Analysis and Control of Limit Cycle Walking Based on Linearized Equation of Motion

Xuan Xiao

Supervisor: Associate Professor Fumihiko Asano Japan Advanced Institute of Science and Technology

Introduction

Artificial constraints

Stabilize the complex dynamic walking motion, however, limit the optimizing gait generation

Static stability

Efficiency, disturbance handling, Cannot be compared with human walking

Whether steady walking state can be generated?

Introduction

Limit cycle walking (to release the constraints)

Limit cycle walking is a nominally periodic sequence of steps that is stable as a whole but not locally stable at every instant in time.

- Energy efficiency (zero feedback gains)
- Versatility (less restrictive)

Disadvantage:

• Zero feedback gains leads to a low ability of handle disturbances

Solution: the feedback control system based on mathematical analysis

Modeling

Underactuated rimless wheel

g

Underactuated Rimless Wheel

Control system

$$y = S^{T}\theta = \theta_{1} - \theta_{2}$$

$$\ddot{y} = S^{T}\ddot{\theta} = S^{T}M_{0}^{-1}(Su - G_{0}\theta)$$

$$u = \frac{\ddot{y}_{d}(t) + S^{T}M_{0}^{-1}G_{0}\theta}{S^{T}M_{0}^{-1}S}$$

$$\int M_{0}\ddot{\theta} + G_{0}\theta = Su$$

$$\ddot{y}_{d}(t) = \begin{cases} \frac{4\alpha}{T_{set}} & (0 \le t < \frac{T_{set}}{2}) \\ -\frac{4\alpha}{T_{set}} & (\frac{T_{set}}{2} \le t < T_{set}) \\ 0 & (t \ge T_{set}) \end{cases}$$
When only the rimless
wheel is considered

$$\ddot{\theta}_{1} = \hat{\omega}^{2}\theta_{1} + I_{0}\ddot{y}_{d}(t), \quad \hat{\omega} = \sqrt{\frac{M_{u}gl}{M_{u}l^{2} + I}}, I_{0} = \frac{I}{M_{u}l^{2} + I}$$

Underactuated Rimless Wheel

Linearized equations

$$\frac{d}{dt} \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \hat{\omega}^2 & 0 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \end{bmatrix} + \begin{bmatrix} 0 \\ I_0 \end{bmatrix} \ddot{y}_d(t)$$

$$\dot{x} = \hat{A}x + \hat{B}\ddot{y}_d(t)$$

As the solution of the steady states

$$\begin{aligned} \mathbf{x}_{i+1}^{-} &= e^{\hat{A}T_{i}} \mathbf{x}_{i}^{+} + \int_{0^{+}}^{T_{i}} e^{\hat{A}(T_{i}-s)} \hat{B} \ddot{y}_{d}(s) ds \\ \begin{bmatrix} \theta_{1(i+1)}^{-} \\ \dot{\theta}_{1(i+1)}^{-} \end{bmatrix} &= e^{\hat{A}T_{i}} \mathbf{x}_{i}^{+} + \int_{0^{+}}^{\frac{T_{\text{set}}}{2}} e^{\hat{A}(T_{i}-s)} \hat{B} \frac{4\alpha}{T_{\text{set}}^{2}} ds - \int_{\frac{T_{\text{set}}}{2}}^{T_{\text{set}}} e^{\hat{A}(T_{i}-s)} \hat{B} \frac{4\alpha}{T_{\text{set}}^{2}} ds \end{aligned}$$

Feed-forward Control on URW

Feed-forward control on level/uneven ground For the level ground, $\theta^+_{\mathrm{URW}(i)}, \theta^-_{\mathrm{URW}(i)}$ are constant.

For the uneven ground, if the state of surface is known,

Feed-forward Control on URW

Feed-forward control on uneven ground

Boundary condition

Boundary condition

$$F_{\mathrm{URW}}\left(T_{\mathrm{set}(i)}, \dot{\theta}_{\mathrm{URW}(i)}^{+}, \theta_{\mathrm{URW}(i)}^{+}, \theta_{\mathrm{URW}(i)}^{-}\right) = \theta_{i+1}^{-} - \theta_{\mathrm{URW}(i)}^{-}$$

