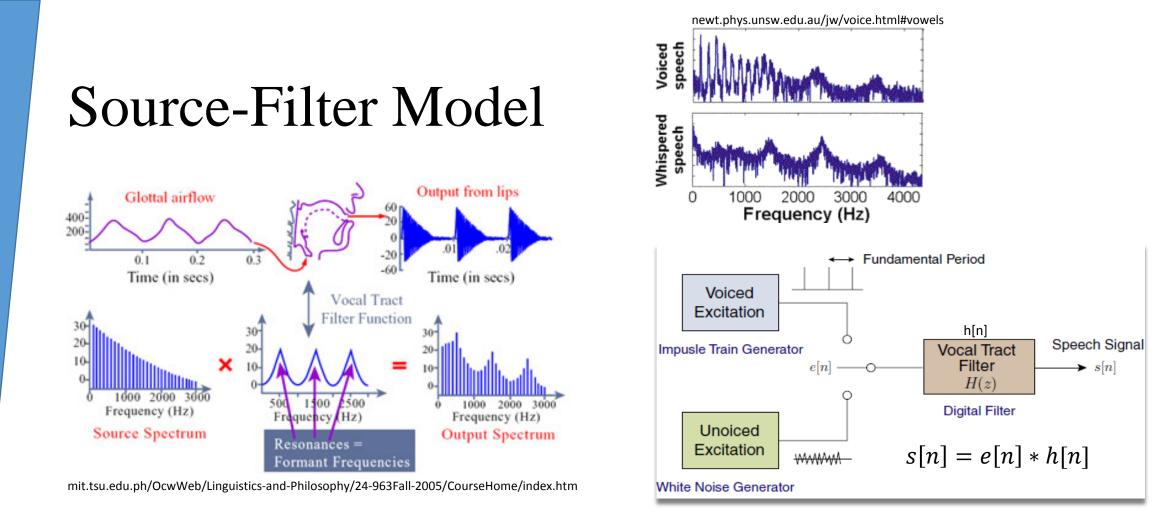


Speech Analysis Based on Source-Filter Model Using Multivariate Empirical Mode Decomposition

S. Boonkla^{1,2}, M. Unoki¹, Makhanov S. S.², and C. Wuthiwiwatchai³

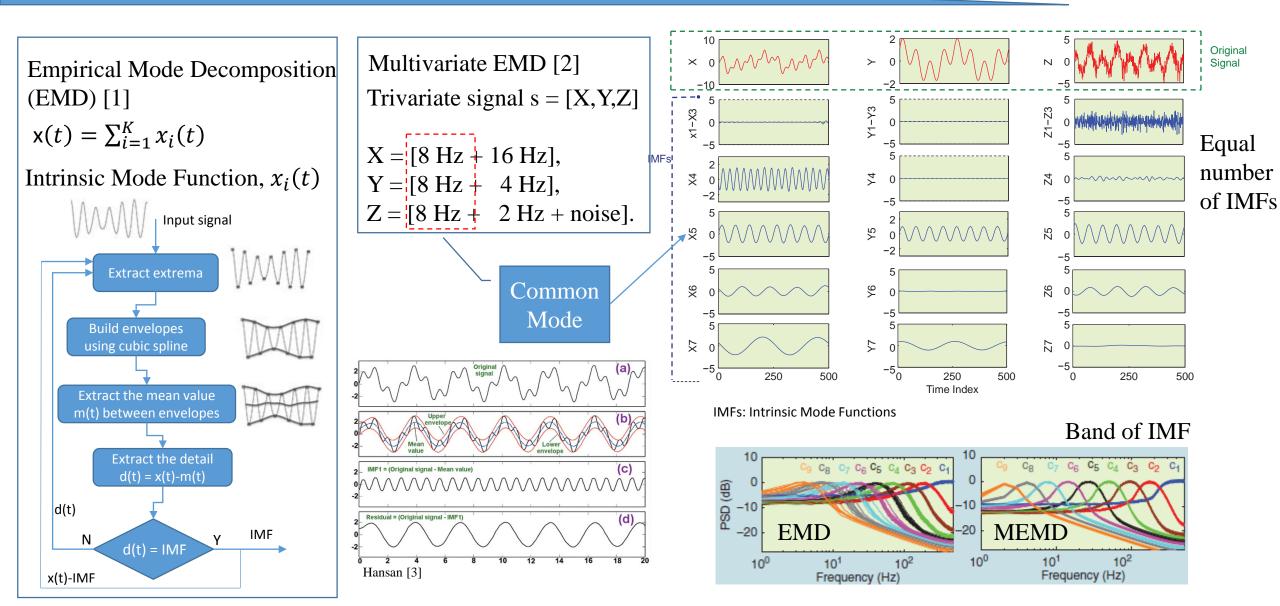
¹School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Japan
²School of Information, Communication and Computer Technologies (ICT), Sirindhorn International Institute of Technology (SIIT), Thammasat University (TU), Thailand

