function ty1:Dt1,...,yn:Dtn : Υ → Υ provided

that ty1,...,yn(υ1) =S ty1,...,yn(υ2) for each [υ] ∈ Υ/=S , each υ1, υ2 ∈ [υ]

and ∀yk : Dtk for k = 1, . . . , n.

ty1,...,yn(υ) is called the successor state of υ wrt ty1,...,yn.

The condition c-ty1,...,yn of ty1,...,yn is called the effective condition.
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Observational Transition Systems (OTSs)

Reachable States and Invariants

Reachable States : Given an OTS S, reachable states wrt S are

inductively defined:

• Each υinit ∈ I is reachable.

• For each ty1,...,yn ∈ T and each yk : Dtk for k = 1, . . . , n,

ty1,...,ym(υ) is reachable if υ is reachable.

Let RS be the set of all reachable states wrt S.

Invariants : A state predicate p : Υ → Bool is called invariant wrt S
if p holds in all reachable states wrt S, i.e. ∀υ : RS. p(υ).

Suppoe that every quantifier in state predicates is ∀.
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Observational Transition Systems (OTSs)

Transition Trees and Bounded Reachable States

Bounded Reachable States : Given S, bounded reachable states wrt

S are inductively defined:

• Each υinit ∈ I is 0-bounded reachable.

• For each ty1,...,yn and each yk for k = 1, . . . , n, ty1,...,ym(υ) is

(n + 1)-bounded reachable if υ is n-bounded reachable and c-ty1,...,yn(υ).

m-bounded reachable states are also n-bounded reachable if m ≤ n.

Let R≤n
S be the set of all n-bounded reachable states wrt S.

Transition Trees : Given S, transition trees wrt S, where nodes are

states and edges are transitions, are constructed:

• The roots are initial states of S.

• For each ty1,...,yn and each yk for k = 1, . . . , n, ty1,...,ym(υ) is a node and

ty1,...,ym is the edge from υ to the node if υ is a node and c-ty1,...,yn(υ).
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Observational Transition Systems (OTSs)

A Mutual Exclusion Protocol (Ticket)

The pseudo-code executed by each process i :

Loop

l1: ticket[i] := tvm;

l2: tvm := tvm + 1;

l3: repeat until ticket[i] = turn;

Critical section;

cs: turn := turn + 1;

• Initially, each process is at label l1, tvm is 0, turn is 0 and ticket[i] is 0

for each i.
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Observational Transition Systems (OTSs)

OTS STicket Modeling Ticket

• OTicket � {tvm : Υ → Nat, turn : Υ → Nat, ticketi:Pid : Υ → Nat,

pci:Pid : Υ → Label}
• ITicket � {υinit | tvm(υinit) = 0 ∧ turn(υinit) = 0∧

∀i : Pid. (ticketi(υinit) = 0) ∧ ∀i : Pid. (pci(υinit) = l1)}
• TTlock � {getj:Pid : Υ → Υ, incj:Pid : Υ → Υ, enterj:Pid : Υ → Υ,

leavej:Pid : Υ → Υ }

incj(υ) � υ′ if c-incj(υ) s.t.

tvm(υ′) = tvm(υ) + 1

turn(υ′) = turn(υ)

ticketi(υ
′) = ticketi(υ)

pci(υ
′) = if i = j then l3 else pci(υ)

where c-incj(υ) � (pcj(υ) = l2)
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Observational Transition Systems (OTSs)

An Invariant (Candidate) wrt STicket

One desired property Ticket should satisfy is the mutual exclusion

property, which informally means that there is always at most one

process in the critical section.

The property is expressed as

∀υ : RSTicket
. MX(υ)

where

• MX(υ) � ∀i, j : Pid (pci(υ) = cs ∧ pcj(υ) = cs ⇒ i = j) .
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Observational Transition Systems (OTSs)

Bounded Reachable & Transition Tree wrt STicket

υ0

geti
getj

inci

enteri

leavei

getj

getj

getj

geti

inci

incj

enterj

enteri

3-bounded reachable states

A transition tree wrt STicket
MX does not hold in the state:
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Bounded Model Checking with Maude

Maude

• An alg spec lang & sys, mainly developed at SRI Int’l & UIUC.

– A member of the OBJ language family.

• State machines as well as data types.

– Data types are specified in initial algebras.

– State machines are specified in rewriting logic.

• A spec : a sig (sorts & ops decls) & a set of eqs and/or rewriting rules

– Functions on data types are defined in equations.

– Transitions of state machines are defined in rewriting rules.

• Equipped with model checking facilities.

Counterexample Discovery with a Combination of Induction and BMC by K. Ogata, et al. 14/31



Bounded Model Checking with Maude

Two Ways of Model Checking

1. The command search finds states that are reachable from a given

state and satisfy some coditions. It can be used to find counterexamles

showing that state machines do not satisfy invariant properties.

