### Enumeration of Common Developments

### Xu Dawei, Uehara Lab School of Information Science

JAIST

### Introduction

Unfold the cube, we can get its "developments".



Big Open Problem:

Any convex polyhedron can be developed without overlapping by just cutting along its edges (?)

## **Open problem**

# <u>Theorem</u> [Biedl et al. 1999] Two polygons that can fold two boxes



<u>Theorem</u> [Abel, Demaine, Demaine, Matsui, Rote, Uehara 2011] For area 22, there are 2263 polygons that can fold to two boxes of size  $1 \times 1 \times 5$  and  $1 \times 2 \times 3$ (by exhaustive search). Among them, <u>only one</u> admits to fold a "box" of size  $0 \times 1 \times 11$  of volume 0.



### The enumerate approach

We enumerate all developments by super computer. It takes around 2 months to complete search.



<u>Theorem</u> [Dawei, Horiyama, Uehara 2015] By searching all developments of area 30, 1080 polygons fold boxes of size  $1 \times 1 \times 7$  and  $1 \times 3 \times 3$ . Among 1080, there is 9 polygons that fold to a cube of size  $\sqrt{5} \times \sqrt{5} \times \sqrt{5}$ , and <u>Only one</u> of 9, it has two ways of folding into the cube!





### **Future Algorithms with BDD**

Development should be ...





- Cut-edges form a spanning tree
  - No cycles
  - All vertices are connected by cut-edges

#### A pseudo spanning tree

- No cycles
- 8 corners are connected by cut-edges
- Degrees of vertices:
  - Corners: 1 or more cut-edges
  - Other vertices: 0, 2, 3, 4