

Algorithms and Complexity for Puzzles

From classic to current & future issues in

Theoretical Computer Science

Ryuhei Uehara

Japan Advanced Institute of Science and Technology

uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

• What's "computation" could be... (1930s-1940s)

To consider "computation," what we need is

- Basic operations (=model of computation)
- How can we combine them (=algorithms)

2015/11/10 SAST 2015 2

What's "computation" could be... (1970s)

John Horton Conway

"Computation"

Games and Puzzles
Can Be!!

To consider "computation," what we need is

- Basic operations (=model of computation)
- How can we combine them (=algorithms)

What's "computation" could be... (1970s

Conway's Game of Life (1970)

- It is a kind of cellular automaton with quite simple rules.
- It is "Universal",
- that is, it computes any function!
 - Some nice books:

Simon J. Fraser, John "Horned" (Horton) Conway, 1975

Advantages of Puzzles & Games to consider "computation"

- Simple and Uniform (with reasonable model)
- That may extract the <u>essence</u> of the difficulty of some computation
- That may give us <u>new aspect</u> of some computation

Short Ads.

• In JAIST, we have "JAIST Gallery" that has around 10000 puzzles called *NOB's Puzzle Collection*!

I'm a director of this gallery!

Classic Results (1970s~1980s):

- Game to consider "computation"
 - Characterization by artificial game
 - Pebble game (though we have many variants)

Input: Directed graph G, placement of "pebbles"

Rule: Move pebbles along edges and remove some pebbles in certain rules

Output: Determine if you can move a pebble to a goal

- It is complete for some computational classes;
 - NLOG, P, NP, PSPACE, EXP
- References:
 - J. Hopcroft, W. Paul and L. Valiant. "On Time versus space," J. Assoc. Comput. Mach. 1977
 - Richard J. Lipton and Robert E. Tarjan. "Applications of a Planar Separator Theorem," SIAM J. Comput. 1980
 - Stephen Cook; Ravi Sethi. "Storage requirements for deterministic polynomial time recognizable languages". *Journal of Computer and System Sciences*, 1976.
 - Takumi Kasai; Akeo Adachi; Shigeki Iwata. "Classes of pebble games and complete problems". *SIAM Journal on Computing*, 1979.

1 player/2 players Number of pebbles Acyclic or not

More Classic Results (1980s~):

- Puzzles to consider "computation"
 - Characterizations by natural games and puzzles
 - Many puzzles and games
 - *E.g.,* Geometry (しりとり), Solitaire, Crossword puzzle, Jigsaw puzzle (matching puzzle), UNO, Video games, Pencil puzzles, ...

So far ... (1980s~2000s):

- We had tons of X-Complete problems;
 - NP-complete puzzles
 - 1 player, something decreases in each step
 - Tons of papers...
 - PSPACE-complete / EXP-complete games
 2 player version of these NP-complete problems
- They give some insight of these classes

NP: 1 player, something decreases in each step.

PSPACE: 2 players (...alternating Turing Machine)

We needed some general model for them...

Interesting
Puzzle

NP-C

So far ... (1980s~2000s):

Still unsolved

 Sliding Block puzzles like "Daddy Puzzle", "Sokoban"

Martin Gardner said that...

"These puzzles are very much in want of a theory"

Scientific American 210 (1964)

... 40 years later,

Modern Results (2010s∼):

- New framework to consider "computation"
 - "Constraint Logic" by Bob Hearn and Erik D. Demaine
 - characterizing games (2player) and puzzles (1player)
 - That can model many previous known games and puzzles,
 - And solves the open problems including sliding block type puzzles.

Modern Results (2010s~):

- New framework to consider "computation"
 - "Constraint Logic" by <u>Bob Hearn</u> and Erik D. Demaine
 - Roughly, it is a game on a graph

Input: Directed graph G, each edge has weight and direction

Rule: Each vertex is *balanced*, an operation is flipping an edge

Output: Determine if you can flip some specified edge

Relatively higher classes:

#flips of
•
an edge

	0 player	1 player	2 player	Team, imperfect information
Unbounded	PSPACE	PSPACE	EXPTIME	RE (undecidable)
Bounded	Р	NP	PSPACE	NEXPTIME

Some remarkable puzzles...

