raSAT - an SMT for Polynomial Constraints

What are Polynomial Constraints?

Q: Find the real values of x, y such that:

$$y^2 + y - x^2y + 1 < 0$$
 and $x^2 + y^2 - 4 < 0$

A: x = 0.687783209694, y = 1.875

f > 0 is $\begin{cases} satisfiable (SAT) & if there exist values for variables x, y, ... \\ unsatisfiable (UNSAT) otherwise \end{cases}$

Many applications in Software Verification

- Automatic termination proving.
- Round-off and overflow errors analysis.
- Invariant generation.
- Test case generation.

Approaches for Polynomial Constraints

- QE-CAD: complete but DEXPTIME complexity.
- Bit-blasting: suffers with high number of variables or high degree of polynomials.
- Linearization: suffers with high degree of polynomials.
- Virtual substitution: needs root formulas of polynomial
- → degree <= 4</p>
- ICP: uses Interval arithmetic (IA) and suffers with touching cases.

raSAT = ICP + testing

Interval Arithmetic estimate ranges of polynomials ху Interval $xy \in [-10, 20]$ • $x \in [-2, 4]$ Arithmetic • $y \in [-1, 5]$ ▶ e.g., $f \in [1, 10] \rightarrow f > 0$ is IA-VALID \implies SAT ▶ e.g., $f \in [-10, -1] \rightarrow f > 0$ is IA-UNSAT \implies UNSAT ▶ e.g., $f \in [-12, 10] \rightarrow f > 0$ is IA-SAT \implies UNKNOWN

raSAT Performance

▶ iSAT3, dREAL: ICP-based solvers

Benchmarks	raSAT		iSAT3 with bounds [-1000, 100]		dREAL	
	Solved No.	Time(s)	Solved No.	Time(s)	Solved No.	Time(s)
Matrix-1(SAT)	25	414.99	11	4.68	46*	3573.43
Matrix-1(UNSAT)	2	0.01	3	0.00	0	0.00
Matrix-25(SAT)	11	1264.77	3	196.40	19*	2708.89
Matrix-25(UNSAT)	8	0.38	12	8.06	0	0.00
Meti-Tarski(SAT)	3473	419.25	2916	811.53	3523*	441.35
Meti-Tarski(UNSAT)	1052	821.85	1225	73.83	1197	55.39

* means $\delta - SAT$ and $\delta - SAT \nleftrightarrow SAT$

raSAT Performance

Participated in SMT competition 2015.

- ▶ 3rd among 6 in QF_NRA category for reals
- 2nd among 7 in QF_NIA category for integers
- ► Overall, ranked 8th among 19 solvers.
- http://smtcomp.sourceforge.net/2015/resultscompetition-main.shtml?v=1436156934