2. The LTL model checker checks if a state machine satisfies a property

written in LTL.

For both ways,

• Inductive data types can be used freely.

– No need to encode complex data types in basic data types.

• The state space of a state machine does not have to be finite.

– The LTL model checker requires the reachable state space to be finite.

– The command search even does not so.

• The performance is comparable to SPIN.
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Bounded Model Checking with Maude

BMC with the Command search

• The older versions of Maude did not provide any BMC functionalities.

• Even in the latest version Maude 2.3, the LTL model checker does not

provide any BMC functionalities.

• In the latest version Maude 2.3, however, the command search has an

optional argument n stating the maximum depth of the search.

For an OTS S and υ0 ∈ I, search searches the n-bounded reachable

states in the transition tree made from S and υ0 for a counterexample

showing that S does not satisfy an invariant property.

Since properties we take into account are invariant properties only, the

command search can be used for our purpose.
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Bounded Model Checking with Maude

Instantiation of the Numbers of Entities

• Even if d is finite, w may not be finite

and then R≤d
S may not be finite.

• To make it possible for the command

search to make an exhautive search for

R≤d
S , w should be finite.

A transition tree wrt S

depth d

width w

To this end, the numbers of some entities such as processes have to be

finite.

Such instantiation should be made to write state machines in Maude,

precisely to write initial states, although transitions can be mostly

written in Maude independent of the numbers of entities.

Counterexample Discovery with a Combination of Induction and BMC by K. Ogata, et al. 17/31



Bounded Model Checking with Maude

Maude Specification of STicket (1)

The signature is as follows:

sorts TRule OValue Sys .

subsorts TRule OValue < Sys .

*** Configuration

op none : -> Sys .

op __ : Sys Sys -> Sys [assoc comm id: none] .

*** Observable values

op pc[_] :_ : Pid Label -> OValue .

op ticket[_] :_ : Pid Nat -> OValue .

op turn :_ : Nat -> OValue .

op tvm :_ : Nat -> OValue .

*** Transition rules

ops get inc enter leave : -> TRule .
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Bounded Model Checking with Maude

Maude Specification of STicket (2)

The def of transition incI is written as follows:

rl [inc] : inc (pc[I] : l2) (ticket[I] : T) (tvm : V)

=> inc (pc[I] : l3) (ticket[I] : T) (tvm : (T + 1)) .

When the number of processes is 2, the initial state is written as follows:

eq init = get inc enter leave

(pc[p1] : l1) (ticket[p1] : 0)

(pc[p2] : l1) (ticket[p2] : 0)

(turn : 0) (tvm : 0) .
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Bounded Model Checking with Maude

Bounded Model Checking STicket

• When the maximum depth n of the search is 6 (or more), the

command search finds a counterexample showing that STicket does not

satisfy the mutual exclusion property.

• When n is 5 or less, no counterexamples are found.

• But, what if the 6-bounded reachable state space were too large to be

exhaustively traversed within a reasonable time?

— the state explosion problem.

– Some possible solutions to the problem have been proposed such as

use of abstraction.

– We propose another possible solution to the problem, which uses

mathematical induction.
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Falsification by Induction with CafeOBJ

CafeOBJ

• An alg spec lang & sys, mainly developed at JAIST.

– A member of the OBJ language family.

• State machines as well as data types.

– Data types are specified in initial algebras.

– State machines are specified in hidden algebras.

• A spec : a signature (sort & operator decls) & a set of eqs.

– Both functions and transitions are defined in equations.

• Used as a proof assistant.
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Falsification by Induction with CafeOBJ

Necessary Lemmas

Given an OTS S and a state predicate p : Υ → Bool, state predicates are

called necessary lemmas for ∀υ : RS. p(υ) if the state predicates are

needed to prove ∀υ : RS. p(υ) and are also invariant wrt S when p is

invariant wrt S.

• Given an OTS S and a state predicate p : Υ → Bool, necessary

lemmas for ∀υ : RS. p(υ) can be systematically constructed.

• It may be hard to prove necessary lemmas invariant wrt S.

Necessary lemmas must be often strengthened to make good lemmas.

• Necessary lemmas are appropriate for falsification.

Let NLS,p be the set of all necessary lemmas for ∀υ : RS. p(υ).
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Falsification by Induction with CafeOBJ

A Way to Construct Necessary Lemmas

Suppose that ∀υ : RS. p(υ) is proved by induction on the structure of

RS .

• In invariant verification with CafeOBJ, the main task is case splitting.

Each case is represented by a set of equations.

For each induction case, the case is split into sub-cases such that a

formula to prove in the induction case reduces to either true or false.