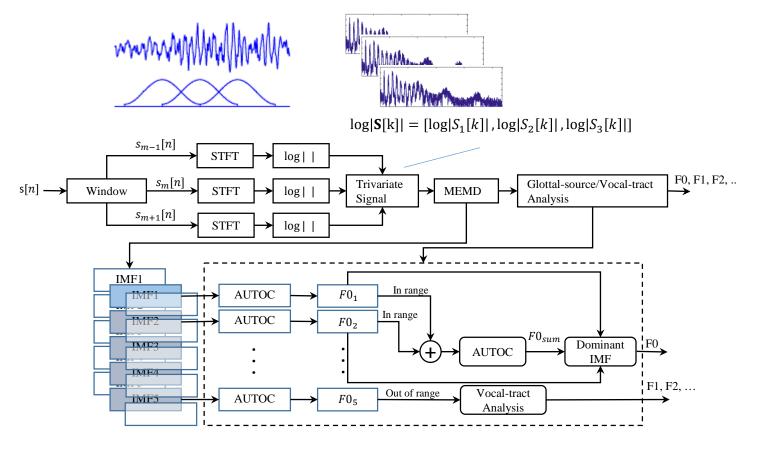

³National Electronics and Computer Technology Center (NECTEC), Thailand

Motivation & Aim

- □ Linear Prediction (LP) separates glottal-source and vocal-tract filter based on sampling rate.
- □ Cepstrum separates glottal-source and vocal-tract filter using liftering the cut-off quefrency of which depends on gender.
- □ MEMD can automatically separate glottal-source and vocal-tract filter.

Introduction

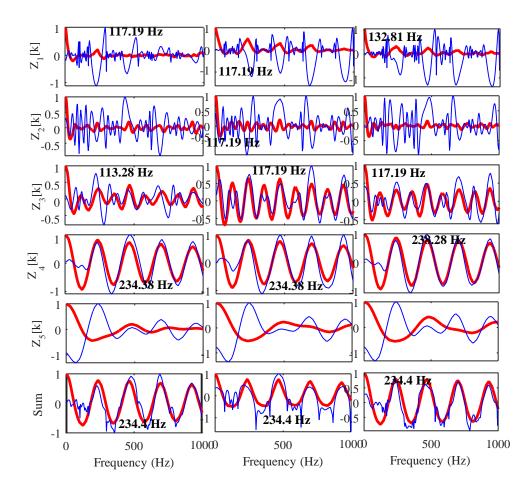

- □ Speech analysis is important for several applications such as automatic speech recognition systems, speech analysis/synthesis, hearing aids, etc.
- □ Existing speech analysis method are still weak in real environments.
- □ Improving the existing methods and finding a new one are important.



A speech signal, s[n], is resulted from convolution of glottal-source signal, e[n], and a vocal-tract filter, h[n].
 Glottal-source has two types which are voiced and unvoiced excitation. We consider voiced excitation here.

$$s[n] = e[n] * h[n] \xrightarrow{\text{DTF}} S[k] = E[k]H[k] \xrightarrow{|||} |S[k]| = |E[k]||H[k]| \xrightarrow{\text{Log}} \log |S[k]| = \log |E[k]| + \log |H[k]|$$

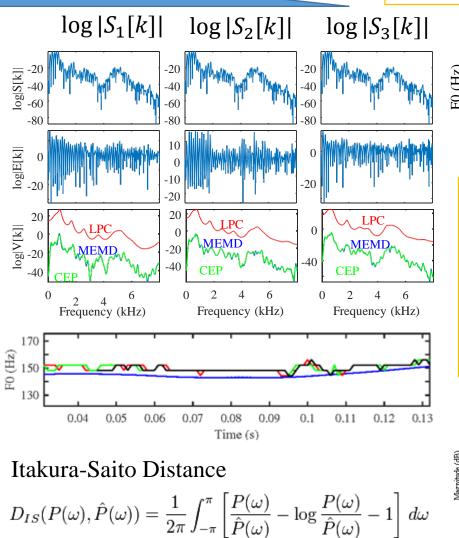
Multivariate Empirical Mode Decomposition