- Finally solved
 - Sliding Block puzzles are PSPACE-complete.
 - Unlike other NP-complete problems, it can recover the same state many times... that property makes them to be PSPACE-complete?
- It reminds us a classic puzzle solved in 1990s,,,
 - 15 puzzle
 - It has a long and funny stories; see "The 15 Puzzle Book" by Jerry Slocum, 2006.

Top puzzle collector in the world...

Some remarkable puzzles...

• The 15 Puzzle

It is easy to generalized to $n \times n$ board

Input: Two arrangements \mathbf{s} and \mathbf{t} of the nu

Goal: Slide a panel from s to t

Output: ...

Yes/No: Linear time by parity check

If Yes, find any sequence of arrangements: O(n2) time

Furthermore, output any sequence: O(n³) time

However, find a shortest sequence: NP-complete!!

• Reference:

 Daniel Ratner and Manfred Warmuth. "The (n²-1)-Puzzle and Related Relocation Problems," J. of Symbolic Computation, 1990.

 New concept of problems to consider "complexity" inspired by these puzzles:

```
Reconfiguration Problems
```

```
Input: Problem P, two feasible solutions S<sub>1</sub> and S<sub>2</sub>
```

Operation: Simple rule for modification of a solution

Decision Problem 1: Determine if S₁ can be

transformed to S₂

Find Problem 2: Find any sequence

of solutions joining S₁ and S₂

Shortest Problem 3: Find a shortest sequence

between S₁ and S₂

2015/11/10 SAST 2015 15

 New concept of problems to consider "complexity" inspired by these games/puzzles:

Reconfiguration Problems

Sliding Block puzzle

(n²-1) puzzle

Decision

PSPACE-complete

Linear

Find

(PSPACE-complete)

Poly-time

Shortest

(PSPACE-complete)

NP-complete

Many problems should be here
And they give some new insight of the classes

- Not game-like results for reconfiguration problems:
 - SAT: "Decision problem" is PSPACE-complete

Reference:

P. Gopalan, P.G. Kolaitis, E.N. Maneva, <u>C.H. Papadimitriou</u>, "The connectivity of Boolean satisfiability: computational and structural dichotomies," *SIAM J. Comput.* 2009.

 IS, Clique, Vertex Cover, Set Cover, IP: "Decision problem" is PSPACE-complete

Reference:

T. Ito, E. D. Demaine, N. J. A. Harvey, <u>C. H. Papadimitriou</u>,

M. Sideri, R. Uehara, and Y. Uno: On the Complexity of Reconfiguration Problems, *Theoretical Computer Science*, 2010.

In my measure, "Sliding-block puzzle type"

- Bit game-like result for reconfiguration problems:
 - Famous open problem in Computational Geometry

Input: Simple polygon, two triangulations T_1 , T_2

Operation: "flip" one diagonal

Known: Every T_1 is flippable to T_2 in $O(n^2)$ flippings

Question: Find a shortest flipping

Result: It is NP-complete!!

It was open 40 years like sliding block puzzle...

Reference:

O. Aichholzer, W. Mulzer, A. Pilz, Flip distance between triangulations of a simple polygon is NP-complete, ESA 2013.

In my measure, "(n²-1) puzzle type"

- Not game-like, but something remarkable:
 - SAT: Trichotomy for the classes P, NP, and PSPACE from the viewpoint of "Shortest problem"

Reference:

A. E. Mouawad, N. Nishimura, V. Pathak and V. Raman: Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas, *ICALP 2015*, 2015/7/8.

In my measure, this one may be the first example between "Sliding-block puzzle type" and "(n²-1) puzzle type".

Real Model ADVANCED INSTITUTE OF NOLOGO

Summary and Future work

 Games and Puzzles give us a new insight about "computation"

 Some new problems are not yet well-settled.

Reconfiguration problem,
 especially, (n²-1) puzzle type
 problem.

 We need new model that characterizes the classes P, NP, PSPACE, (EXP) in this manner. Conway's Life Game

Pebble game

Real games/puzzles

Constraint Logic

Games based on "Reconfiguration"

These games are very much in want of a theory!

2015/11/10 SAST 2015 20