• For a sub-case such that the formula reduces to false where E is the

set of equations that represents the sub-case,

¬(
∧

e∈E e) is a necessary lemma for ∀υ : RS. p(υ).
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Falsification by Induction with CafeOBJ

CafeOBJ Specification of STicket

The signature is as follows:

*[Sys]*

bops tvm turn : Sys -> Nat

bop ticket : Sys Pid -> Nat

bop pc : Sys Pid -> Label

bops get inc enter leave : Sys Pid -> Sys

The def of transition incJ is written as follows:

ceq tvm(inc(S,J)) = s(tvm(S)) if pc(S,J) = l2 .

eq turn(inc(S,J)) = turn(S) .

eq ticket(inc(S,J),I) = ticket(S,I) .

eq pc(inc(S,J),I)

= (if I = J then l3 else pc(S,I) fi) if pc(S,J) = l2 .

ceq inc(S,J) = S if not(pc(S,J) = l2) .
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Falsification by Induction with CafeOBJ

An Example of Constructing Necessary Lemmas

A Fragment of the proof of ∀υ : RSTicket
. MX(υ) in CafeOBJ:

open ISTEP

-- arbitrary values

op k : -> Pid .

-- assumptions

eq pc(s,k) = l3 .

eq ticket(s,k) = turn(s) .

eq (i = k) = false .

eq j = k .

eq pc(s,i) = cs .

-- successor state

eq s’ = enter(s,k) .

-- enter

red istep1(i,j) .

close

By substituting j for k in the 5 eqs

that characterize the sub-case and

replacing constants s, i and j with

variables S, I and J, the following

necessary lemma is constructed:

eq inv2(S,I,J)

= not(pc(S,J) = l3 and

ticket(S,J) = turn(S) and

not(I = J) and

pc(S,I) = cs) .
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Falsification by Induction with CafeOBJ

Falsification of ∀υ : RSTicket
. MX(υ) by Induction

Only induction on the structure of RSTicket
can be used to find a

counterexample of ∀υ : RSTicket
. MX(υ).

27

0 1
2

3

5

4

6

4

8 16

7
15

enter

inc get

leaveenter

enter

inc
inc

get
get

get

leave

depth 0 depth 1 depth 2 depth 3 depth 4 depth 5 depth 6

9 more till depth 6

3 more till depth 5

4 more till depth 5The mutual
exclusion property

i jt

j is a necessary lemma of i needed 
in the induct case for trans t. The base case

does not hold.
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Combining BMC and Induction

Procedure IGF

Given an OTS S, a state predicate p and a natural number n, the

procedure is defined as follows:

1. Q := put(emptyQueue, p) and P := ∅.
2. Repeat the following until Q = emptyQueue.

2.1. Let q be top(Q).

2.2. Search R≤n
S for a counterexample for ∀υ : RS. q(υ).

If a counterexample is found, terminate and return Falsified.

2.3. Compute all necessary lemmas NLS,q for ∀υ : RS. q(υ).

2.4. P := {q} ∪ P and Q := get(Q).

2.5. For each r ∈ NLS,q,

if ¬[∃r′ ∈ q2s(Q) ∪ P. (r′ ⇒ r)], then Q := put(Q, r).

3. Terminate and return Verified.
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Combining BMC and Induction

Falsification of ∀υ : RSTicket
. MX(υ) by IGF

When n is 4, IGF finds a counterexample of ∀υ : RSTicket
. MX(υ) as

follows:

0 1
2

3

enter

inc

enter

depth 0 depth 1 depth 2

The mutual
exclusion property

1. No counterexamples are found.

2. No counterexamples are found.

3. A counterexample is found.
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Conclusion

Summary

• We have proposed a way to find counterexamples showing that OTSs

do not satisfy invariant properties by combining BMC and induction,

which are done by Maude and CafeOBJ.

The proposed solution can be regarded as a possible solution to the

state explosion problem.

• An example (Ticket) has been used to describe the proposed solution.

Another case study:

� The proposed solution has been applied to the NSPK authentication

protocol.
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Conclusion

Ongoing and Future Work (1)

• Neither Ticket nor NSPK can demonstrate the usefulness of the

proposed solution.

This is because only BMC can find counterexamples showing that

Ticket does not satisfy the mutual exclusion property and that NSPK

does not satisfy the secrecy property.

• We are planning to apply the proposed solution to the iKP electronic

payment protocol.

We found in an ad-hoc way a counterexample showing that iKP does

not satisfy a property called the payment agreement property.

We believe that only BMC cannot find such a counterexample, but the

proposed solution can systematically find such a counterexample.
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Conclusion

Ongoing and Future Work (2)

• Develop a tool that automates procedure IGF based on Cafe2Maude

and Creme.

– Cafe2Maude: A translator from CafeOBJ specs of OTSs into Maude

specs of instances of the OTSs.

– Creme: An automatic invariant verifier of OTSs, which uses an

automatic case splitter.

• It depends on the numbers of some entities in an instance of an OTS

whether the instance has a counterexample for an invariant property

when the OTS has.

We want to come up with something that can decide how many entities

are enough to make sure that the instance has a counterexample when

the OTS has.
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