Divide IMFs into two groups of glottal-source and vocal-tract using autocorrelation (AUTOC).

$$\log |S[k]| = \log |E[k]| + \log |H[k]| = \sum_{i=1}^{K} Z_i[k] = \underbrace{\sum_{i=1}^{M} Z_i[k]}_{glottal-source} + \underbrace{\sum_{vocal-tract}^{K} Z_i[k]}_{vocal-tract}$$

Proposed Method



IMFs and their autocorrelation (AUTOC)

Common mode alignment in $Z_4[k]$

If the first peak of AUTOC is between 85 - 255 Hz (normal range of F0) then that IMF are considered as of glottal-source.

Evaluation & Results

Glottal-Source
• F0 estimation
Correct rate[4] =
$$\frac{No. Correct}{No. All} \times 100$$

[k]
• $\frac{F0}{P0}$
• $\frac{F0}{F0}$
• $\frac{F1}{F2}$
• \frac

Table 1: Correct rate (%) of F0 estimation using proposed method compared with those obtained by linear			Vowel		LP		СЕР		Proposed	
			/	'AA/	94.12		92.87		93.88	
				/IY/	87.24		89.64		90.13	
prediction (LP) and cepstrum (CEP)			/	UW/	95.65		86.25		92.02	
			,	/EY/	92.08		90.39		92.61	
Table 2: Average formant frequencies (kHz) and spectral distance.			/	OW/	91.52		93.79		90.46	
Vowel				F2	Correlati		ion		D_IS	
	Method	F 1			E-C		E-L	E-C	1	E-L
/AA/	LP	0.74 0.76		1.45	0.98	0.95				
	CEP			1.43			0.06		96.03	
	Proposed	0.76		1.47						
/IY/	LP	0.37 0.37		2.20	0.99	0.94				
	CEP			2.22				0.03		124.76
	Proposed	0.36		2.22						
/UW/	LP	0.40 0.39		1.35						
	CEP			1.34	0.98		0.93	0.05	5	253.02
	Proposed	0.3	35	1.34						
/EY/	LP	0.47 0.45		2.05		0.95				
	CEP			2.06	0.99			0.03		83.73
	Proposed	0.46		2.06						
/OW/	LP	0.58		1.38						174.76
	CEP	0.5	58	1.31	0.99	0.92		0.05		
	Proposed	0.5	57	1.34						

Conclusion

- □ The proposed method can automatically separate glottal-source and vocal-tract filter.
- □ The correct rate of estimated F0 obtained by the proposed method is as good as those obtained by LP-based and cepstrum-based methods.
- □ The estimated formants (F1 and F2) using proposed method are equivalent to those obtained by LP-based and cepstrum-based methods.
- □ The shape of spectral envelop is most similar to that obtained by cepstrum-based methods.

References

[1] N. E. Huang, "**The Empirical Mode Decomposition and the Hilbert Spectrum for Non-Linear and Non-stationary Time Series Analysis**," Proc. the Royal Society: Math, Physi., and Eng. Sci., A454, 903-995, 1998.

[2] D. P. Mandic, N. U. Rehman, Wu Zhaohua, and N. E. Huang, "Empirical Mode Decomposition-Based Time-Frequency Analysis of Multivariate Signals: The Power of Adaptive Data Analysis," IEEE Signal Processing Magazine, Vol. 30, No. 6, pp. 74 - 86, Nov. 2013.

[3] Hassan H. Hassan and John W. Peirce, "**Empirical Mode Decomposition (EMD) of potential field data: airborne gravity data as an example**, " Canadian Society of Exploration and Geophysicists (CSEG), VOL. 33 No. 01, Jan 2008.

[4] S. Boonkla, M. Unoki, S. S. Makhanov, and C. Wutiwiwatchai, "**Speech analysis method based on source-filter model using multivariate empirical mode decomposition in log-spectrum domain**," IEEE International Symposium on Chinese Spoken Language Processing (ISCSLP), pp. 555-559, Sept. 2014.

[5] M. Unoki, T. Hosorogiya, and Y. Ishimoto, "**Comparative Evaluations of Robust and Accurate F0 Estimates in Reverberant Environments**," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4569-4572, Mar. 2008.